2018年山东省济宁市梁山县中考数学一模试卷(解析版)
- 格式:doc
- 大小:545.00 KB
- 文档页数:27
2018年山东省济宁市 数学中考模拟试题(一)一、选择题(本大题共10小题,每小题只有唯一正确答案,每小题3分,共30分) 1 . 2018的相反数是A .2018 B.-2018 C.20181D.201812近几年来,我市加大教育信息化投入,投资221000000元,初步完成了济宁市教育公共云服务平台基础工程,教学点数字教育资源全覆盖。
将221000000用科学高数法表示为( )A. 22.1×107B. 2.21×108C. 2.21×109D. 0.221×10103.如图,已知直线a 、b 被直线c 所截.若a ∥b ,∠1=120°,则∠2的度数为( ) A .60° B .50° C .120° D .130°4.某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是( ) 动时间(A .中位数是4,平均数是3.75 B .众数是4,平均数是3.75C .中位数是4,平均数是3.8D .众数是2,平均数是3.85.在函数y=中,自变量x 的取值范围是( )A .x >0B . x ≥-4C . x ≥-4且x ≠0 D. x >0且≠-4 6.如图,在底边BC 为2,腰AB 为2的等腰三角形ABC 中,DE 垂直平分AB 于点D ,交BC 于点E ,则△ACE 的周长为( )A .2+B .2+2C .4D .37.京剧脸谱、剪纸等图案蕴含着简洁美、对称美,下列选取的图片中既是轴对称图形又是中心对称图形的是( )8.已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为()A. (0,0)B.(1,)C.(,)D.(,)9.如图是某几何体的三视图,则该几何体的全面积等于()A.112B.136 C.124 D.8410.定义:点A(x,y)为平面直角坐标系内的点,若满足x=y,则把点A叫做“平衡点”.例如:M(1,1),N(-2,-2)都是“平衡点”.当-1≤x≤3时,直线y=2x+m上有“平衡点”,则m的取值范围是()A.0≤m≤1B.-3≤m≤1C.-3≤m≤3D.-1≤m≤0二、填空题(本题共5小题,每小题3分,共15分)11.计算:()﹣2+(π﹣3)0﹣=.12.若代数式与的值相等,则x=_______.13.如图,⊙O是△ABC的外接圆,∠AOB=70°,AB=AC,则∠ABC=14.图①是一个三角形,分别连接这个三角形的中点得到图②;再分别连接图②中间小三角形三边的中点,得到图③.按上面的方法继续下去,第n个图形中有个三角形(用含字母n的代数式表示).15如图,在Rt△AOB中,直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后,得到△A′O′B,且反比例函数y=的图象恰好经过斜边A′B的中点C,若S ABO=4,tan∠BAO=2,则k=.三、解答题(本大题共7小题,共55分)16.(本小题满分7分)(1)先化简再求值:a(1-4a)+(2a+1)(2a-1),其中a=4.(2)如果实数x、y满足方程组,求代数式(+2)÷.17某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.18..如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明,若不成立,请说明理由;(2)当△ABC绕点A逆时针旋转45°时,如图3,延长BD交CF于点H.①求证:BD⊥CF;②当AB=2,AD=3时,求线段DH的长.19.(8分)某校九年级的小红同学,在自己家附近进行测量一座楼房高度的实践活动.如图,她在山坡坡脚A出测得这座楼房的楼顶B点的仰角为60°,沿山坡往上走到C处再测得B点的仰角为45°.已知OA=200m,此山坡的坡比i=,且O、A、D在同一条直线上.求:(1)楼房OB的高度;(2)小红在山坡上走过的距离AC.(计算过程和结果均不取近似值)的整数.结合函数的图象回答:当自变量x满足什么条件时,y2>y1?20.某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?21如图,在△ABC中,以BC为直径的圆交AC于点D,∠ABD=∠ACB.(1)求证:AB是圆的切线;(2)若点E是BC上一点,已知BE=4,tan∠AEB=,AB:BC=2:3,求圆的直径.22如图,抛物线y=-x2+x+2与x轴交于点A,点B,与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点. 设点P的坐标为(m, 0),过点P作x轴的垂线l交抛物线于点Q.(1)求点A,点B,点C的坐标;(2)求直线BD的解析式;(3)当点P在线段OB上运动时,直线l交BD于点M,试探究m为何值时,四边形CQMD 是平行四边形;(4)在点P的运动过程中,是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.参考答案一.1 B 2 B 3 A 4 C 5. C 6 B 7 D 8 9 C 10 B二.11. 2 12. 4 13. 110° 14 4n-3 15. 6三。
山东济宁2018年中考数学第一次模拟试题一、选择题(本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.|-3|的倒数是()A.-3 B. C.3 D.2.据有关资料显示,2018年遵义市全年财政总收入202亿元,将202亿用科学记数法可表示()A.2.02×10 B.202×10 C.2.02×10 D.2.02×103.在算式“”的“□”中填上运算符号,使结果最大,这个运算符号是()A.加号 B.减号 C.乘号 D.除号4.下列计算正确的是A.a+a=2a B.b3·b3=2b3C.a3÷a=a3D.(a5)2=a75.已知是二元一次方程组的解,则的算术平方根为()A.±2 B.C.2 D. 46.如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线,与⊙O过A点的切线交于点B,且∠APB=60°,设OP=,则△PAB的面积y关于的函数图像大致是()7.下列说法正确的是( )A.商家卖鞋,最关心的是鞋码的中位数B.365人中必有两人阳历生日相同C.要了解全市人民的低碳生活状况,适宜采用抽样调查的方法D.随机抽取甲、乙两名同学的5次数学成绩,计算得平均分都是90分,方差分别是=5,=12,说明乙的成绩较为稳定8.如图,正比例函数y1=k1x和反比例函数的图象交于A(﹣1,2)、B(1,﹣2)两点,若y1<y2,则x的取值范围是( )A.x<﹣1或x>1 B.x<﹣1或0<x<1C.﹣1<x<0或0<x<1 D.﹣1<x<0或x>1二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.)9.如图1,正方形OCDE的边长为1,阴影部分的面积记作S1;如图2,最大圆半径r=1,阴影部分的面积记作S2,则S1 S2(用“>”、“<”或“=”填空).10.若关于的不等式组有实数解,则的取值范围是.11.如图,⊙O的半径为6cm,直线AB是⊙O的切线,切点为点B,弦BC∥AO,若∠A=30°,则劣弧的长为 cm.12.已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球,若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是,则y与x之间的函数关系式为13.若(x1,y1)•(x2,y2)=x1x2+y1y2,则(4,5)•(6,8)= .14.如图,P是矩形ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论:①S1+S2=S3+S4② S2+S4= S1+ S3③若S3=2 S1,则S4=2 S2④若S1= S2,则P点在矩形的对角线上其中正确的结论的序号是(把所有正确结论的序号都填在横线上).三、解答题(本大题共7个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)15.(本题12分,每题6分)(1).计算:(2).解方程:;16.(本题12分,每题6分)(1).如图,在平面直角坐标系中,△ABC的顶点坐标分别为(4,0)(8,2),(6,4).已知△A1B1C1的两个顶点的坐标为(1,3),(2,5).若△ABC与△A1B1C1位似,则△A1B1C1的第三个顶点的坐标为.(2).在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题...,并给予证明.题设:______________;结论:________.(均填写序号)证明:17.(本题14分,每题7分)(1).直线与反比例函数 (x>0)的图像交于点A,与坐标轴分别交于M、N两点,当AM=MN时,求k的值.(2).某校为了进一步开展“阳光体育”活动,计划用2000元购买乒乓球拍,用2800元购买羽毛球拍.已知一副羽毛球拍比一副乒乓球拍贵14元.该校购买的乒乓球拍与羽毛球拍的数量能相同吗?请说明理由.18.(本题10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,连结BE、AD交于点P.求证:(1)D是BC的中点;(2)△BEC ∽△ADC;(3)AB× CE=2DP×AD.19.(本题10分)某中学七年级学生共450人,其中男生250人,女生200人。
济宁市中考数学一模考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)(2018·市中区模拟) 的倒数是()A .B .C . 3D . -32. (2分)(2016·河南) 下列计算正确的是()A . ﹣ =B . (﹣3)2=6C . 3a4﹣2a2=a2D . (﹣a3)2=a53. (2分) (2018九上·宁波期中) 如图,点A,B,C在⊙O上,若∠BOC=72º,则∠BAC的度数是()A . 18°B . 36°C . 54°D . 72°4. (2分)若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是()A . 茭形B . 对角线互相垂直的四边形C . 矩形D . 对角线相等的四边形5. (2分) (2016八下·安庆期中) 若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是()A . x2+3x﹣2=0B . x2﹣3x+2=0C . x2﹣2x+3=0D . x2+3x+2=06. (2分) (2016九上·封开期中) 已知二次函数y=2x2﹣7x+3,若y随x的增大而增大,则x的取值范围是()A . x>B . x<C . x<﹣D . x>﹣二、填空题 (共6题;共6分)7. (1分) (2016七下·东台期中) 已知a+b=4,ab=1,则a2+b2的值是________.8. (1分) (2019八下·长沙期中) 函数中自变量 x 的取值范围是________;9. (1分)如图,直线L1∥L2 ,且分别与△ABC的两边AB、AC相交,若∠A=40°,∠1=45°,则∠2的度数为________.10. (1分)八块相同的长方形地砖拼成一个矩形,则每块长方形地砖的长和宽分别是________cm 、________ cm11. (1分)(2018·随州) 如图,一次函数y=x﹣2的图象与反比例函数y= (k>0)的图象相交于A、B 两点,与x轴交与点C,若tan∠AOC= ,则k的值为________.12. (1分)如图,在8×4的正方形网格中,每个小正方形的边长都是1,若△ABC的三个顶点都在图中相应的格点上,则tan∠ACB=________.三、解答题 (共11题;共86分)13. (10分)(2017八上·西安期末) 计算题(1)化简(1+ )(﹣)﹣(2)解方程组.14. (5分) (2017八上·十堰期末) 先化简,再求值:,其中 .15. (2分)(2017·邕宁模拟) 学校举办“大爱镇江”征文活动,小明为此次活动设计了一个以三座山为背景的图标(如图),现用红、黄两种颜色对图标中的A、B、C三块三角形区域分别涂色,一块区域只涂一种颜色.(1)请用树状图列出所有涂色的可能结果;(2)求这三块三角形区域中所涂颜色是“两块黄色、一块红色”的概率.16. (10分)如图,已知A,B,C,D为矩形的四个顶点,AB=16cm,AD=6cm,动点P,Q分别从点A,C同时出发,点P以3cm/s的速度向点B移动,一直到点B为止,点Q以2cm/s的速度向点D移动,当点P停止运动时,点Q也停止运动.问:(1) P,Q两点从开始出发多长时间时,四边形PBCQ的面积是33cm2?(2) P,Q两点从开始出发多长时间时,点P与点Q之间的距离是10cm?17. (2分)在直角△ABC中,∠ACB=90°,∠B=30°,CD⊥AB于D,CE是△ABC的角平分线.(1)求∠DCE的度数.(2)若∠CEF=135°,求证:EF∥BC.18. (2分)为了解学生参加社团的情况,从2010年起,某市教育部门每年都从全市所有学生中随机抽取2000名学生进行调查,图①、图②是部分调查数据的统计图(参加社团的学生每人只能报一项)根据统计图提供的信息解决下列问题:(1)求图②中“科技类”所在扇形的圆心角α的度数(2)该市2012年抽取的学生中,参加体育类与理财类社团的学生共有多少人?(3)该市2014年共有50000名学生,请你估计该市2014年参加社团的学生人数.19. (10分) (2016九上·靖江期末) 如图,在Rt△ABC中,∠C=90°,点D是AC的中点,且∠A+∠CDB=90°,过点A,D作⊙O,使圆心O在AB上,⊙O与AB交于点E.(1)求证:直线BD与⊙O相切;(2)若AD:AE=4:5,BC=6,求⊙O的直径.20. (5分)(2016·广元) 某班数学课外活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处测得树顶端D的仰角为60°,已知A点的高度AB为2米,台阶AC的坡度i=1:2,且B,C,E三点在同一条直线上,请根据以上条件求出树DE的高度.(测倾器的高度忽略不计,结果保留根号)21. (10分) (2017九上·丹江口期中) 如图①,AB为⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB.(1)求证:BC为⊙O的切线;(2)连接AE并延长与BC的延长线交于点G(如图②所示).若AB= ,CD=9,求线段BC和EG的长.22. (15分)(2019·西岗模拟) 如图1,在平面直角坐标系中,抛物线y=﹣ x2+2 x﹣与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,顶点为D,对称轴与x轴交于点E,直线CE交抛物线于点F(异于点C),直线CD交x轴交于点G.(1)如图1,求直线CE的解析式和顶点D的坐标;(2)如图1,点P为直线CF上方抛物线上一点,连接PC、PF,当△PCF的面积最大时,点M是过P垂直于x 轴的直线l上一点,点N是抛物线对称轴上一点,求FM+MN+NO的最小值;(3)如图2,过点D作DI⊥DG交x轴于点I,将△GDI沿射线GB方向平移至△G′D′I′处,将△G′D′I′绕点D′逆时针旋转α(0<α<180°),当旋转到一定度数时,点G′会与点I重合,记旋转过程中的△G′D′I′为△G″D′I″,若在整个旋转过程中,直线G″I″分别交x轴和直线GD′于点K、L两点,是否存在这样的K、L,使△GKL为以∠LGK为底角的等腰三角形?若存在,求此时GL的长.23. (15分)如图,是小亮晚上在广场散步的示意图,图中线段表示站立在广场上的小亮,线段表示直立在广场上的灯杆,点表示照明灯的位置.(1)在小亮由处沿所在的方向行走到达处的过程中,他在地面上的影子长度越来越________(用“长”或“短”填空);请你在图中画出小亮站在处的影子;(2)当小亮离开灯杆的距离时,身高为的小亮的影长为,①灯杆的高度为多少?②当小亮离开灯杆的距离时,小亮的影长变为多少?参考答案一、单选题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共6题;共6分)7-1、8-1、9-1、10-1、11-1、12-1、三、解答题 (共11题;共86分)13-1、13-2、14-1、15-1、15-2、16-1、16-2、17-1、17-2、18-1、18-2、18-3、19-1、19-2、20-1、21-1、21-2、22-1、22-3、23-1、23-2、。
