单相桥式整流滤波电路
- 格式:ppt
- 大小:1.07 MB
- 文档页数:20
桥式整流、滤波及稳压电路一、实验目的1.学会半导体二极管和稳压管极性的简单测试,了解其工作性能和作用;2.掌握单相桥式整流、滤波、稳压电路的工作原理和对应电压波形及测试方法;3.掌握输入交流电压与输出直流电压之间的关系;4.了解倍压整流的原理与方法。
二、实验原理整流电路是将交流电变为直流电以供负载使用。
直流稳压电源先通过整流电路把交流电变为脉动的直流电,再经各种滤波电路、稳压电路,使输出直流电压维持稳定。
由整流、滤波、稳压环节构成的简单稳压电路如图1所示图1 桥式整流、滤波、稳压电路三、实验仪器设备表1 实验器材名称规格与型号数量电位器10kΩ1个电阻330Ω或者200Ω,60Ω或者100Ω各1个电容220μF / 50V、470μF / 50V 各1个二极管IN4007 4个稳压管2CW17 1个示波器GOS-620 1台直流毫安表C65-mA,0-150-300mA 1台注意事项:切勿用毫安表测电压。
注意万用表的交直流电压挡、欧姆挡的转换及量程的选择;防止误操作,避免电源短路、烧损二极管和电容;四、实验内容与要求根据实验室提供的实验设备完成以下实验内容的设计:1.用万用表测量二极管,学会用万用表检查二极管极性和性能的好坏。
2.设计并连接单相桥式整流电路,调节负载电阻,使负载电流分别为2mA和8mA,测量并记录输入交流电压、整流电路的输出直流电压和负载两端的电压的大小,用示波器观察并画出上述3.设计并连接具有滤波的单相桥式整流电路,调节负载电阻,使负载电流分别为2mA和8mA 时,测量并记录输入交流电压,整流滤波电路的输出直流电压和负载两端的电压的大小,用示波器观察并画出上述电压的波形。
4. 在上一个电路(单相桥式整流、滤波电路)中,若改变滤波电容的容量,输出波形会发生什么样的变化?若改变负载电阻,输出波形会发生怎样的变化?5.6.设计并连接具有滤波、稳压的单相桥式整流电路,在下列两种情况下,测量并记录输入交流电压、整流滤波电路的输出直流电压和负载两端的电压的大小,用示波器观察并画出上述电压的波形。
单相半波整流电路和单相桥式整流电路是两种常见的单相交流到直流的整流电路。
1. 单相半波整流电路:
单相半波整流电路是一种简单的整流电路,适用于小功率应用。
它由一个二极管和负载组成,二极管用于将输入的交流电信号转换为单向的脉冲电流。
在每个半个周期中,只有一个半波被整流,另一个半波被阻断。
因此,输出的直流电流是存在间断的脉冲性质。
这种电路的缺点是输出的直流电压有较大的脉动,因为在每个半周期中只有一半时间是有效的。
2. 单相桥式整流电路:
单相桥式整流电路是一种更常用的整流电路,适用于较高功率的应用。
它由四个二极管和负载组成,可以将输入的交流电信号转换为稳定的直流电流。
在每个半个周期中,交流电源的两个极性都能够提供电流给负载。
通过适当的二极管导通和截止控制,可以实现交流信号的无间断整流。
因此,输出的直流电流相对更稳定,脉动较小。
这种电路的优点是输出的直流电压质量较好,适用于对电压稳定性要求较高的应用。
需要注意的是,整流电路中的二极管需要选择适当的额定电压和电流来匹配所需的电流和电压要求。
此外,为了进一步减小输出直流电压的脉动,还可以添加滤波电容器来平滑输出波形。
在实际应用中,还可能涉及到过流保护、温度保护等其他电路设计考虑因素。
以上是对单相半波整流电路和单相桥式整流电路的简要介绍,具体的电路参数设计和分析需要根据具体应用和要求进行进一步的研究和计算。
单相半波、单相全波和单相桥式整流器1.单相半波整流滤波器图1 单相半波整流滤波电路原理图图1所示是单相半波整流滤波电路原理图,图1(a)是电路原理图,图1(b)是整流波形图。
由于整流器具有单向通导的特性,所以输入电压U1 经整流器VD 整流后就变成了单向脉动波Uo,而输入的负半周被隔离掉。
一般整流器后面都有电容滤波器,如图1(a)中C,将脉动波变成直流波Uc,如图1(b) 所示。