2018 年山东省济宁市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1).A .1B .﹣1C .3D .﹣32.为贯彻落实觉中央、国务院关于推进城乡义务教育一体化发展的部署,教育部会同有关部门近五年来共新建、改扩建校舍186000000平方米,其中数据186000000用科学记数法表示是( ).A .1.86×107B .186×106C .1.86×108D .0.186×109 3.下列运算正确的是( ).A .a 8÷a 4=a 2B .(a 2)2=a 4C .a 2•a 3=a 6D .a 2+a 2=2a 44.如图,点B ,C ,D 在⊙O 上,若∠BCD=130°,则∠BOD 的度数是( ). A .50° B .60° C .80° D .100° 5.多项式4a ﹣a 3分解因式的结果是( ). A .a (4﹣a 2) B .a (2﹣a )(2+ a )C .a (a ﹣2)( a +2)D .a (a ﹣2)26.如图,在平面直角坐标系中,点A ,C 在x 轴上,点C 的坐标为(﹣1,0), AC=2.将Rt △ABC 先绕点C 顺时针旋转90°,再向右平移3个单位长度, 则变换后点A 的对应点坐标是( ).A .(2,2)B .(1,2)C .(﹣1,2)D .(2,﹣1) 7.在一次数学答题比赛中,五位同学答对题目的个数分别为 7、5、3、5、10,则关于这组数据的说法不正确的是( ). A .众数是5B .中位数是5C .平均数是6D .方差是3.68.如图,在五边形ABCDE 中,∠A+∠B+∠E=300°,DP 、 CP 分别平分∠EDC 、∠BCD ,则∠P=( ). A .50° B .55° C .60° D .65°9.一个几何体的三视图如图所示,则该几何体的表面积是( ). A .24+2π B .16+4π C .16+8π D .16+12π 10.如图,小正方形是按一定规律摆放的,下面四个选项中的图片, 适合填补图中空白处的是( ).二、填空题(本大题共5小题,每小题3分,共15分)11.则x 的取值范围是.12.在平面直角坐标系中,已知一次函数y=﹣2x +1的图象经过P 1(x 1,y 1)、P 2(x 2,y 2)两点,若x 1<x 2,则y 1_______y 2.(填“>”“<”“=”) 13.在△ABC 中,点E ,F 分别是边AB ,AC 的中点,点D 在BC 边上,连接DE ,DF ,EF ,请你添加一个条件 ,使△BED 与△FDE 全等.B .A. C. D.第4题第6题 第8题 第9题第10题14.如图,在一笔直的海岸线l 上有相距2km 的A ,B 两个观测站,B 站在A 站的正东方向上,从A 站测得船C 在北偏东60°的方向上,从B 站测得船C 在北偏东30°的方向上,则船C 到海岸线l 的距离是_________km . 15.如图,点A 是反比例函数y=4x(x >0)图象上一点,直线y=kx +b 过点A 并且与两坐标轴分别交于点B ,C ,过点A 作AD ⊥x 轴,垂足为D ,连接DC ,若△BOC 的面积是4,则△DOC 的面积是.三、解答题(本大题共7小题,共55分)16.(6分)化简:(y+2)(y ﹣2)﹣(y ﹣1)(y+5) 17.(7分)某校开展研学旅行活动,准备去的研学基地有A (曲阜)、B (梁山)、C (汶上),D (泗水),每位学生只能选去一个地方,王老师对本全体同学选取的研学基地情况进行调查统计,绘制了两幅不完整的统计图(如图所示). (1)求该班的总入数,并补全条形统计图. (2)求D (泗水)所在扇形的圆心角度数; (3)该班班委4人中,1人选去曲阜,2人 选去梁山,1人选去汶上,王老师要从这 4人中随机抽取2人了解他们对研学基地 的看法,请你用列表或画树状图的方法, 求所抽取的2人中恰好有1人选去曲阜, 1人选去梁山的概率.18.(7分)在一次数学活动课中,某数学小组探究求环形花坛(如图所示)面积的方法,现有以下工具;①卷尺;②直棒EF ;③T 型尺(CD 所在的直线垂直平分线段AB ). (1)在图1中,请你画出用T 形尺找大圆圆心的示意图(保留画图痕迹,不写画法); (2)如图2,小华说:“我只用一根直棒和一个卷尺就可以求出环形花坛的面积,具体做法如下:将直棒放置到与小圆相切,用卷尺量出此时直棒与大圆两交点M ,N 之间的距离,就可求出环形花坛的面积”如果测得MN=10m ,请你求出这个环形花坛的面积.第13题第14题第15题19.(7分)“绿水青山就是金山银山”,为保护生态环境,A ,B 两村准备各自清理所属区域养(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?20.(8分)如图,在正方形ABCD 中,点E ,F 分别是边AD ,BC 的中点,连接DF ,过点E 作EH ⊥DF ,垂足为H ,EH 的延长线交DC 于点G . (1)猜想DG 与CF的数量关系,并证明你的结论;(2)过点H 作MN ∥CD ,分别交AD 、BC 于点M 、N ,若正方形ABCD 的边长为10,点P是MN 上一点,求△PDC 周长的最小值.21.(9分)知识背景当a >0且x >0时,因为(x–xa )2≥0,所以x ﹣a x ≥0,从而x +ax (当x . 设函数y=x +ax(a >0,x >0)由上述结论可知:当x 时,该函数有最小值为 应用举例已知函数为y 1=x (x >0)与函数y 2==4x (x >0) ,则当x =2时,y 1+y 2=x+4x有最小值为=4. 解决问题(1)已知函数为y 1=x +3(x >﹣3)与函数y 2=(x +3)2+9(x >﹣3),当x 取何值时,21y y 有最小值? 最小值是多少?(2)已知某设备租赁使用成本包含以下三部分:一是设备的安装调试费用,共490元;二是设备的租赁使用费用,每天200元;三是设备的折旧费用,它与使用天数的平方成正比,比例系数为0.001,若设该设备的租赁使用天数为x天,则当x取何值时,该设备平均每天的租货使用成本最低?最低是多少元?22.(11分)如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(3,0),B(﹣1,0),C(0,﹣3).(1)求该抛物线的解析式;(2)若以点A为圆心的圆与直线BC相切于点M,求切点M的坐标;(3)若点Q在x轴上,点P在抛物线上,是否存在以点B,C,Q,P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.2018年山东省济宁市中考数学试卷参考答案试题解析一、选择题:1. B.2.C.3.B.4.D.5.B 6.A. 7.D.8.C. 9. D. 10.C.二、填空题:11 x≥1 .12.y1>y2.13. D是BC的中点,14.315. 2﹣23【解答】解:设A(a,)(a>0),∴AD=,OD=a,∵直线y=kx+b过点A并且与两坐标轴分别交于点B,C,∴C(0,b),B(﹣,0),∵△BOC的面积是4,∴S△BOC=OB×OC=××b=4,2=8k,∴b∴k=①∴AD⊥x轴,∴OC∥AD,∴△BOC∽△BDA,∴,∴,2k+ab=4②,联立①②得,ab=﹣4﹣4(舍)或∴aab=4﹣4,∴S△DOC=OD•OC=ab=2 ﹣2故答案为2﹣2.三、解答题16.(6分)化简:(y+2)(y﹣2)﹣(y﹣1)(y+5)2﹣4﹣y2﹣5y+y+5=﹣4y+1,【解答】解:原式=y17.(7.00分)某校开展研学旅行活动,准备去的研学基地有A(曲阜)、B(梁山)、C(汶上),D(泗水),每位学生只能选去一个地方,王老师对本全体同学选取的研学基地情况进行调查统计,绘制了两幅不完整的统计图(如图所示).(1)求该班的总入数,并补全条形统计图.(2)求D(泗水)所在扇形的圆心角度数;(3)该班班委4人中,1人选去曲阜,2人选去梁山,1人选去汶上,王老师要从这4人中随机抽取2人了解他们对研学基地的看法,请你用列表或画树状图的方法,求所抽取的2人中恰好有1人选去曲阜,1人选去梁山的概率.【解答】解:(1)该班的人数为=50人,则B基地的人数为50×24%=12人,补全图形如下:(2)D(泗水)所在扇形的圆心角度数为360°× =100.8°;(3)画树状图为:共有12种等可能的结果数,其中所抽取的2人中恰好有1人选去曲阜,1人选去梁山的占4种,所以所抽取的2人中恰好有1人选去曲阜,1人选去梁山的概率为=.18.(7.00 分)在一次数学活动课中,某数学小组探究求环形花坛(如图所示)面积的方法,现有以下工具;①卷尺;②直棒EF;③T型尺(CD所在的直线垂直平分线段AB).(1)在图1中,请你画出用T形尺找大圆圆心的示意图(保留画图痕迹,不写画法);(2)如图2,小华说:“我只用一根直棒和一个卷尺就可以求出环形花坛的面积,具体做法如下:将直棒放置到与小圆相切,用卷尺量出此时直棒与大圆两交点M,N之间的距离,就可求出环形花坛的面积”如果测得MN=10m,请你求出这个环形花坛的面积.【解答】解:(1)如图点O即为所求;(2)设切点为C,连接OM,OC.∵MN是切线,∴OC⊥MN,∴CM=CN=5,2﹣OC2=CM2=25,∴OM2﹣π•OC2=25π.∴S圆环=π•O M19.(7.00分)“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?【解答】解:(1)设清理养鱼网箱的人均费用为x元,清理捕鱼网箱的人均费用为y元,根据题意,得:,解得:,答:清理养鱼网箱的人均费用为2000元,清理捕鱼网箱的人均费用为3000元;(2)设m人清理养鱼网箱,则(40﹣m)人清理捕鱼网箱,根据题意,得:,解得:18≤m<20,∵m为整数,∴m=18或m=19,则分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱;方案二:19人清理养鱼网箱,21人清理捕鱼网箱.20.(8.00分)如图,在正方形ABCD中,点E,F分别是边AD,BC的中点,连接DF,过点E作EH⊥DF,垂足为H,EH的延长线交DC于点G.(1)猜想DG与CF的数量关系,并证明你的结论;(2)过点H作MN∥CD,分别交AD,BC于点M,N,若正方形ABCD的边长为10,点P是MN上一点,求△PDC周长的最小值.【解答】解:(1)结论:CF=2DG.理由:∵四边形ABCD是正方形,∴AD=BC=CD=AB,∠ADC=∠C=90°,∵DE=AE,∴AD=CD=2DE,∵EG⊥DF,∴∠DHG=90°,∴∠CDF+∠DGE=90°,∠DGE+∠DEG=90°,∴∠CDF=∠DEG,∴△DEG∽△CDF,∴==,∴CF=2DG.(2)作点C关于NM的对称点K,连接DK交MN于点P,连接PC,此时△PDC 的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK.由题意:CD=AD=10,ED=AE=5,DG=,EG=, DH== ,∴EH=2DH=2,∴HM==2,∴DM=CN=NK==1,在Rt△DCK 中,DK== =2,∴△PCD的周长的最小值为10+2.21.(9.00分)知识背景2≥0,所以x﹣2 +≥0,从而x+当a>0且x>0时,因为(﹣)(当x=时取等号).设函数y=x+(a>0,x>0),由上述结论可知:当x= 时,该函数有最小值为2.应用举例已知函数为y1=x(x>0)与函数y2=(x>0),则当x= =2时,y1+y2=x+有最小值为2=4.解决问题2+9(x>﹣3),当x取何(1)已知函数为y1=x+3(x>﹣3)与函数y2=(x+3)值时,有最小值?最小值是多少?(2)已知某设备租赁使用成本包含以下三部分:一是设备的安装调试费用,共490元;二是设备的租赁使用费用,每天200元;三是设备的折旧费用,它与使用天数的平方成正比,比例系数为0.001.若设该设备的租赁使用天数为x天,则当x取何值时,该设备平均每天的租货使用成本最低?最低是多少元?【解答】解:(1)==(x+3)+,∴当x+3=时,有最小值,∴x=0或﹣6(舍弃)时,有最小值=6.(2)设该设备平均每天的租货使用成本为w元.则w==+0.001x+200,∴当=0.001x时,w有最小值,∴x=700或﹣700(舍弃)时,w 有最小值,最小值=201.4元.22.(11.00分)如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(3,0),B(﹣1,0),C (0,﹣3).(1)求该抛物线的解析式;(2)若以点A为圆心的圆与直线BC相切于点M,求切点M的坐标;(3)若点Q在x轴上,点P在抛物线上,是否存在以点B,C,Q,P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.【解答】解:(1)把A(3,0),B(﹣1,0),C(0,﹣3)代入抛物线解析式得:,解得:,则该抛物线解析式为y=x2﹣2x﹣3;(2)设直线BC解析式为y=kx﹣3,把B(﹣1,0)代入得:﹣k﹣3=0,即k=﹣3,∴直线BC解析式为y=﹣3x﹣3,∴直线AM解析式为y=x+m,把A(3,0)代入得:1+m=0,即m=﹣1,∴直线AM解析式为y=x﹣1,联立得:,解得:,则M(﹣,﹣);(3)存在以点B,C,Q,P为顶点的四边形是平行四边形,分两种情况考虑:2﹣2m﹣3),设Q(x,0),P(m,m当四边形BCQP为平行四边形时,由B(﹣1,0),C(0,﹣3),根据平移2﹣2m﹣3,解得:m=1±,规律得:﹣1+x=0+m,0+0=﹣3+mx=2±,2﹣2m﹣3=8+2﹣2﹣2﹣3=3,即P(1+,2);当m=1+时,m2﹣2m﹣3=8﹣2﹣2+2﹣3=3,即P(1﹣,2);当四边形当m=1﹣时,mBCPQ 为平行四边形时,由B(﹣1,0),C(0,﹣3),根据平移规律得:﹣1+m=0+x,0+m2﹣2m﹣3=﹣3+0,解得:m=0或2,当m=0时,P(0,﹣3)(舍去);当m=2时,P(2,﹣3),综上,存在以点B,C,Q,P为顶点的四边形是平行四边形,P的坐标为(1+,2)或(1﹣,2)或(2,﹣3).。
中考复习必备各科目真题及解析2018 年山东省济宁市中考数学真题一、选择题:本大题共 10 小题,每小题 3 分,共 30 分。
在每小题给出的四个选项中,只 有一项符合题目要求。
1. 3 1 的值是( )A.1B.﹣1 C.3 D.﹣32.为贯彻落实觉 中央、国务院关于推进城乡义务教育一体化发展的部署,教育部会同有关部门近五 年来共新建、改扩建校舍 186000000 平方米,其中数据 186000000 用科学记数法表示是()A.1.86×107B.186×1063.下列运算正确的是()C.1.86×108D.0.186×109A.a8÷a4=a2B.(a2)2=a4C.a2•a3=a6D.a2+a2=2a44.如图,点 B,C,D 在⊙O 上,若∠BCD=130°,则∠BOD 的度数是()A.50° B.60° C.80° D.100°5.多项式 4a﹣a3 分解因式的结果是()A.a(4﹣a2) B.a(2﹣a)(2+a)C.a(a﹣2)(a+2)D.a(2﹣a)26.如图,在平面直角坐标系中,点 A,C 在 x 轴上,点 C 的坐标为(﹣1,0),AC=2.将 Rt△ABC 先绕点 C 顺时针旋转 90°,再向右平移 3 个单位长度,则变换后点 A 的对应点坐标是()A.(2,2) B.(1,2) C.(﹣1,2) D.(2,﹣1)7.在一次数学答题比赛中,五位同学答对题目的个数分别为 7,5,3,5,10,则关于这组 数据的说法不正确的是()A.众数是 5B.中位数是 5 C.平均数是 6 D.方差是 3.68.如图,在五边 形 ABCDE 中,∠A+∠B+∠E=300°,DP、CP 分别平分∠EDC、∠BCD,则∠P=()A.50° B.55° C.60° D.65°9.一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2πB.16+4πC.16+8πD.16+12π10.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是()二、填空题:本大题共 5 小题,每小题 3 分,共 15 分。
济宁市二0一八年高中段学校招生考试数学试题注意事项:1.本试卷分第I卷和第I1卷两部分,共6页.第1卷为选择题,30分,第1卷为非选择题,70分;共100分,考试时间为120分钟.2.答题前,考生务必先核对条形码上的姓名,准考证号和座号,然后用0.5毫米黑色签字笔将本人的姓名、准考证号和座号填写在答题卡相应位置.3.答第1卷时,必须使用2B铅笔把答题卡上相应题目的答案标号(ABCD)涂黑,如需改动必须先用橡皮擦干净,再改涂其它答案.4,在答第11卷时,必须使用0.5毫米黑色签字笔在答题卡上书写,务必在题号所指示的答题区域内作答.5.填空题请直接将答案填写在答题卡上,解答题应写出文字说明、证明过程或演算步骤.6.考试结束后,将本试卷和答题卡一并交回.第|卷(选择题共30分)一.选择题:本大题共10小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求3的值是1.√−1A.1B.-1C.3D.-32.为贯彻落实党中央、因务院关于推进城乡义务教育体化发展的部署,教育部会同有关部门近五年来共新建、改扩建校舍186000000平方米.其中186000000用科学计数法表示是( )A.1.86x108B.186x106C.1.86x109D.0.186x1093.下列运算正确的是A.a8÷a4 =a2B.(a2)2=a4C.a2·a3=a6 D,a2+a2 =2a44.如图,点B,C,D 在⊙O上,若∠BCD=130º,则∠B0D的度数是A.50ºB.60ºC.80ºD.100º5.多项式4a-a3分解因式的结果是A.a(4-a2)B.a(2-a)(2+a)C.a(a-2)(a+2)D.a(2-a)26.如图,在平面直角坐标系中,点A.C在x轴上,点C的坐标为(-1,0),AC=2,将Rt△ABC先绕点C顺时针旋转90”,再向右平移3个单位长度,则变换后点A的对应点坐标是( )A.(2.2)B.(1,2)C.(-1,2)D.(2,-1)7.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5B.中位数是5C.平均数是6D.方差是3.68.如图,在五边形ABCDE中,∠A+∠B+∠C=300º,DP,CP分别平分∠EDC,∠BCD,则∠P的度數是A.50ºB.55ºC.60ºD.65º9.-个几何体的三视图如图所示,则该几何体的表面积是(A.24+2πB.16+4πC.16+8πD.16+12π10.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是( )第Ⅱ卷(非选择题共70分)二、填空题:本大题共5小题,每小题3分,共15分.11.若二次根式√x−1在实数范围内有意义,则x的取值范围是 .12.在平面直角坐标系中,已知一次函数y=-2x+1的图像经过P1(x1, y1),P2(x2,y2)两点,若x1<x2则y1____y2上(填“>”“<” 或“=”).13.在△ABC中,点E,F分别是边AB,AC的中点,点D在BC边上,连接DE,DF,EF.请你添加一个条件使△BED与△FDE全等.14.如图,在一笔直的海岸线l上有相距2km的A,B两个观测站,B站在A站的正东方向上,从A站测得船C在北偏东60º的方向上,从B站测得船C在北偏东30º的方向上,则船C到海岸线l的距离是 km.(x>0)图像上一点,直线y=kx+b过点A并且与15.如图,点A是反比例函数y=4x两坐标轴分别交于点B,C,过点A作AD⊥x轴,垂足为D,连接DC,若△BOC的面积是4,则△DOC的面积是 .三、解答题:本大题共7小题共55分.16. (6分)化简: (y+2)(y-2)-(y-1)(y+5)17. (7分)某校开展研学旅行活动,准备去的研学基地有 A (曲阜)、B (梁山)、C (汶上)、D (泗水),每位学生只能选去一个地方,王老师对本班全体同学选取的研学基地情况进行调查统计,绘制了两幅不完整的统计图(如图所示).(1)求该班的总人数,并补全条形统计图:(2)求D (泗水)所在扇形的圆心角度数;(3)该班班委4人中,1人选去曲阜,2人选去梁山,1人选去汶上,王老师要从这4人中随机抽取2人了解他们对研学基地的看法,请你用列表或画树状图的方法,求所抽取的2人中恰好有1人选去曲阜,1人选去梁山的概率.18. (7分)在一次数学活动课中,某数学小组探究求环形花坛(如图所示)面积的方法,现有以下工具:①卷尺;②直棒EF;③T型尺(CD所在的直线垂直平分AB).(1)在图1中,请你画出用T型尺找大圆圆心的示意图(保留作图痕迹,不写画法):(2)如图2,小华说:“我只用一个直棒和一个卷尺就可以求出环形花坛的面积,具体做法如下:将直棒放置到与小圆相切,用卷尺量出此时直棒5大圆两交点M,N之间的距离,就可求出环形花坛的面积.”如果测得MN=10m,请你求出这个环形花坛的面积.19. (7分)“绿水青山就是金山银山”,为保护生态环境,A. B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是名少元?(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000 元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?20、(8分)如图,在正方形ABCD中,点E、F分别是边AD、BC的中点,连接DF,过点E作EH⊥DF,垂足为H,EH的延长线交DC于点G,(1)猜想DG与CF的数量关系,并证明你的结论:(2)过点H作MN//CD,分别交AD, BC于点M, N,若正方形ABCD的边长为10,点P 是MN上一点,求△PDC周长的最小值.21. (9分)知识背景当a>0月x>0时,因为(√x−√a√x )2≥0,所以x−2√a+ax≥0,从而x+ax≥2√a,(当x=√a时取等号)设函数y=x+ax(a>0, x>0), 由上述结论可知,当x=√a时,该函数有最小值为2√a.应用举例已知函数y1=x(x>0)与函数y2=4x (x>0),则当x=√4=2时,y1+y2=x+4x有最小值为2√4=4.解决问题(1)已知函数y1=x+3(x>-3)与函数y2=(x+3)2+9(x>-3),当x取何值时,y2y1有最小值?最小值是多少?(2)已知某设备租赁使用成本包含以下部分:一是设备的安装调试费用,共400元;二是设备的租赁使用费用,每天200元:三是设备的折旧费用,它与使用天数的平方成正比,比例系数为0.001,若设该设备的租赁使用天数为x天,则当x取何值时,该设备平均每天的租赁使用成本最低?最低是多少元?22. (11分)如图,已知抛物线y=ax2+bx+c(a≠0),经过点A (3.0), B (-1,0),C (0.-3).(1)求该抛物线的解析式;(2)若以点A为圆心的圆与直线BC相切于点M.求切点M的坐标;(3)若点Q在x轴上,点P在抛物线上,是否存在以点B,C. Q, P为顶点的四边形是平行四边形?若存在,求点P的坐标:若不存在,请说明理由.参考答案选择题1-5 BABDB 6- -10 ADCDC填空题11.x≥1;12.>;13.EF=BD (∠B=∠EFD或∠BED=∠EDF);14.√3;15.2√3-2三、解答题16.原式=-4y+117. (1)总人数: 50人;图略;(2)圆心角度数100.8º;(3) P=1;38. (1)作图略(2) 25π平方米9. (1)清理养鱼网箱人均支出费用2000元,清理捕鱼网箱人均费用3000元: (2)设m人清理养鱼网箱,则(40-m) 人清理捕鱼网箱由题意得:2000m + 3000(40-m)≤102000m<40-m 解得: 18≤m< 20故两种方案,方案一: 18人清理养鱼网箱,22人清理捕鱼网箱;方案二: 19人清理养鱼网箱,21人清理捕鱼网箱.20. (1) DG=-CF,利用相似证明即可;(2)周长最小值: 2√26+1021. (1)当x=0时,有最小值6.(2)当x=700时,租赁使用成本最低,最低为201.4元.22. (1) y=x2-2x-3;(2)M(−35,−65)(3) P1(2,-3);P2(1+√7,3);P3(1-√7,3).。
山东省济宁市2018 年中考数学试卷一、选择题:本大题共10 小题,每小题3 分,共30 分。
在每小题给出的四个选项中,只有一项符合题目要求。
1.)A.1 B.﹣1 C.3 D.﹣3【解答】解:-1.故选B.2.为贯彻落实觉中央、国务院关于推进城乡义务教育一体化发展的部署,教育部会同有关部门近五年来共新建、改扩建校舍186000000 平方米,其中数据186000000 用科学记数法表示是()A.1.86×107 B.186×106 C.1.86×108 D.0.186×109【解答】解:将186000000 用科学记数法表示为:1.86×108.故选:C.3.下列运算正确的是()A.a8÷a4=a2 B.(a2)2=a4 C.a2•a3=a6 D.a2+a2=2a4【解答】解:A、a8÷a6=a4,故此选项错误;B、(a2)2=a4,故原题计算正确;C、a2•a3=a5,故此选项错误;D、a2+a2=2a2,故此选项错误;故选:B.4.如图,点B,C,D 在⊙O 上,若∠BCD=130°,则∠BOD 的度数是()A.50°B.60°C.80°D.100°【解答】解:圆上取一点A,连接AB,AD,∵点A、B,C,D 在⊙O 上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°,故选:D.5.多项式4a﹣a3 分解因式的结果是()A.a(4﹣a2)B.a(2﹣a)(2+a)C.a(a﹣2)(a+2)D.a(2﹣a)2【解答】解:4a﹣a3=a(4﹣a2)=a(2-a)(2+a).故选:B.6..如图,在平面直角坐标系中,点A,C 在x 轴上,点C 的坐标为(﹣1,0),AC=2.将Rt△ABC 先绕点 C 顺时针旋转90°,再向右平移 3 个单位长度,则变换后点 A 的对应点坐标是()A.(2,2)B.(1,2)C.(﹣1,2)D.(2,﹣1)【解答】解:∵点 C 的坐标为(﹣1,0),AC=2,∴点 A 的坐标为(﹣3,0),如图所示,将Rt△ABC 先绕点 C 顺时针旋转90°,则点A′的坐标为(﹣1,2),再向右平移 3 个单位长度,则变换后点A′的对应点坐标为(2,2),故选:A.7.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.6【解答】解:A、数据中 5 出现 2 次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选:D.8.如图,在五边形ABCDE 中,∠A+∠B+∠E=300°,DP、CP 分别平分∠EDC、∠BCD,则∠P=()A.50°B.55°C.60°D.65°【解答】解:∵在五边形ABCDE 中,∠A+∠B+∠E=300°,∴∠ECD+∠BCD=240°,又∵DP、CP 分别平分∠EDC、∠BCD,∴∠PDC+∠PCD=120°,∴△CDP 中,∠P=180°﹣(∠PDC+∠PCD)=180°﹣120°=60°.故选:C.9.一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2πB.16+4πC.16+8πD.16+12π【解答】解:该几何体的表面积为2×12•π•22+4×4+12×2π•2×4=12π+16,故选:D.10.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是()【解答】解:由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有故选:C.二、填空题:本大题共 5 小题,每小题 3 分,共15 分。
数学试卷 第1页(共28页) 数学试卷 第2页(共28页)绝密★启用前山东省济宁市2018年初中学业水平考试数 学(本试卷满分100分,考试时间120分钟)第Ⅰ卷(非选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)( )A.1B.1-C.3D.3-2.为贯彻落实觉中央、国务院关于推进城乡义务教育一体化发展的部 署,教育部会同有关部门近五年来共新建、改扩建校舍186 000 000平方米,其中数据186 000 000用科学记数法表示是( )A.81.8610⨯B.618610⨯C.91.8610⨯D.90.18610⨯ 3.下列运算正确的是( )A.842a a a ÷=B.224a a =()C.236•a a a =D.2242a a a +=4.如图,点B ,C ,D 在⊙O 上,若130BCD ∠=︒,则BOD ∠的度数是( )A.50°B.60°C.80°D.100° 5.多项式34a a -分解因式的结果是( )A.24a a -()B.(2)(2)a a a -+C.22a a a -+()()D.22a a -()6.如图,在平面直角坐标系中,点A ,C 在x 轴上,点C 的坐标为10(-,),2AC =.将Rt ABC △先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A.2,2()B.1,2()C.1,2(-)D.2,1-()7.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是( )A.众数是5B.中位数是5C.平均数是6D.方差是3.68.如图,在五边形ABCDE 中,300A B E ∠+∠+∠=︒,DP 、CP 分别平分EDC ∠、BCD ∠,则P ∠的度数是( )A.50°B.55°C.60°D.65° 9.一个几何体的三视图如图所示,则该几何体的表面积是( )A.242π+B.164π+C.168π+D.1612π+10.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是( )毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共28页)数学试卷 第4页(共28页)A B C D第Ⅱ卷(非选择题 共70分)二、填空题(本大题共5小题,每小题3分,共15分.把答案填写在题中的横线上) 11.若二次根式1x +在实数范围内有意义,则x 的取值范围是 .12.在平面直角坐标系中,已知一次函数21y x =-+的图象经过111,P x y ()、222,P x y ()两点,若12x x <,则1y 2y .(填“>”“<”“=”) 13.