有些情况下,由于某种原因将电容损坏,而电容上的标称值又看不清楚,就无法贸然更换。
在此情况下如何选择C 的电容量就成了首要问题。
这里可以用一个简单的方法计算出来,即一般要求在放电结束时的那一点上,电容上电压下降不超过5%,根据电容放电公式:(1)式中Uc——为在放电时间结束时那一点的瞬时电压;Uco——放电开始时的电压;t——放电时间,在半波整流时为10ms 的值;——放电时间常数,=C(F)R(Ω),单位是“s”将式(2-1)改写成:(2)按照上面的要求,为了便于计算,设放电到10ms 时,应当Uc=0.95Uco,代入这些数据后,上式就变为:即CR=19.5X10-3/R (s),式中R——是整流滤波电源输出最大容量时的等效负载电阻值,于是电容C=19.5X10-3/R就可取标称值的电容代替。
{{分页}}2.单相全波整流滤波器单相半波整流一般都用于小功率的情况,所以当功率稍微增大时就必须用全波整流。
图2(a)所示是单相全波整流电路原理图,图2(b)是它的整流波形图。
由图中可以看出,这是两个单相半波整流器的组合。
需指出的是,有时这种整流器前面加了变压器,目的是使次级电压可以根据设计的要求随意变化。
图2 单相全波整流电路原理图往往有的情况下将小功率变压器烧坏了,而一般机器内的变压器由于是非标准件,并不给出它的绕线参数,使用户无从下手。
遇有这种情况就可以自己动手另外绕制一个变压器来代替。
下面就给出一个简单决定匝数的方法。
首先看一下变压器初级和次级之间的关系。
电力电子单相桥式整流电路设计报告本文将介绍电力电子单相桥式整流电路设计报告。
该电路用于将交流电转换为直流电,是电力转换的常见形式之一,常用于电源供应器、反馈电源、恒定电流源、电动机驱动器等各种领域。
一、概述单相桥式整流电路包括四个二极管和两个并联的滤波电容器。
交流电从电源中进入电路,经过滤波后形成稳定的直流电输出,输出电压与输入电压成正比,但存在一些电压降。
二、设计1.电源设计电源的输出电压和频率应根据需求进行设计。
电源的输出电压应以负载要求为基础,考虑负载变化时的稳定性。
适合单相桥式整流电路的斩波电源为变压器、AC/DC转换器、开关电源等。
2.整流电路设计整流电路需要选用合适的二极管。
一般选用高速恢复二极管或超快恢复二极管,以减小二极管的反向恢复时间和并联电容的大小。
选用超快恢复二极管,可以进一步减少反向恢复时间和二极管的反向电流,增强整流电路的效率、稳定性和输出能力。
3.滤波电路设计滤波电路用于过滤整流电路中的高频电流和噪音,以保证输出电压的稳定性。
选用合适的电容器,可以显著降低输出电压的波动和噪音。
4.稳压电路设计稳压电路用于使输出电压保持稳定,可选用线性稳压器或开关稳压器。
线性稳压器采用晶体管为调节元件,工作稳定可靠;开关稳压器采用大功率晶体管或MOSFET为调节元件,具有高效率、小尺寸、低成本等特点。
三、实验结果通过实验测量,本电路稳定输出电压为12V,最大输出电流为1A。
稳定性较好,输出电压波动小。
在负载变化时,输出电压变化不大,能够满足电源供应器、反馈电源、恒定电流源、电动机驱动器等领域的需求。
四、总结本文介绍了电力电子单相桥式整流电路的设计原理和实验结果。
通过该电路设计,可以将交流电源转换为稳定的直流电源,满足各种领域的电源需求。
选用合适的电源、二极管、电容器和稳压电路,可以进一步优化电路性能,提高电路效率和稳定性。
因此,单相桥式整流电路具有广泛的应用前景,是电力转换领域的重要研究方向。
单项桥式整流滤波电路
单项桥式整流滤波电路是一种常用的整流滤波电路,主要由四个二极管、一个整流桥和一个滤波电容组成。
1.工作原理:当变压器次级电压为正半周时,二极管D1、D3承受正向电压而导通,电流通过负载RL,经过D1、D3到达次级线圈的另一端。
当次级电压为负半周时,二极管D2、D4承受正向电压而导通,电流经过负载RL,经过D2、D4到达次级线圈的另一端。
在一个周期内,负载RL上得到了两个半波的电压。
2.滤波作用:由于滤波电容的作用,将整流后的脉动电压转换为平滑的直流电压。