在ABC △中,点E ,F 分别是边AB ,AC 的中点,点D 在BC 边上,连接 DE ,DF ,EF ,请你添加一个条件 ,使BED △与FDE △全等.14.如图,在一笔直的海岸线l 上有相距2km 的A ,B 两个观测站,B 站在A 站的正东方向上,从A 站测得船C 在北偏东60°的方向上,从B 站测得船C 在北偏东30°的方向上,则船C 到海岸线l 的距离是 km .15.如图,点A 是反比例函数4y x=(0x >)图象上一点,直线y kx b =+过点A 并且与两坐标轴分别交于点B ,C ,过点A 作AD x ⊥轴,垂足为D ,连接DC ,若BOC△的面积是4,则DOC △的面积是 .三、解答题(本大题共7小题,共55分.解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分6分)化简:(2)(2)1)(5)y y y y +--+-(17.(本小题满分7分)某校开展研学旅行活动,准备去的研学基地有A (曲阜)、B (梁山)、C (汶上),D (泗水),每位学生只能选去一个地方,王老师对本班全体同学选取的研学基地情况进行调查统计,绘制了两幅不完整的统计图(如图所示). (1)求该班的总人数,并补全条形统计图. (2)求D (泗水)所在扇形的圆心角度数;(3)该班班委4人中,1人选去曲阜,2人选去梁山,1人选去汶上,王老师要从这4人中随机抽取2人了解他们对研学基地的看法,请你用列表或画树状图的方法,求所抽取的2人中恰好有1人选去曲阜,1人选去梁山的概率.18.(本小题满分7分)在一次数学活动课中,某数学小组探究求环形花坛(如图所示)面积的方法,现有以下工具;①卷尺;②直棒 EF ;③T 型尺(CD 所在的直线垂直平分线段AB ).毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第5页(共28页)数学试卷 第6页(共28页)(1)在图1中,请你画出用T 形尺找大圆圆心的示意图(保留画图痕迹,不写画法); (2)如图2,小华说:“我只用一根直棒和一个卷尺就可以求出环形花坛的面积, 具体做法如下:将直棒放置到与小圆相切,用卷尺量出此时直棒与大圆两交点M ,N 之间的距离,就可求出环形花坛的面积,如果测得MN=10 m ,请你求出这个环形花坛的面积.19.(本小题满分7分)“绿水青山就是金山银山”,为保护生态环境,A ,B 两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表: 村庄 清理养鱼网箱人数/人 清理捕鱼网箱人数/人 总支出/元 A 15 9 57 000 B 10 16 68 000 (1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的 人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102 000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?20.(本小题满分8分)如图,在正方形ABCD 中,点E ,F 分别是边AD ,BC 的中点,连接DF ,过点E 作EH DF ⊥,垂足为H ,EH 的延长线交DC 于点G . (1)猜想DG 与CF 的数量关系,并证明你的结论;(2)过点H 作MN CD ∥,分别交AD ,BC 于点M ,N ,若正方形ABCD 的边长为10,点P 是MN 上一点,求PDC △周长的最小值.21.(本小题满分9分)知识背景当0a >且0x >时,因为20a x x ⎛⎫- ⎪ ⎪⎝⎭≥,所以20a x a x -+≥,从而2ax a x +≥(当x a =时取等号).设函数(0,0)ay x a x x=+>>,由上述结论可知:当x a =时,该函数有最小值为2a .应用举例已知函数为10=x y x (>)与函数204x y x =(>),则当42x ==时,124y y x x+=+有最小值为24=4.解决问题(1)已知函数为133y x x =+(>﹣)与函数22(3)39x x y =++(>﹣),当x 取何值时,21y y 有最小值?最小值是多少? (2)已知某设备租赁使用成本包含以下三部分:一是设备的安装调试费用,共490元;二是设备的租赁使用费用,每天200元;三是设备的折旧费用,它与使用天数的平方成正比,比例系数为0.001.若设该设备的租赁使用天数为x 天,则当x 取何值时,该设备平均每天的租货使用成本最低?最低是多少元?22.(本小题满分11分)如图,已知抛物线20y ax bx c a =++≠()经过点30A (,),1,0B (-),0,3C (-). (1)求该抛物线的解析式;(2)若以点A 为圆心的圆与直线BC 相切于点M ,求切点M 的坐标;(3)若点Q 在x 轴上,点P 在抛物线上,是否存在以点B ,C ,Q ,P 为顶点的四边形是平行四边形?若存在,求点P 的坐标;若不存在,请说明理由.数学试卷 第7页(共28页)数学试卷 第8页(共28页)山东省济宁市2018年初中学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】B1=-.故选B .【考点】立方根 2.【答案】A【解析】解:将186 000 000用科学记数法表示为:81.8610⨯.故选:A . 【考点】科学计数法 3.【答案】B【解析】解:A.864a a a ÷=,故此选项错误;B.224()a a =,故原题计算正确;C.235•a a a =,故此选项错误;D.2222a a a +=,故此选项错误;故选:B . 【考点】整式的运算 4.【答案】D【解析】解:圆上取一点A ,连接AB ,AD , ∵点A 、B ,C ,D 在⊙O 上,130BCD ∠=︒, ∴50BAD ∠=︒,∴100BOD ∠=︒,故选:D .【考点】圆周角定理和圆心角定理 5.【答案】B【解析】解:()324422a a a a a a a -==-+(-)().故选:B . 【考点】因式分解 6.【答案】A【解析】解:∵点C 的坐标为1,0(-),2AC =, ∴点A 的坐标为()3,0-,5 / 14如图所示,将Rt ABC △先绕点C 顺时针旋转90°,则点A′的坐标为1,2(-), 再向右平移3个单位长度,则变换后点A′的对应点坐标为2,2(),故选:A .【考点】旋转和平移 7.【答案】D【解析】解:A.数据中5出现2次,所以众数为5,此选项正确;B.数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C 平均数为75351056++++÷=(),此选项正确;D 方差为22221[()()()()76562361065]5.6⨯+⨯++=----,此选项错误;故选:D . 【考点】众数、中位数、平均数和方差 8.【答案】C【解析】解:∵在五边形ABCDE 中,300A B E ∠+∠+∠=︒, ∴240ECD BCD ∠+∠=︒,又∵DP 、CP 分别平分EDC BCD ∠∠、, ∴120PDC PCD ∠+∠=︒,∴CDP △中,180()18012060P PDC PCD ∠=︒-∠+∠=︒-︒=︒. 故选:C .【考点】五边形的内角和、角平分线的性质、三角形的内角和定理 9.【答案】D【解析】解:该几何体的表面积为1122244+224121622⨯+⨯+⨯⨯=+πππ,故选:D . 【考点】几何体的三视图、根据三视图求几何体的表面积 10.【答案】C【解析】解:由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有故选:C .数学试卷 第11页(共28页)数学试卷 第12页(共28页)【考点】探索规律第Ⅱ卷二、填空题 11.【答案】1x ≥∴10x -≥, 解得1x ≥. 故答案为:1x ≥.【考点】二次根式有意义的条件 12.【答案】>【解析】解:∵一次函数21y x =+-中20k =-<, ∴y 随x 的增大而减小, ∵12x x <, ∴12y y >.故答案为>.【考点】一次函数的增减性 13.【答案】D 是BC 的中点【解析】解:当D 是BC 的中点时,BED FDE △≌△ ∵E ,F 分别是边AB ,AC 的中点, ∴EF BC ∥,当E ,D 分别是边AB ,BC 的中点时,ED AC ∥, ∴四边形BEFD 是平行四边形, ∴BED FDE △≌△,故答案为:D 是BC 的中点.【考点】三角形的中位线定理、全等三角形的判定 14.【解析】解:过点C 作CD AB ⊥于点D ,根据题意得:906030CAD ∠=︒-︒=︒,903060CBD ∠=︒︒=︒-, ∴30ACB CBD CAD ∠=∠∠=︒-, ∴CAB ACB ∠=∠, ∴2km BC AB ==,在Rt CBD △中,•602CD BC sin =︒=.7 / 14. 【考点】解直角三角形15.【答案】2【解析】解:设4A(a )(a 0)a,>,∴4AD a=,OD a =,∵直线y kx b =+过点A 并且与两坐标轴分别交于点B ,C ,∴0,C b (),(,)0bB k-,∵BOC △的面积是4, ∴11422BOCbSOB OC b k=⨯=⨯⨯==4, ∴28b k =,∴28b k =①∴AD x ⊥轴, ∴OC AD ∥, ∴BOC BDA △∽△, ∴OB OCBD AD =, ∴4b b k b a ka=+, ∴24a k ab +=②,联立①②得,4ab =--4ab =,∴11222DOCSOD OC ab ===数学试卷 第15页(共28页)数学试卷 第16页(共28页)故答案为2-.【考点】求三角形的面积、利用几何图形的等量关系求一次函数的解析式、求图象交点的坐标 三、解答题16.【答案】解:原式2245541y y y y y =++=+原式--﹣-【解析】解:原式2245541y y y y y =++=+原式--﹣-17.【答案】解:(1)该班的人数为165032%=人,则B 基地的人数为5024%12⨯=人,补全图形如下:(2)D (泗水)所在扇形的圆心角度数为14360=100.850︒⨯︒ (3)画树状图为:共有12种等可能的结果数,其中所抽取的2人中恰好有1人选去曲阜,1人选去梁山的占4种,所以所抽取的2人中恰好有1人选去曲阜,1人选去梁山的概率为41=123. 【解析】(1)该班的人数为165032%=人,则B 基地的人数为5024%12⨯=人,补全图形如下:(2)D (泗水)所在扇形的圆心角度数为14360=100.850︒⨯︒9 / 14(3)画树状图为:共有12种等可能的结果数,其中所抽取的2人中恰好有1人选去曲阜,1人选去梁山的占4种,所以所抽取的2人中恰好有1人选去曲阜,1人选去梁山的概率为41=123. 18.【答案】解:(1)如图点O 即为所求;(2)设切点为C ,连接OM ,OC . ∵MN 是切线, ∴OC MN ⊥, ∴5CM CN ==,∴22225OM OC CM ==-, ∴22••25S OM OC πππ==圆环-. 【解析】(1)如图点O 即为所求;(2)设切点为C ,连接OM ,OC . ∵MN 是切线, ∴OC MN ⊥, ∴5CM CN ==,∴22225OM OC CM ==-, ∴22••25S OM OC πππ==圆环-.19.【答案】解:(1)设清理养鱼网箱的人均费用为x 元,清理捕鱼网箱的人均费用为y 元,根据题意,得:15957000101668000x y x y +=⎧⎨+=⎩,解得:20003000x y =⎧⎨=⎩,答:清理养鱼网箱的人均费用为2 000元,清理捕鱼网箱的人均费用为3 000元;数学试卷 第19页(共28页)数学试卷 第20页(共28页)(2)设m 人清理养鱼网箱,则40m (-)人清理捕鱼网箱, 根据题意,得:20003000(40)10200040m m m m+-⎧⎨-⎩≤<,解得:1820m ≤<, ∵m 为整数,∴18m =或19m =,则分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱;方案二:19人清理养鱼网箱,21人清理捕鱼网箱. 【解析】(1)设清理养鱼网箱的人均费用为x 元,清理捕鱼网箱的人均费用为y 元,根据题意,得:15957000101668000x y x y +=⎧⎨+=⎩,解得:20003000x y =⎧⎨=⎩,答:清理养鱼网箱的人均费用为2 000元,清理捕鱼网箱的人均费用为3 000元; (2)设m 人清理养鱼网箱,则40m (-)人清理捕鱼网箱, 根据题意,得:20003000(40)10200040m m m m +-⎧⎨-⎩≤<,解得:1820m ≤<,∵m 为整数,∴18m =或19m =,则分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱;方案二:19人清理养鱼网箱,21人清理捕鱼网箱. 20.【答案】解:(1)结论:2CF DG =. 理由:∵四边形ABCD 是正方形,∴AD BC CD AB ===,90ADC C ∠=∠=︒, ∵DE AE =,∴2AD CD DE ==, ∵EG DF ⊥, ∴90DHG ∠=︒,∴90CDF DGE ∠+∠=︒,90DGE DEG ∠+∠=︒, ∴CDF DEG ∠=∠, ∴DEG CDF △∽△,∴12DG DE CF DC == ∴2CF DG =.(2)作点C 关于NM 的对称点K ,连接DK 交MN 于点P ,连接PC ,此时PDC △的周长最短.周长的最小值CD PD PC CD PD PK CD DK =++=++=+.由题意:10CD AD ==,5ED AE ==,52DG =,EG =5DE DG DH EG ==∴2EH DH == ∴2DH EHHM DE==, ∴1DM CN NK ===,在Rt DCK △中,DK ===∴PCD △的周长的最小值为10+【解析】(1)结论:2CF DG =.理由:∵四边形ABCD 是正方形,∴AD BC CD AB ===,90ADC C ∠=∠=︒,∵DE AE =,∴2AD CD DE ==,∵EG DF ⊥,∴90DHG ∠=︒,∴90CDF DGE ∠+∠=︒,90DGE DEG ∠+∠=︒,∴CDF DEG ∠=∠,∴DEG CDF △∽△, ∴12DG DE CF DC == ∴2CF DG =.(2)作点C 关于NM 的对称点K ,连接DK 交MN 于点P ,连接PC ,此时PDC △的周长最短.周长的最小值CD PD PC CD PD PK CD DK =++=++=+.由题意:10CD AD ==,5ED AE ==,52DG =,EG =5DE DG DH EG ==∴2EH DH == ∴2DH EH HM DE==,∴1DM CN NK ===,在Rt DCK △中,DK ===∴PCD △的周长的最小值为10+21.【答案】解:(1)221(3)99(3)33y x x y x x ++==++++, ∴当933x x +=+时,21y y 有最小值, ∴0x =或6-(舍弃)时,有最小值6=.(2)设该设备平均每天的租货使用成本为w 元. 则24902000.0014900.001200x w x x x++==++, ∴当4900.001x x=时,w 有最小值, ∴700x =或700-(舍弃)时,w 有最小值,最小值201.4=元.22.