滤波电容的容量越大,滤波效果越好。
总之,单项桥式整流滤波电路可以将交流电转换为直流电,并通过滤波电容去除脉动,得到平滑的直流电压。
单相桥式整流滤波电路的安装与调试任务分析1、 掌握单相桥式整流滤波电路的工作原理。
2、 了解单相桥式整流电路的器件选择。
3、 会用Multisim 软件对电路进行仿真。
4、 掌握单相桥式整流滤波电路的安装方法。
5、 掌握单相桥式整流滤波电路的调试方法。
一、 预备知识1、 交流电:电路中的电压(电流)的大小和方向随时间进行周期性变化的电压(电流)称为交流电,若遵循正弦规律变化则为正弦交流电。
例如:常用的市电为单相正弦交流电,电压为220 V ~,频率为50HZ 。
2、 直流电:电路中的电压(电流)的方向不发生变化的称为直流电。
例如:常用的AA 干电池电压为1.5V ;锂离子充电电池电压为3.6V 。
3、 整流:将交流电转换为直流电的过程。
4、 滤波:单相整流电路整流后的直流电为脉动直流电,其中仍包含有较多的交流成分,为保证电源质量需要滤除其中的交流成分,保留直流成分,将脉动变化的直流电变为平滑的直流电称为滤波。
5、 单相整流滤波电路:将电网220 V~的单相交流电路进行整流、滤波,输出平滑的直流电。
6、常见整流电路:(1)单相半波整流电路(2)单相全波整流电路(3)单相桥式整流电路在整流滤波电路中,单相桥式整流电容滤波电路应用最为广泛,本课题以此为例。
二、单相桥式整流滤波电路的工作原理(时间45分钟)1、单相桥式整流滤波电路原理图o图一单相桥式整流滤波电路原理图2、电路原理分析(1)在图一中,当开关S1断开,S2闭合时,电路为单相桥式整流电路。
在变压器次级交流电压u 2为正半周时,即A+B-时,二极管V2、V3导通,V1、V4截至。
电流流过的路径是:从A 点出发,经二极管V2、负载R2,再经V3回到B 点。
如图实线所示。
若忽略二极管的正向压降,可以认为R2上的电压u 0≈u 2。
当u 2为负半周,即A-B+时,二极管V 1、V4导通,V2、V3截至。
电流的通路是从B 点出发,经V4、负载RL 、V ₁回到A 点。
1. 让学生了解并掌握单相桥式整流滤波电路的原理及应用。
2. 培养学生对电路图的阅读和分析能力。
3. 培养学生运用电路知识解决实际问题的能力。
二、教学内容1. 单相桥式整流滤波电路的基本原理2. 单相桥式整流滤波电路的电路图及元器件功能3. 单相桥式整流滤波电路的工作过程4. 单相桥式整流滤波电路的应用实例5. 单相桥式整流滤波电路的优缺点三、教学重点与难点1. 重点:单相桥式整流滤波电路的工作原理及应用。
2. 难点:单相桥式整流滤波电路的电路图分析及元器件功能。
四、教学方法1. 采用讲授法,讲解单相桥式整流滤波电路的基本原理、工作过程及应用实例。
2. 采用案例分析法,分析单相桥式整流滤波电路的电路图及元器件功能。
3. 采用提问法,引导学生思考并解决实际问题。
五、教学准备1. 教案、教材、课件等教学资源。
2. 教学多媒体设备。
3. 电路图及相关元器件。
4. 实验器材(如电源、灯泡、电阻等)。
1. 引入新课:通过讲解日常生活实例,引导学生了解单相桥式整流滤波电路的应用。
2. 讲解基本原理:介绍单相桥式整流滤波电路的基本原理,解释其工作过程。
3. 分析电路图:讲解单相桥式整流滤波电路的电路图,阐述各元器件的功能。
4. 演示实验:进行实验演示,让学生观察并理解单相桥式整流滤波电路的工作过程。
5. 应用实例:介绍单相桥式整流滤波电路在实际应用中的案例,让学生了解其应用领域。
6. 优缺点分析:讨论单相桥式整流滤波电路的优缺点,让学生了解其在实际应用中的限制。
七、课堂互动1. 提问:让学生回答关于单相桥式整流滤波电路的问题,检查学生对知识点的掌握。
2. 小组讨论:让学生分组讨论单相桥式整流滤波电路的应用实例,分享各自的见解。
3. 解答疑问:针对学生提出的问题,进行解答,帮助学生克服学习难点。
八、课堂练习1. 让学生根据电路图,分析单相桥式整流滤波电路的工作过程。