【答案】解:(1)把(3,0)A ,(1,0)B -,(0,3)C -代入抛物线解析式得:93003a b c a b c c ++=⎧⎪-+=⎨⎪=-⎩解得:123a b c =⎧⎪=-⎨⎪=-⎩,则该抛物线解析式为223y x x =--;(2)设直线BC 解析式为3y kx =-,把1,0B (-)代入得:30k -=-,即 3k =-,∴直线BC 解析式为33y x =--,∴直线AM 解析式为 13y x m =+ 把3,0A()代入得:10m +=,即1m =-,∴直线AM 解析式为1 13y x =-,联立得:33113y x y x =--⎧⎪⎨=-⎪⎩, 解得:3565x y ⎧=-⎪⎪⎨⎪=⎪⎩, 则36(,)55M --. (3)存在以点B ,C ,Q ,P 为顶点的四边形是平行四边形,分两种情况考虑:设,0Q x (),2(,23)P m m m --, 当四边形BCQP 为平行四边形时,由(1,0)B -,(0,3)C -,根据平移规律得:10003223x m m m -+=++=+,---,解得:1m =2x =,当m =时,2238233m m -=+-=-,即 (1P ;当1m =时,2238233m m --=+=-,即(1P ;当四边形BCPQ 为平行四边形时,由(1,0)B -,(03)C ,-,根据平移规律得:10m x +=+-,202330m m +--=-+,解得:0m =或2,当0m =时,0,3P -()(舍去);当2m =时,(2,3)P -,综上,存在以点B ,C ,Q ,P 为顶点的四边形是平行四边形,P 的坐标为((1或(1或(23),-.【解析】(1)把(3,0)A ,(1,0)B -,(0,3)C -代入抛物线解析式得: 93003a b c a b c c ++=⎧⎪-+=⎨⎪=-⎩解得:123a b c =⎧⎪=-⎨⎪=-⎩,则该抛物线解析式为223y x x =--;(2)设直线BC 解析式为3y kx =-,把1,0B (-)代入得:30k -=-,即 3k =-,∴直线BC 解析式为33y x =--,∴直线AM 解析式为 13y x m =+ 把3,0A()代入得:10m +=,即1m =-, ∴直线AM 解析式为1 13y x =-,联立得:33113y x y x =--⎧⎪⎨=-⎪⎩, 解得:3565x y ⎧=-⎪⎪⎨⎪=⎪⎩, 则36(,)55M --. (3)存在以点B ,C ,Q ,P 为顶点的四边形是平行四边形,分两种情况考虑:设,0Q x (),2(,23)P m m m --, 当四边形BCQP 为平行四边形时,由(1,0)B -,(0,3)C -,根据平移规律得:10003223x m m m -+=++=+,---,解得:1m =2x =,当m =时,2238233m m -=+-=-,即 (1P ;当1m =时,2238233m m --=+=-,即(1P ;当四边形BCPQ 为平行四边形时,由(1,0)B -,(03)C ,-,根据平移规律得:10m x +=+-,202330m m +--=-+,解得:0m =或2,当0m =时,0,3P -()(舍去);当2m =时,(2,3)P -,综上,存在以点B ,C ,Q ,P 为顶点的四边形是平行四边形,P 的坐标为((1或(1或(23),-.。
济宁市二0一八年高中段学校招生考试数学试题注意事项:1.本试卷分第I 卷和第Ⅱ卷两部分,共6页.第1卷为选择题,30分,第I 卷为非选择题,70分;共100分,考试时间为120分钟.2.答题前,考生务必先核对条形码上的姓名,准考证号和座号,然后用0.5毫米黑色签字笔将本人的姓名、准考证号和座号填写在答题卡相应位置.3.答第I 卷时,必须使用2B 铅笔把答题卡上相应题目的答案标号(ABCD )涂黑,如需改动必须先用橡皮擦干净,再改涂其它答案.4,在答第Ⅱ卷时,必须使用0.5毫米黑色签字笔在答题卡上书写,务必在题号所指示的答题区域内作答. 5.填空题请直接将答案填写在答题卡上,解答题应写出文字说明、证明过程或演算步骤. 6.考试结束后,将本试卷和答题卡一并交回.第|卷(选择题共30分)一.选择题:本大题共10小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求1的值是 ( ) A .1 B .-1 C .3 D .-32.为贯彻落实党中央、国务院关干推进城多义务教育一体化发展的部署,教育部会同有关部门近五4年来共新建、改扩建校舍186000000平方米。
其中186000000用科学计数法表示是( ) A .1.86×109B .186×106C .1.86×109D .0.186x 1093.下列运算正确的是()A .842÷a a a = B .()224a a = C .236·a a a = D . 224+2a a a = 4.如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是 A .50° B .60° C .80° D .100° 5.多项式4a -a 3分解因式的结果是() A .()24a a- B . a (2-a )(2+a ) C .a (a -2)(a +2) D . ()22a a-6.如图,在平面直角坐标系中,点A,C在x轴上,点C的坐标为(-1,0),AC=2,将Rt△ABC先绕点C顺时针旋转90°,再向右平移3个单位长度,则变换后点点A的对应点坐标是()A.(2.2)B.(1.2)C.(-12) D(2,-1)7.在一次数学答题比赛中,五位同学答对题目的个数分别为7.5,3,5,10.则关于这组数据的说法不正前的是()A.众数是5 B.中位数是5 C,平均数是6 D方差是3.68.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC,∠BCD,则∠P的度数是A.50°B.55°C.60°D.65°9.一个几何体的三视图如图所示,则该几何体的表面积是()A.24+πB.16+4πC.16+8πD.16+12π10.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是()DCAB第Ⅲ卷(非选择题共70分)二、填空题:本大题共5小题,每小题3分,共15分。
2018年山东省济宁市梁山县中考数学一模试卷一、精心选一选,相信自己的判断力!(本题共10小题,每小题3分.)1.2018的相反数是()A.8102 B.﹣2018 C.D.20182.如图,小明同学用剪刀沿着虚线将一张圆形纸片剪掉一部分,发现剩下纸片的周长比原来的周长要小,能正确解释这一现象的数学知识是()A.两点之间,直线最短B.经过一点,有无数条直线C.两点确定一条直线D.两点之间,线段最短3.若代数式有意义,则x的取值范围是()A.x>﹣1且x≠1 B.x≥﹣1 C.x≠1 D.x≥﹣1且x≠1 4.低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是()A.B.C.D.5.下列曲线所表示的y与x之间关系不是函数关系的是()A.B.C.D.6.如图:在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,则CE2+CF2等于()A.75 B.100 C.120 D.1257.如图所示,小琳总结了“解可化为一元一次方程的分式方程”的运算流程,那么A和B 分别代表的是()A.分式的基本性质,最简公分母=0B.分式的基本性质,最简公分母≠0C.等式的基本性质2,最简公分母=0D.等式的基本性质2,最简公分母≠08.如图,在△AEF中,尺规作图如下:分别以点E,点F为圆心,大于EF的长为半径作弧,两弧相交于G,H两点,作直线GH,交EF于点O,连接AO,则下列结论正确的是()A.AO平分∠EAF B.AO垂直平分EFC.GH垂直平分EF D.GH平分AF9.八年级(2)班学生积极参加献爱心活动,该班50名学生的捐款情况统计如表,则该班学生捐款金额的平均数和中位数分别是()金额/元 5 10 20 50 100人数 4 16 15 9 6 A.20.6元和10元B.20.6元和20元C.30.6元和10元D.30.6元和20元10.如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线AO方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;…按此规律运动到点A2018处,则点A2018与点A间的距离是()A.0 B.2 C.2D.4二、认真填一填,试试自己的身手!本大题共5小题,每小题3分,共15分,只要求填写最后结果,请把答案填写在答案卷题中横线上11.十九大报告中指出,我国经济建设取得重大成就,国内生产总值达到800000亿元,稳居世界第二,用科学记数法表示800000亿元=亿元.12.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是.13.如图,AB是⊙O的直径,CD⊥AB,∠ABD=60°,CD=2,则阴影部分的面积为.14.如图,在正方形ABCD中,AB=3,点E在CD边上,且CE=2DE,将△ADE沿直线AE对折至△AEF ,延长EF 交BC 于G ,连接AG ,则线段AG 的长为 .15.有一列数,记为a 1,a 2,…,a n ,我们记其前n 项和为S =a 1+a 2+…a n ,定义为这列数的“亚运和”,现如果有2018个数a 1,a 2,…,a 2018其“亚运和”为2019,则2,a 1,a 2,…,a 2018这2019个数的“亚运和”为 .三、专心解一解(本大题共7小题,满分55分)请认真读题,冷静思考,解答题应写出文字说明、证明过程或演算步骤16.(4分)计算:(﹣2)0+()﹣1+4cos30°﹣|﹣|.17.(6分)某学校“体育课外活动兴趣小组”,开设了以下体育课外活动项目:A .足球 B .乒乓球C .羽毛球 D .篮球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有 人,在扇形统计图中“D ”对应的圆心角的度数为 ;(2)请你将条形统计图补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加市里组织的乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).18.(9分)如图,已知双曲线y =(m >0)与直线y =kx 交于A 、B 两点,点A 的坐标为(3,2).(1)由题意可得m 的值为 ,k 的值为 ,点B 的坐标为 ;(2)若点P (n ﹣2,n +3)在第一象限的双曲线上,试求出n 的值及点P 的坐标;(3)在(2)小题的条件下:如果M为x轴上一点,N为y轴上一点,以点P、A、M、N 为顶点的四边形是平行四边形,试求出点M的坐标.19.(6分)如图1,一种折叠式小刀由刀片和刀鞘两部分组成.现将小刀打开成如图2位置,刀片部分是四边形ABCD,其中AD∥BC,AB⊥BC,CD=15mm,∠C=53°,刀鞘的边缘MN ∥PQ,刀刃BC与刀鞘边缘PQ相交于点O,点A恰好落在刀鞘另一边缘MN上时,∠COP =37°,OC=50mm,(1)求刀片宽度h.(2)若刀鞘宽度为14mm,求刀刃BC的长度.(结果精确到0.1mm)(参考数据:sin37°≈,cos37°≈,tan37°≈)20.(10分)在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根.比如对于方程x2﹣5x+2=0,操作步骤是:第一步:根据方程的系数特征,确定一对固定点A(0,1),B(5,2);第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A,另一条直角边恒过点B;第三步:在移动过程中,当三角板的直角顶点落在x轴上点C处时,点C的横坐标m即为该方程的一个实数根(如图1);第四步:调整三角板直角顶点的位置,当它落在x轴上另一点D处时,点D的横坐标n 即为该方程的另一个实数根.(1)在图2中,按照“第四步”的操作方法作出点D (请保留作出点D 时直角三角板两条直角边的痕迹);(2)结合图1,请证明“第三步”操作得到的m 就是方程x 2﹣5x +2=0的一个实数根;(3)上述操作的关键是确定两个固定点的位置.若要以此方法找到一元二次方程ax 2+bx +c =0(a ≠0,b 2﹣4ac ≥0)的实数根,请你直接写出一对固定点的坐标;(4)实际上,(3)中的固定点有无数对,一般地,当m 1,n 1,m 2,n 2与a ,b ,c 之间满足怎样的关系时,点P (m 1,n 1),Q (m 2,n 2)就是符合要求的一对固定点?21.(10分)探究活动一:如图1,正方形ABCD 和正方形QMNP ,∠M =∠B ,M 是正方形ABCD 的对称中心,MN 交AB 于F ,QM 交AD 于E ,线段ME 与线段MF 的数量关系是 .(不必证明,直接给出结论即可)探究活动二:如图2,将上题中的“正方形”改为“矩形”,且AB =mBC ,其他条件不变(矩形ABCD 和矩形QMNP ,∠M =∠B ,M 是矩形ABCD 的对称中心,MN 交AB 于F ,QM 交AD 于E ),探究并证明线段ME 与线段MF 的数量关系;探究活动三:根据前面的探索和图3,平行四边形ABCD 和平行四边形QMNP 中,若AB =mBC ,∠M =∠B ,M 是平行四边形ABCD 的对称中心,MN 交AB 于F ,QM 交AD 于E ,请探究并证明线段ME 与线段MF 的数量关系.22.(10分)如图,在平面直角坐标系中,顶点为(3,﹣4)的抛物线交y 轴于A 点,交x轴于B、C两点(点B在点C的左侧),已知A点坐标为(0,5).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C的位置关系,并给出证明;参考答案一、精心选一选,相信自己的判断力!1.2018的相反数是()A.8102 B.﹣2018 C.D.2018【分析】根据相反数的定义可得答案.【解答】解:2018的相反数﹣2018,故选:B.【点评】此题主要考查了相反数,关键是掌握只有符号不同的两个数叫做互为相反数.2.如图,小明同学用剪刀沿着虚线将一张圆形纸片剪掉一部分,发现剩下纸片的周长比原来的周长要小,能正确解释这一现象的数学知识是()A.两点之间,直线最短B.经过一点,有无数条直线C.两点确定一条直线D.两点之间,线段最短【分析】根据两点之间,线段最短解答.【解答】解:能正确解释这一现象的数学知识是两点之间,线段最短.故选:D.【点评】此题主要考查了线段的性质,关键是掌握两点之间,线段最短.3.若代数式有意义,则x的取值范围是()A.x>﹣1且x≠1 B.x≥﹣1 C.x≠1 D.x≥﹣1且x≠1 【分析】根据二次根式有意义的条件可得x+1≥0,根据分式有意义的条件可得x﹣1≠0,再解即可.【解答】解:由题意得:x+1≥0,且x﹣1≠0,解得:x≥﹣1,且x≠1,故选:D.【点评】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数,分式分母不为零.4.低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形.故选项正确;B、不是轴对称图形.故选项错误;C、不是轴对称图形.故选项错误;D、不是轴对称图形.故选项错误.故选:A.【点评】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,两边图象折叠后可重合.5.下列曲线所表示的y与x之间关系不是函数关系的是()A.B.C.D.【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.【解答】解:A,B,D的图象都符合对于x的每一个取值,y都有唯一确定的值与之对应,故A,B,D的都是函数;C、的图象不满足对于x的每一个取值,y都有唯一确定的值与之对应,故C不符合题意;故选:C.【点评】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.6.如图:在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,则CE2+CF2等于()A.75 B.100 C.120 D.125【分析】根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值.