2. 让学生设计一个简单的单相桥式整流滤波电路,并分析其优缺点。
课程设计任务书目录1 课程设计的目的与作用 (1)1.1 课程设计的目的 (1)1.2 课程设计的方法 (1)2 设计任务、及所用multisim软件环境介绍 (1)2.1 设计任务 (1)2.1.1单相桥式整流电容滤波电路 (1)2.1.2矩形波发生器 (1)2.1.3音调发生电路 (1)2.1.4微变积分电路 (1)2.2 Multisim软件环境简介 (1)2.2.1 Multistim 10简介 (1)2.2.2 Multistim 10主页面 (2)2.2.3 Multistim 10元器件库 (2)2.2.4 Multistim 10虚拟仪器 (3)2.2.5 Multistim 10分析工具 (3)3 电路模型的建立 (4)3.1单相桥式整流电容滤波电路 (4)3.2矩形波发生器 (4)3.3音调发生电路 (5)3.4微变积分电路 (5)4 理论分析及计算 (6)4.1理论分析 (6)4.1.1单相桥式整流电容滤波电路 (6)4.1.2矩形波发生器 (6)4.1.3音调发生电路 (6)4.1.4微变积分电路 (6)4.2工作原理 (6)1 课程设计的目的与作用1.1 课程设计的目的(1)了解并掌握Multisim软件,并能熟练的使用其进行仿真;(2)加深理解单相桥式整流电容滤波电路的组成及性能;(3)进一步学习整流电路基本参数的测试方法。
1.2 课程设计的方法通过自己动手亲自设计和用Multistim软件来仿真电路,不仅能使我们队书上说涉及到的程序软件有着更进一步的了解和掌握,而且通过计算机仿真,避免了实际动手操作时机器带来的误差,使我们对上课所学到的知识也有更深刻的了解。
2 设计任务、及所用multisim软件环境介2.1设计任务2.1.1单相桥式整流电容滤波电路设计单相桥式整流电容滤波电路,使输出电压成为比较平滑的直流电压,电路由自己独自设计完成,在实验中通过自己动手调试电路,能够真正掌握实验原理,即静态分析和动态分析,并在试验后总结出心得体会。
相关知识:一、单相桥式整流滤波电路的组成及元件的认识1. 电阻器与电位器(1)电阻器、电位器的作用、分类(2)电阻器、电位器的主要技术指标(3)电阻器、电位器的标志方法(4) 电阻器、电位器的符号(5) 电阻器、电位器好坏的检测(6) 注意事项2.电容器(1)常用电容器的外形(2)概念及作用(3)电容器的单位(4)电容主要参数(5) 电容器的符号(6)电容器的测试3.晶体二极管(1) 二极管的种类(2) 二极管的结构、型号、符号(3) 二极管的特性(4) 晶体二极管的简易判别方法(5) 注意事项二、相关线路分析(难点)(一)基本概念1.交流电:电路中的电压(电流)的大小和方向随时间进行周期性变化的电压(电流)称为交流电,若遵循正弦规律变化则为三、示波器的使用示波器是一种用途十分广泛的电子测量仪器。
它能把肉眼看不见的电信号变换成看得见的图象,便于人们研究各种电现象的变化过程。
利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、调幅度等等。
如图所示任务实施(重点)一、单相桥式整流滤波电路的安装、调试1. 电路图如图所示u2u1V2V1V3R L ULC1TV4C2RFU1FU2300V、400V、500V、600V、800V、1000V等多种规格。
2. 结构:整流桥堆产品是由四只整流硅芯片作桥式连接,外用绝缘朔料封装而成,只引出四个引脚。
四个引脚中,两个直流输出端标有+或-,两个交流输入端有~标记。
大功率整流桥在绝缘层外添加锌金属壳包封,增强散热。
图6-1-28 整流桥堆3. 特点:桥式整流器品种多,性能优良(部的四只整流硅芯片一般是挑选配对的,所以其性能较接近),整流效率高,稳定性好,最大整流电流从0.5A 到50A,最高反向峰值电压从50V到1000V。
4. 命名规则:一般整流桥命名中有3个数字,第一个数字代表额定电流A,后两个数字代表额电压(数字*100)V如:KBL407即4A,700V。
《模拟电子技术》演示实验库实验11:桥式整流电容滤波电路一、教学目的1. 演示桥式整流输出电压的波形并与变压器次级波形作比较。
2. 演示加有电容滤波的输出电压的波形,负载变化后对输出电压波形的影响。
3. 测试各种情况下的输出电压,演示当一支二极管开路、短路后输出电压的变化,加深理解桥式整流电路的应用。
二、演示内容1. 创建单相桥式整流、电容滤波实验电路(1)启动Multisim进入Multisim工作界面。
(2)按图11.1在电路工作区连接电路图11.1 单相全波整流电容滤波实验电路◆安放元器件(或仪器)单击打开相应元器件库(或仪器库),将所需元器件(或仪器)拖拽至相应位置。
利用工具栏的旋转、水平翻转、垂直翻转等按钮使元器件符合电路的安放要求。
◆连接电路(3)按图11.1所示,给元器件标识、赋值(或选择模型)双击元器件打开元件特性对话框,进行相应设置。
全波整流波形电源电压波形(示波器面板波形显示框)图11.2 电源与全波整流波形◆信号源u s单击Label,键入单相交流电源Us。
单击Value,设置Vo1tage:200V,Frequency:50Hz,Phase:0。
◆变压器Tr单击“Label”,键入Tr 10:1。
单击Mode1s,选中Library 中的default和Model中的ideal,单击“Edit”按钮打参数设置对话框,在“primary to Secondary tums ratio”框键入“10”,单击“确定”。
◆整流桥堆D×4单击Labe1,键入D×4,单击Models,选中Library中的general1和Model中的BYM10.100,单击“确定”。
◆电容C单击Labe1,键入滤波电容C。
单击V alue,将“Capacitance”设置为20μF,单击“确定”。
◆开关K单击Label,键入K,单击确定。
由于只有一个开关,故控制键可采用其缺省设置的“Space”(空格键)。
单相桥式整流滤波电路是电子电路中常见的一种整流电路,它能够将交流电转换为直流电,并且通过滤波电路使输出的直流电更加平稳。
在工程实际中,如果负载开路,整流管最高反向电压会出现什么情况呢?下面将从几个方面对该问题展开探讨。
1. 单相桥式整流滤波电路的基本结构单相桥式整流滤波电路由四个二极管和两个滤波电容组成。
其中,四个二极管构成了一个桥式整流电路,可以将输入的交流电转换为直流电;两个滤波电容则用来滤除直流电中的脉动成分,使输出的直流电更加平稳稳定。
2. 负载开路对整流管最高反向电压的影响当负载开路时,整流管将会承受较高的反向电压。
这是因为在整流电路中,负载开路会导致输出电压升高,进而使得整流管正常工作时的反向电压也会相应升高。
由于整流管的承受能力有限,过高的反向电压有可能造成整流管击穿损坏,甚至导致整个电路的故障。
3. 预防负载开路引起的问题为了预防负载开路引起的问题,可以采取以下几种措施:安装合适的保护电路,如过压保护电路或者快速切断电路,以确保整流管在面对突然增大的反向电压时能够及时切断;设计合理的负载保护措施,如负载开路时自动切断电源,以避免输出电压过高;选择合适的整流管和电容,使其能够在较高的反向电压下正常工作。
4. 工程应用中的注意事项在实际工程中,我们需要特别注意整流电路的设计和选型。
尤其是在负载较大、工作环境恶劣的场合,更要对单相桥式整流滤波电路的负载开路问题进行充分的考虑和防范。
只有充分理解电路原理,并在设计和使用中注意细节,才能够确保电路的稳定可靠性。
单相桥式整流滤波电路负载开路时,整流管最高反向电压有可能会出现过高的情况,因此在工程实际中需要特别注意该问题,并采取相应措施进行预防和保护。
只有在充分理解电路原理的基础上,才能够设计出稳定可靠的整流电路,为工程实际的应用提供可靠的电力支持。
对于单相桥式整流滤波电路,在设计和应用中需要特别注意整流管最高反向电压的问题。
负载开路时,整流管所承受的反向电压将会较高,可能导致整流管的击穿损坏,甚至直接影响整个电路的正常运行。