【解答】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC为直角三角形,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=100.故选:B.【点评】本题考查角平分线的定义,直角三角形的判定以及勾股定理的运用,解题的关键是首先证明出△ECF为直角三角形.7.如图所示,小琳总结了“解可化为一元一次方程的分式方程”的运算流程,那么A和B 分别代表的是()A.分式的基本性质,最简公分母=0B.分式的基本性质,最简公分母≠0C.等式的基本性质2,最简公分母=0D.等式的基本性质2,最简公分母≠0【分析】根据解分式方程的步骤,可得答案.【解答】解:去分母的依据是等式基本性质2,检验时最简公分母等于零,原分式方程无解故选:C.【点评】本题考查了解分式方程,利用解分式方程的步骤是解题关键.8.如图,在△AEF中,尺规作图如下:分别以点E,点F为圆心,大于EF的长为半径作弧,两弧相交于G,H两点,作直线GH,交EF于点O,连接AO,则下列结论正确的是()A.AO平分∠EAF B.AO垂直平分EFC.GH垂直平分EF D.GH平分AF【分析】直接根据线段垂直平分线的作法即可得出结论.【解答】解:由题意可得,GH垂直平分线段EF.故选:C.【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法是解答此题的关键.9.八年级(2)班学生积极参加献爱心活动,该班50名学生的捐款情况统计如表,则该班学生捐款金额的平均数和中位数分别是()金额/元 5 10 20 50 100人数 4 16 15 9 6 A.20.6元和10元B.20.6元和20元C.30.6元和10元D.30.6元和20元【分析】根据平均数和中位数的定义求解即可,平均数是所有数据的和除以数据的总个数;中位数是将一组数据从小到大重新排列后,找出最中间两个数的平均数.【解答】解:平均数=(5×4+10×16+20×15+50×9+100×6)=30.6;∵共有50个数,∴中位数是第25、26个数的平均数,∴中位数是(20+20)÷2=20;故选:D.【点评】此题考查了中位数与平均数公式;熟记平均数公式,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).10.如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线AO方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;…按此规律运动到点A2018处,则点A2018与点A间的距离是()A.0 B.2 C.2D.4【分析】根据题意求得A0A1=4,AA2=2,AA3=2,AA4=2,AA5=2,AA6=0,AA7=4,…于是得到A2018与A2重合,即可得到结论.【解答】解:如图,∵⊙O的半径=2,由题意得,A0A1=4,AA2=2,AA3=2,AA4=2,AA5=2,AA6=0,AA7=4,…∵2018÷6=336…2,∴按此规律运动到点A2018处,A2018与A2重合,∴A0A2018=AA2=2,故选:C.【点评】本题考查了图形的变化类,等边三角形的性质,解直角三角形,正确的作出图形是解题的关键.二、认真填一填,试试自己的身手!本大题共5小题,每小题3分,共15分,只要求填写最后结果,请把答案填写在答案卷题中横线上11.十九大报告中指出,我国经济建设取得重大成就,国内生产总值达到800000亿元,稳居世界第二,用科学记数法表示800000亿元=8×105亿元.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值是易错点,由于800000有6位,所以可以确定n=6﹣1=5.【解答】解:800 000=8×105.故答案为:8×105.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.12.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是a2+2ab+b2=(a+b)2.【分析】通过用不同的计算方法来表示大正方形的面积即可得到这一公式.【解答】解:首先用分割法来计算,即a2+2ab+b2;再用整体计算即为(a+b)2.因此a2+2ab+b2=(a+b)2.【点评】利用不同的方法表示同一个图形的面积也是证明公式的一种常用方法.13.如图,AB是⊙O的直径,CD⊥AB,∠ABD=60°,CD=2,则阴影部分的面积为.【分析】连接OD,则根据垂径定理可得出CE=DE,继而将阴影部分的面积转化为扇形OBD的面积,代入扇形的面积公式求解即可.【解答】解:连接OD.∵CD⊥AB,∴CE=DE=CD=,故S△OCE =S△ODE,即可得阴影部分的面积等于扇形OBD的面积,又∵∠ABD=60°,∴∠CDB=30°,∴∠COB=60°,∴OC=2,∴S扇形OBD==,即阴影部分的面积为.故答案为:.【点评】本题考查的是垂径定理,扇形的面积的计算,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.14.如图,在正方形ABCD中,AB=3,点E在CD边上,且CE=2DE,将△ADE沿直线AE对折至△AEF,延长EF交BC于G,连接AG,则线段AG的长为.【分析】先根据正方形的性质可得AD=AB=BC=CD,∠D=∠B=∠BCD=90°,再根据折叠的性质可得AD=AF,DE=EF,∠D=∠AFE=90°,再证明△ABG≌△AFG可得FG=GB,然后设BG=x,则CG=12﹣x,GE=x+4,再利用勾股定理算出x的值,进而运用勾股定理可得到AG的长.【解答】解:在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,∵将△ADE沿AE对折至△AFE,∴AD =AF ,DE =EF ,∠D =∠AFE =90°, ∴AB =AF ,∠B =∠AFG =90°, 在Rt △ABG 和Rt △AFG 中,,∴△ABG ≌△AFG (HL ), ∴FG =GB , ∵CE =2DE ,AB =3, ∴DE =1,CE =2,设BG =x ,则CG =3﹣x ,GE =x +1, ∵GE 2=CG 2+CE 2∴(x +1)2=(3﹣x )2+22, 解得x =, ∴BG =, ∴Rt △ABG 中,AG ==,故答案为:.【点评】此题主要考查了翻折变换,正方形的性质以及勾股定理的运用,解题的关键是证明△ABG ≌△AFG 得到FG =GB ,再利用勾股定理计算出BG 的长.15.有一列数,记为a 1,a 2,…,a n ,我们记其前n 项和为S =a 1+a 2+…a n ,定义为这列数的“亚运和”,现如果有2018个数a 1,a 2,…,a 2018其“亚运和”为2019,则2,a 1,a 2,…,a 2018这2019个数的“亚运和”为 2021 .【分析】由题意可知,2,a 1,a 2,…,a 2018这2019个数的“亚运和”即为2与a 1,a 2,…,a 2018的“亚运和”之和,则可求得.【解答】解:由题意知:2,a 1,a 2,…,a 2018这2019个数的“亚运和”为S =2+a 1+a 2+…+a 2018=2+2019=2021.故答案为:2021.【点评】本题考察对题目定义运算的理解,关键要理解清楚题目中所定义的运算. 三、专心解一解(本大题共7小题,满分55分)请认真读题,冷静思考,解答题应写出文字说明、证明过程或演算步骤 16.(4分)计算:(﹣2)0+()﹣1+4cos30°﹣|﹣|.【分析】根据实数的运算顺序计算,注意:(﹣2)0=1,()﹣1=3,cos30°=,|﹣|=2.【解答】解:原式=1+3+4×﹣=4+2﹣2=4.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.17.(6分)某学校“体育课外活动兴趣小组”,开设了以下体育课外活动项目:A .足球 B .乒乓球C .羽毛球 D .篮球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有 200 人,在扇形统计图中“D ”对应的圆心角的度数为 72° ;(2)请你将条形统计图补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加市里组织的乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).【分析】(1)利用扇形统计图得到A类的百分比为10%,则用A类的频数除以10%可得到样本容量;然后用B类的百分比乘以360°得到在扇形统计图中“D”对应的圆心角的度数;(2)先计算出C类的频数,然后补全统计图;、(3)画树状图展示所有12种等可能的结果,再找出恰好选中甲、乙两位同学的结果数,然后根据概率公式求解.【解答】解:(1)20÷=200,所以这次被调查的学生共有200人,在扇形统计图中“D”对应的圆心角的度数=×360°=72°;故答案为200,72°;(2)C类人数为200﹣80﹣20﹣40=60(人),完整条形统计图为:(3)画树状图如下:由上图可知,共有12种等可能的结果,其中恰好选中甲、乙两位同学的结果有2种.所以P(恰好选中甲、乙两位同学)==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.18.(9分)如图,已知双曲线y=(m>0)与直线y=kx交于A、B两点,点A的坐标为(3,2).(1)由题意可得m的值为 6 ,k的值为,点B的坐标为(﹣3,﹣2);(2)若点P(n﹣2,n+3)在第一象限的双曲线上,试求出n的值及点P的坐标;(3)在(2)小题的条件下:如果M为x轴上一点,N为y轴上一点,以点P、A、M、N 为顶点的四边形是平行四边形,试求出点M的坐标.【分析】(1)把A坐标代入反比例解析式求出m的值,确定出反比例解析式,把A坐标代入直线解析式求出k的值,利用对称性求出B坐标即可;(2)把P坐标代入反比例解析式求出n的值,确定出P坐标即可;(3)分两种情况考虑:当M1在x轴正半轴,N1在y轴上半轴时,如图1所示;当M2在x轴负半轴,N2在y轴下半轴时,如图2所示,分别求出M坐标即可.【解答】解:(1)把A(3,2)代入反比例解析式得:m=6;把A(3,2)代入直线解析式得:k=,由对称性得:B(﹣3,﹣2);故答案为:6;;(﹣3,﹣2);(2)把P(n﹣2,n+3)代入y=中得:(n﹣2)(n+3)=6,整理得:n2+n﹣12=0,即(n﹣3)(n+4)=0,解得:n=3或n=﹣4(舍去),则P(1,6);(3)分两种情况考虑:当M1在x轴正半轴,N1在y轴上半轴时,如图1所示,过P 作PQ ∥y 轴,过A 作AQ ∥x 轴,交于点Q , ∵A (3,2),P (1,6), ∴AQ =3﹣1=2,由平移及平行四边形性质得到OM 1=2,即M 1(2,0); 当M 2在x 轴负半轴,N 2在y 轴下半轴时,如图2所示, 同理得到OM 2=2,即M 2(﹣2,0).【点评】此题属于反比例函数综合题,涉及的知识有:待定系数法求反比例函数及一次函数解析式,坐标与图形性质,平移的性质,平行四边形的性质,熟练掌握待定系数法是解本题的关键.19.(6分)如图1,一种折叠式小刀由刀片和刀鞘两部分组成.现将小刀打开成如图2位置,刀片部分是四边形ABCD ,其中AD ∥BC ,AB ⊥BC ,CD =15mm ,∠C =53°,刀鞘的边缘MN ∥PQ ,刀刃BC 与刀鞘边缘PQ 相交于点O ,点A 恰好落在刀鞘另一边缘MN 上时,∠COP =37°,OC =50mm , (1)求刀片宽度h .(2)若刀鞘宽度为14mm ,求刀刃BC 的长度.(结果精确到0.1mm )(参考数据:sin37°≈,cos37°≈,tan37°≈)【分析】(1)利用锐角三角函数即可得出结论;(2)先求出AG ,进而求出BG ,用三角函数求出BO 即可得出结论. 【解答】解:(1)作DE ⊥BC 于E ,在Rt △DEC 中,∠CDE =90°﹣53°=37°, ∴DE =DC •cos37°=15×=12, 即:刀片的宽度h 为12mm ;(2)作AF⊥PQ于F,延长AB交PQ于G,∵∠COP=37°,∴∠BOG=∠FAG=37°,在Rt△AFG中,AF=14,∴AG==,BG=AG﹣AB=,AB⊥BC,∴∠OBG=90°,在Rt△BOG中,BO==,∴BC=OC+OB=50+≈57.3.【点评】此题是解直角三角形的应用,锐角三角函数,解本题的关键是熟练运用锐角三角函数求出线段.20.(10分)在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根.比如对于方程x2﹣5x+2=0,操作步骤是:第一步:根据方程的系数特征,确定一对固定点A(0,1),B(5,2);第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A,另一条直角边恒过点B;第三步:在移动过程中,当三角板的直角顶点落在x轴上点C处时,点C的横坐标m即为该方程的一个实数根(如图1);第四步:调整三角板直角顶点的位置,当它落在x轴上另一点D处时,点D的横坐标n 即为该方程的另一个实数根.(1)在图2中,按照“第四步”的操作方法作出点D (请保留作出点D 时直角三角板两条直角边的痕迹);(2)结合图1,请证明“第三步”操作得到的m 就是方程x 2﹣5x +2=0的一个实数根;(3)上述操作的关键是确定两个固定点的位置.若要以此方法找到一元二次方程ax 2+bx +c =0(a ≠0,b 2﹣4ac ≥0)的实数根,请你直接写出一对固定点的坐标;(4)实际上,(3)中的固定点有无数对,一般地,当m 1,n 1,m 2,n 2与a ,b ,c 之间满足怎样的关系时,点P (m 1,n 1),Q (m 2,n 2)就是符合要求的一对固定点?【分析】(1)根据“第四步”的操作方法作出点D 即可;(2)过点B 作BD ⊥x 轴于点D ,根据△AOC ∽△CDB ,可得=,进而得出=,即m 2﹣5m +2=0,据此可得m 是方程x 2﹣5x +2=0的实数根;(3)方程ax 2+bx +c =0(a ≠0)可化为x 2+x +=0,模仿研究小组作法可得一对固定点的坐标;(4)先设方程的根为x ,根据三角形相似可得=,进而得到x 2﹣(m 1+m 2)x +m 1m 2+n 1n 2=0,再根据ax 2+bx +c =0,可得x 2+x +=0,最后比较系数可得m 1,n 1,m 2,n 2与a ,b ,c 之间的关系.【解答】解:(1)如图所示,点D 即为所求;(2)如图所示,过点B 作BD ⊥x 轴于点D ,根据∠AOC =∠CDB =90°,∠ACO =∠CBD ,可得△AOC ∽△CDB ,∴=,∴=,∴m(5﹣m)=2,∴m2﹣5m+2=0,∴m是方程x2﹣5x+2=0的实数根;(3)方程ax2+bx+c=0(a≠0)可化为x2+x+=0,模仿研究小组作法可得:A(0,1),B(﹣,)或A(0,),B(﹣,c)等;(4)如图,P(m1,n1),Q(m2,n2),设方程的根为x,根据三角形相似可得=,上式可化为x2﹣(m1+m2)x+m1m2+n1n2=0,又∵ax2+bx+c=0,即x2+x+=0,∴比较系数可得m1+m2=﹣,m 1m2+n1n2=.【点评】本题属于三角形综合题,主要考查的是一元二次方程的解,相似三角形的判定与性质的综合应用,解决问题的关键是作辅助线构造相似三角形,依据相似三角形的对应边成比例,列出比例式并转化为等积式.21.(10分)探究活动一:如图1,正方形ABCD和正方形QMNP,∠M=∠B,M是正方形ABCD的对称中心,MN交AB 于F,QM交AD于E,线段ME与线段MF的数量关系是ME=MF.(不必证明,直接给出结论即可)探究活动二:如图2,将上题中的“正方形”改为“矩形”,且AB=mBC,其他条件不变(矩形ABCD和矩形QMNP,∠M=∠B,M是矩形ABCD的对称中心,MN交AB于F,QM交AD于E),探究并证明线段ME与线段MF的数量关系;探究活动三:根据前面的探索和图3,平行四边形ABCD和平行四边形QMNP中,若AB=mBC,∠M=∠B,M是平行四边形ABCD的对称中心,MN交AB于F,QM交AD于E,请探究并证明线段ME 与线段MF的数量关系.【分析】(1)过点M作MH⊥AB于H,MG⊥AD于G,连接AM,首先证明M是正方形ABCD 对角线的交点,然后证明△MHF≌△MGE,利用全等三角形的性质得到ME=MF;(2)过点M作ME⊥AB于E,MG⊥AD于G,利用矩形ABCD性质和已知条件证明∠HMF=∠GME,∠MGE=∠MHF,得出△MGE∽△MHF,然后利用相似三角形的性质即可求解;(3)平行四边形ABCD和平行四边形QMNP中,∠M=∠B,AB=mBC,由于M是平行四边形ABCD的对称中心,MN交AB于F,AD交QM于E,则ME=mMF.证明方法和(1)(2)类似.【解答】解:(1)ME=MF.理由:如图1,过点M作MH⊥AB于H,MG⊥AD于G,连接AM,则∠MHF=∠MGE=90°,∵M是正方形ABCD的对称中心,∴AM平分∠BAD,∴MH=MG,在正方形ABCD中,∠DAB=90°,而∠MHA=∠MGA=90°,∴∠EMF=∠HMG=90°,∴∠FMH=∠EMG,在△MHF和△MGE中,∴△MHF≌△MGE(ASA),∴MF=ME,故答案为:MF=ME;(2)ME=mMF.理由:如图2,过点M作MG⊥AB于G,MH⊥AD于H,则∠MHE=∠MGF=90°,在矩形ABCD中,∠A=90°,∴在四边形GMHA中,∠GMH=90°,又∵∠EMF=90°,∴∠HME=∠GMF,又∵∠MGF=∠MHE=90°,∴△MGF∽△MHE,∴=,又∵M是矩形ABCD的对称中心,∴MG=BC,MH=AB,∵AB=mBC,∴==m,∴ME=mMF;(3)ME=mMF,理由:如图3,过点M作MG⊥AB于G,MH⊥AD于H,则∠MHE=∠MGF=90°,在平行四边形ABCD中,∠A+∠B=180°,而∠EMF=∠B,∴∠A+∠EMF=180°,又∵在四边形AGMH中,∠A+∠HMG=180°,∴∠EMF=∠GMF,又∵∠MGF=∠MHE=90°,∴△MGF∽△MHE,∴=,连接AM、BD,∴M为BD中点,∴S△ABM =S△ADM,∴AB•MG=BC•MH,∴,∵AB=mBC,∴===m,∴ME=mMF.【点评】此题属于四边形综合题,主要考查了正方形、矩形、平行四边形的性质、全等三角形、相似三角形的性质和判定的综合应用,解决问题的关键是作辅助线构造全等三角形或相似三角形,运用相似三角形的对应边成比例进行推导.22.(10分)如图,在平面直角坐标系中,顶点为(3,﹣4)的抛物线交y轴于A点,交x 轴于B、C两点(点B在点C的左侧),已知A点坐标为(0,5).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C的位置关系,并给出证明;【分析】(1)利用顶点式将点A的坐标代入即可求得a的值,从而确定二次函数的解析式;(2)首先求得B(1,0),C(5,0),设切点为E,连接CE,根据Rt△ABO∽Rt△BCE得到比例式,从而求得CE=;根据点C到对称轴x=3的距离为2,2>,从而确定抛物线的对称轴l与⊙C相离.【解答】(1)解:设抛物线解析式为:y=a(x﹣3)2﹣4,将A(0,5)代入求得:a=1,∴抛物线解析式为y=(x﹣3)2﹣4或y=x2﹣6x+5.(2)抛物线的对称轴l与⊙C相离.证明:令y=0,即x2﹣6x+5=0,得x=1或x=5,∴B(1,0),C(5,0).如图所示,设切点为E,连接CE,由题意易证Rt△ABO∽Rt△BCE,∴=,即=,求得⊙C的半径CE=;而点C到对称轴x=3的距离为2,2>,∴抛物线的对称轴l与⊙C相离.【点评】本题是二次函数的综合题型,其中涉及到的知识点:待定系数法确定函数关系式,相似三角形的判定与性质,圆与直线的距离,难度不是很大.。
省市2018 年中考数学试卷一、选择题:本大题共10 小题,每小题 3 分,共30 分。
在每小题给出的四个选项中,只有一项符合题目要求。
1.31 的值是()A.1B.﹣1 C.3D.﹣32.为贯彻落实觉中央、国务院关于推进城乡义务教育一体化发展的部署,教育部会同有关部门近五年来共新建、改扩建校舍186000000 平方米,其中数据186000000 用科学记数法表示是()A.1.86×107B.186×106C.1.86×108D.0.186×109.3.下列运算正确的是()A.a8÷a4=a2 B.(a2)2=a4 C.a2•a3=a6 D.a2+a2=2a44.如图,点B,C,D 在⊙O 上,若∠BCD=130°,则∠BOD 的度数是()A.50°B.60°C.80°D.100°5.多项式4a﹣a3 分解因式的结果是()A.a(4﹣a2)B.a(2﹣a)(2+a)C.a(a﹣2)(a+2)D.a(2﹣a)26..如图,在平面直角坐标系中,点A,C 在x 轴上,点C 的坐标为(﹣1,0),AC=2.将Rt△ABC 先绕点 C 顺时针旋转90°,再向右平移 3 个单位长度,则变换后点 A 的对应点坐标是()A.(2,2)B.(1,2)C.(﹣1,2)D.(2,﹣1)7.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.68.如图,在五边形ABCDE 中,∠A+∠B+∠E=300°,DP、CP 分别平分∠EDC、∠BCD,则∠P=()A.50°B.55°C.60°D.65°9.一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2πB.16+4πC.16+8πD.16+12π10.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是()二、填空题:本大题共 5 小题,每小题 3 分,共15 分。
2018年山东省济宁市中考数学一模试卷一、选择题(每题3分)1.﹣2016的相反数是()A.﹣2016 B.2016 C.±2016 D.2.移动互联网已经全面进入人们的日常生活.截止2015年3月,全国4G用户总数达到1.62亿,其中1.62亿用科学记数法表示为()A.1.62×104B.1.62×106C.1.62×108D.0.162×1093.实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是()A.a B.b C.c D.d4.当a>0时,下列关于幂的运算正确的是()A.a﹣1=﹣a B.a0=1 C.(﹣a)2=﹣a2D.(﹣ab)3=﹣ab35.某几何体的三视图如图所示,这个几何体是()A.圆锥 B.圆柱 C.三棱柱D.三棱锥6.如图,直线a、b被直线c、d所截,若∠1=∠2,∠3=125°,则∠4的度数为()A.55°B.60°C.70°D.75°7.学校为了丰富学生课余活动开展了一次“爱我云南,唱我云南”的歌咏比赛,共有18名同学入围,他们的决赛成绩如下表:成绩(分)9.40 9.50 9.60 9.70 9.80 9.90人数 2 3 5 4 3 1则入围同学决赛成绩的中位数和众数分别是()A.9.70,9.60 B.9.60,9.60 C.9.60,9.70 D.9.65,9.608.对于两个不相等的实数a、b,我们规定符号Max{a,b}表示a、b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x,﹣x}=的解为()A.1﹣B.2﹣C.1+或1﹣D.1+或﹣19.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.1010.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣1)x+c的图象可能是()A.B.C.D.二、填空题(每题3分)11.不等式组的解集是.12.如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为.13.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为.14.如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,则∠CDE的正切值为.15.如图,在平面直角坐标系xOy中,已知直线l:y=﹣x﹣1,双曲线y=,在l上取一点A1,过A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交l于点A2,请继续操作并探究:过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交l于点A3,…,这样依次得到l上的点A1,A2,A3,…,A n,…记点A n的横坐标为a n,若a1=2,则a2= ,a2016= ;若要将上述操作无限次地进行下去,则a1不可能取的值是.三、解答题16.先化简,再求值:÷(﹣),其中a=+1,b=﹣1.17.一个不透明的口袋中有四个完全相同的小球,它们分别标号为1,2,3,4.(1)随机摸取一个小球,直接写出“摸出的小球标号是3”的概率;(2)随机摸取一个小球然后放回,再随机摸出一个小球,直接写出下列结果:①两次取出的小球一个标号是1,另一个标号是2的概率;②第一次取出标号是1的小球且第二次取出标号是2的小球的概率.18.如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE 为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.19.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,线段AB为半圆O的直径,将Rt△ABC沿射线AB方向平移,使斜边与半圆O相切于点G,得△DEF,DF与BC交于点H.(1)求BE的长;(2)求Rt△ABC与△DEF重叠(阴影)部分的面积.20.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.21.如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A,B重合),点F 在BC边上(不与点B、C重合).第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;依此操作下去…(1)图2中的△EFD是经过两次操作后得到的,其形状为,求此时线段EF 的长;(2)若经过三次操作可得到四边形EFGH.①请判断四边形EFGH的形状为,此时AE与BF的数量关系是;②以①中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围.22.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣2,0)、B(4,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q 从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,当△PBQ存在时,求运动多少秒使△PBQ的面积最大,最大面积是多少?(3)当△PBQ的面积最大时,在BC下方的抛物线上存在点K,使S△CBK:S△PBQ=5:2,求K点坐标.参考答案与试题解析一、选择题(每题3分)1.﹣2016的相反数是()A.﹣2016 B.2016 C.±2016 D.【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣2016的相反数是2016.故选:B.2.移动互联网已经全面进入人们的日常生活.截止2015年3月,全国4G用户总数达到1.62亿,其中1.62亿用科学记数法表示为()A.1.62×104B.1.62×106C.1.62×108D.0.162×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1.62亿用科学记数法表示为1.62×108.故选C.3.实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是()A.a B.b C.c D.d【考点】实数大小比较.【分析】首先根据数轴的特征,以及绝对值的含义和性质,判断出实数a,b,c,d的绝对值的取值范围,然后比较大小,判断出这四个数中,绝对值最大的是哪个数即可.【解答】解:根据图示,可得3<|a|<4,1<|b|<2,0<|c|<1,2<|d|<3,所以这四个数中,绝对值最大的是a.故选:A.4.当a>0时,下列关于幂的运算正确的是()A.a﹣1=﹣a B.a0=1 C.(﹣a)2=﹣a2D.(﹣ab)3=﹣ab3【考点】负整数指数幂;幂的乘方与积的乘方;零指数幂.【分析】直接利用负整数指数幂的性质以及零指数幂的性质和积的乘方运算法则求出答案.【解答】解:A、a﹣1=,故此选项错误;B、a0=1,正确;C、(﹣a)2=a2,故此选项错误;D、(﹣ab)3=﹣a3b3,故此选项错误;故选:B.5.某几何体的三视图如图所示,这个几何体是()A.圆锥 B.圆柱 C.三棱柱D.三棱锥【考点】由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥.故选:A.6.如图,直线a、b被直线c、d所截,若∠1=∠2,∠3=125°,则∠4的度数为()A.55°B.60°C.70°D.75°【考点】平行线的判定与性质.【分析】利用平行线的性质定理和判定定理,即可解答.【解答】解:如图,∵∠1=∠2,∴a∥b,∴∠3=∠5=125°,∴∠4=180°﹣∠5=180°﹣125°=55°,故选:A.7.学校为了丰富学生课余活动开展了一次“爱我云南,唱我云南”的歌咏比赛,共有18名同学入围,他们的决赛成绩如下表:成绩(分)9.40 9.50 9.60 9.70 9.80 9.90人数 2 3 5 4 3 1则入围同学决赛成绩的中位数和众数分别是()A.9.70,9.60 B.9.60,9.60 C.9.60,9.70 D.9.65,9.60【考点】众数;中位数.【分析】根据中位数和众数的概念求解.【解答】解:∵共有18名同学,则中位数为第9名和第10名同学成绩的平均分,即中位数为:=9.60,众数为:9.60.故选:B.8.对于两个不相等的实数a、b,我们规定符号Max{a,b}表示a、b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x,﹣x}=的解为()A.1﹣B.2﹣C.1+或1﹣D.1+或﹣1【考点】解分式方程.【分析】根据x与﹣x的大小关系,取x与﹣x中的最大值化简所求方程,求出解即可.【解答】解:当x<﹣x,即x<0时,所求方程变形得:﹣x=,去分母得:x2+2x+1=0,即x=﹣1;当x>﹣x,即x>0时,所求方程变形得:x=,即x2﹣2x=1,解得:x=1+或x=1﹣(舍去),经检验x=﹣1与x=1+都为分式方程的解.故选D.9.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.10【考点】平行四边形的性质;等腰三角形的判定与性质;勾股定理;作图—基本作图.【分析】由基本作图得到AB=AF ,加上AO 平分∠BAD ,则根据等腰三角形的性质得到AO ⊥BF ,BO=FO=BF=3,再根据平行四边形的性质得AF ∥BE ,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB ,然后再根据等腰三角形的性质得到AO=OE ,最后利用勾股定理计算出AO ,从而得到AE 的长.【解答】解:连结EF ,AE 与BF 交于点O ,如图,∵AB=AF ,AO 平分∠BAD ,∴AO ⊥BF ,BO=FO=BF=3,∵四边形ABCD 为平行四边形,∴AF ∥BE ,∴∠1=∠3,∴∠2=∠3,∴AB=EB ,而BO ⊥AE ,∴AO=OE ,在Rt △AOB 中,AO===4,∴AE=2AO=8.故选C .10.如图,一次函数y 1=x 与二次函数y 2=ax 2+bx+c 图象相交于P 、Q 两点,则函数y=ax 2+(b ﹣1)x+c 的图象可能是( )A .B .C .D .【考点】二次函数的图象;正比例函数的图象.【分析】由一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,得出方程ax2+(b﹣1)x+c=0有两个不相等的根,进而得出函数y=ax2+(b﹣1)x+c与x轴有两个交点,根据方程根与系数的关系得出函数y=ax2+(b﹣1)x+c的对称轴x=﹣>0,即可进行判断.【解答】解:∵一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,∴方程ax2+(b﹣1)x+c=0有两个不相等的根,∴函数y=ax2+(b﹣1)x+c与x轴有两个交点,又∵﹣>0,a>0∴﹣=﹣+>0∴函数y=ax2+(b﹣1)x+c的对称轴x=﹣>0,∴A符合条件,故选A.二、填空题(每题3分)11.不等式组的解集是﹣3<x≤2 .【考点】解一元一次不等式组.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:,由①得:x≤2,由②得:x>﹣3,则不等式组的解集为﹣3<x≤2.故答案为:﹣3<x≤212.如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为4.【考点】垂径定理;等腰直角三角形;圆周角定理.【分析】根据圆周角定理得∠BOC=2∠A=45°,由于⊙O的直径AB垂直于弦CD,根据垂径定理得CE=DE,且可判断△OCE为等腰直角三角形,所以CE=OC=2,然后利用CD=2CE进行计算.【解答】解:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4.故答案为4.13.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为.【考点】由实际问题抽象出二元一次方程组.【分析】根据“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两”,得到等量关系,即可列出方程组.【解答】解:根据题意得:,故答案为:.14.如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,则∠CDE的正切值为3.【考点】旋转的性质;等边三角形的性质;解直角三角形.【分析】先根据等边三角形的性质得AB=AC,∠BAC=60°,再根据旋转的性质得AD=AE=5,∠DAE=∠BAC=60°,CE=BD=6,于是可判断△ADE为等边三角形,得到DE=AD=5;过E点作EH⊥CD于H,如图,设DH=x,则CH=4﹣x,利用勾股定理得到52﹣x2=62﹣(4﹣x)2,解得x=,再计算出EH,然后根据正切的定义求解.【解答】解:∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∵△ABD绕A点逆时针旋转得△ACE,∴AD=AE=5,∠DAE=∠BAC=60°,CE=BD=6,∴△ADE为等边三角形,∴DE=AD=5,过E点作EH⊥CD于H,如图,设DH=x,则CH=4﹣x,在Rt△DHE中,EH2=52﹣x2,在Rt△CHE中,EH2=62﹣(4﹣x)2,∴52﹣x2=62﹣(4﹣x)2,解得x=,∴EH==,在Rt△EDH中,tan∠HDE===3,即∠CDE的正切值为3.故答案为:3.15.如图,在平面直角坐标系xOy中,已知直线l:y=﹣x﹣1,双曲线y=,在l上取一点A1,过A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交l于点A2,请继续操作并探究:过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交l于点A3,…,这样依次得到l上的点A1,A2,A3,…,A n,…记点A n的横坐标为a n,若a1=2,则a2=﹣,a2016= ﹣;若要将上述操作无限次地进行下去,则a1不可能取的值是0或﹣1 .【考点】反比例函数与一次函数的交点问题.【分析】根据点的寻找规律,列出部分a n值,可以发现规律“a3n+1=a1,a3n+2=﹣,a3n=﹣(n为正整数)”,根据该规律即可解决问题.【解答】解:当a1=2时,a2=﹣,a3=﹣,a4=2,…,∴a3n+1=2,a3n+2=﹣,a3n=﹣(n为正整数).∵2016=3×672,∴a2016=﹣.观察,发现:a1,a2=﹣1﹣=﹣,a3=﹣1﹣=﹣,a4=﹣1﹣=a1,…,∴a3n+1=a1,a3n+2=﹣,a3n=﹣(n为正整数).若要a n有意义,只需a1≠0,a1+1≠0.即a1≠0且a1≠﹣1.故答案为:﹣;﹣;0或﹣1.三、解答题16.先化简,再求值:÷(﹣),其中a=+1,b=﹣1.【考点】分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=•=,当a=+1,b=﹣1时,原式=2.17.一个不透明的口袋中有四个完全相同的小球,它们分别标号为1,2,3,4.(1)随机摸取一个小球,直接写出“摸出的小球标号是3”的概率;(2)随机摸取一个小球然后放回,再随机摸出一个小球,直接写出下列结果:①两次取出的小球一个标号是1,另一个标号是2的概率;②第一次取出标号是1的小球且第二次取出标号是2的小球的概率.【考点】列表法与树状图法;概率公式.【分析】(1)由一个不透明的口袋中有四个完全相同的小球,它们分别标号为1,2,3,4直接利用概率公式求解即可求得答案;(2)①首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次取出的小球一个标号是1,另一个标号是2的情况,再利用概率公式求解即可求得答案;②由树状图即可求得第一次取出标号是1的小球且第二次取出标号是2的小球的情况,再利用概率公式求解即可求得答案.【解答】解:(1)∵一个不透明的口袋中有四个完全相同的小球,它们分别标号为1,2,3,4,∴随机摸取一个小球,直接写出“摸出的小球标号是3”的概率为:;(2)画树状图得:则共有16种等可能的结果;①∵两次取出的小球一个标号是1,另一个标号是2的有2种情况,∴两次取出的小球一个标号是1,另一个标号是2的概率为:=;②∵第一次取出标号是1的小球且第二次取出标号是2的小球的只有1种情况,∴第一次取出标号是1的小球且第二次取出标号是2的小球的概率为:.18.如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE 为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意分别在两个直角三角形中求得AF和BF的长后求差即可得到旗杆的高度,进而求得BC的高度.【解答】解:根据题意得DE=1.56,EC=21,∠ACE=90°,∠DEC=90°.过点D作DF⊥AC于点F.则∠DFC=90°∠ADF=47°,∠BDF=42°.∵四边形DECF是矩形.∴DF=EC=21,FC=DE=1.56,在直角△DFA中,tan∠ADF=,∴AF=DF•tan47°≈21×1.07=22.47(m).在直角△DFB中,tan∠BDF=,∴BF=DF•tan42°≈21×0.90=18.90(m),则AB=AF﹣BF=22.47﹣18.90=3.57≈3.6(m).BC=BF+FC=18.90+1.56=20.46≈20.5(m).答:旗杆AB的高度约是3.6m,建筑物BC的高度约是20.5米.19.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,线段AB为半圆O的直径,将Rt△ABC沿射线AB方向平移,使斜边与半圆O相切于点G,得△DEF,DF与BC交于点H.(1)求BE的长;(2)求Rt△ABC与△DEF重叠(阴影)部分的面积.【考点】切线的性质;扇形面积的计算;平移的性质;相似三角形的判定与性质.【分析】(1)连接OG,先根据勾股定理计算出BC=5,再根据平移的性质得AD=BE,DF=AC=3,EF=BC=5,∠EDF=∠BAC=90°,由于EF与半圆O相切于点G,根据切线的性质得OG⊥EF,然后证明Rt△EOG∽Rt△EFD,利用相似比可计算出OE=,所以BE=OE﹣OB=;(2)求出BD的长度,然后利用相似比例式求出DH的长度,从而求出△BDH,即阴影部分的面积.【解答】解:(1)连结OG,如图,∵∠BAC=90°,AB=4,AC=3,∴BC===5,∵Rt△ABC沿射线AB方向平移,使斜边与半圆O相切于点G,得△DEF,∴AD=BE,DF=AC=3,EF=BC=5,∠EDF=∠BAC=90°,∵EF与半圆O相切于点G,∴OG⊥EF,∵AB=4,线段AB为半圆O的直径,∴OB=OG=2,∵∠GEO=∠DEF,∴Rt△EOG∽Rt△EFD,∴=,即=,解得OE=,∴BE=OE﹣OB=﹣2=;(2)BD=DE﹣BE=4﹣=.∵DF∥AC,∴△ABC∽△DBH,∴,即,解得:DH=2.∴S阴影=S△BDH=BD•DH=××2=,即Rt△ABC与△DEF重叠(阴影)部分的面积为.20.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.【考点】一次函数的应用;二元一次方程组的应用;一元一次不等式组的应用.【分析】(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意列出方程组求解,(2)①据题意得,y=﹣50x+15000,②利用不等式求出x的范围,又因为y=﹣50x+15000是减函数,所以x取34,y取最大值,(3)据题意得,y=x﹣150,即y=(m﹣50)x+15000,分三种情况讨论,①当0<m<50时,y随x的增大而减小,②m=50时,m﹣50=0,y=15000,③当50<m<100时,m﹣50>0,y随x的增大而增大,分别进行求解.【解答】解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得解得答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.(2)①据题意得,y=100x+150,即y=﹣50x+15000,②据题意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,﹣50<0,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.(3)据题意得,y=x+150,即y=(m﹣50)x+15000,33≤x≤70①当0<m<50时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,m﹣50=0,y=15000,即商店购进A型电脑数量满足33≤x≤70的整数时,均获得最大利润;③当50<m<100时,m﹣50>0,y随x的增大而增大,∴当x=70时,y取得最大值.即商店购进70台A型电脑和30台B型电脑的销售利润最大.21.如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A,B重合),点F 在BC边上(不与点B、C重合).第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;依此操作下去…(1)图2中的△EFD是经过两次操作后得到的,其形状为等边三角形,求此时线段EF的长;(2)若经过三次操作可得到四边形EFGH.①请判断四边形EFGH的形状为正方形,此时AE与BF的数量关系是AE=BF ;②以①中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围.【考点】几何变换综合题.【分析】(1)由旋转性质,易得△EFD是等边三角形;利用等边三角形的性质、勾股定理求出EF的长;(2)①四边形EFGH的四边长都相等,所以是正方形;利用三角形全等证明AE=BF;②求面积y的表达式,这是一个二次函数,利用二次函数性质求出最值及y的取值范围.【解答】解:(1)如题图2,由旋转性质可知EF=DF=DE,则△DEF为等边三角形.在Rt△ADE与Rt△CDF中,∴Rt△ADE≌Rt△CDF(HL)∴AE=CF.设AE=CF=x,则BE=BF=4﹣x∴△BEF为等腰直角三角形.∴EF=BF=(4﹣x).∴DE=DF=EF=(4﹣x).在Rt△ADE中,由勾股定理得:AE2+AD2=DE2,即:x2+42=[(4﹣x)]2,解得:x1=8﹣4,x2=8+4(舍去)∴EF=(4﹣x)=4﹣4.DEF的形状为等边三角形,EF的长为4﹣4.(2)①四边形EFGH的形状为正方形,此时AE=BF.理由如下:依题意画出图形,如答图1所示:由旋转性质可知,EF=FG=GH=HE,∠EFG=90°,∴四边形EFGH的形状为正方形.∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3.∵∠3+∠4=90°,∠2+∠3=90°,∴∠2=∠4.在△AEH与△BFE中,∴△AEH≌△BFE(ASA)∴AE=BF.②利用①中结论,易证△AEH、△BFE、△CGF、△DHG均为全等三角形,∴BF=CG=DH=AE=x,AH=BE=CF=DG=4﹣x.∴y=S正方形ABCD﹣4S△AEH=4×4﹣4×x(4﹣x)=2x2﹣8x+16.∴y=2x2﹣8x+16(0<x<4)∵y=2x2﹣8x+16=2(x﹣2)2+8,∴当x=2时,y取得最小值8;当x=0时,y=16,∴y的取值范围为:8≤y<16.22.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣2,0)、B(4,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q 从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,当△PBQ存在时,求运动多少秒使△PBQ的面积最大,最大面积是多少?(3)当△PBQ的面积最大时,在BC下方的抛物线上存在点K,使S△CBK:S△PBQ=5:2,求K点坐标.【考点】二次函数综合题.【分析】方法一:(1)把点A、B的坐标分别代入抛物线解析式,列出关于系数a、b的解析式,通过解方程组求得它们的值;(2)设运动时间为t秒.利用三角形的面积公式列出S△PBQ与t的函数关系式S△PBQ=﹣(t﹣1)2+.利用二次函数的图象性质进行解答;(3)利用待定系数法求得直线BC的解析式为y=x﹣3.由二次函数图象上点的坐标特征可设点K的坐标为(m,m2﹣m﹣3).如图2,过点K作KE∥y轴,交BC于点E.结合已知条件和(2)中的结果求得S△CBK=.则根据图形得到:S△CBK=S△CEK+S△BEK=EK•m+•EK•(4﹣m),把相关线段的长度代入推知:﹣m2+3m=.易求得K1(1,﹣),K2(3,﹣).方法二:(1)略.(2)作QH⊥AB,并分别列出AP,BQ,PB的参数长度,利用三角函数得出HQ的参数长度,进而求出△PBQ的面积函数.(3)利用水平底与铅垂高乘积的一半求解.【解答】方法一:解:(1)把点A(﹣2,0)、B(4,0)分别代入y=ax2+bx﹣3(a≠0),得,解得,所以该抛物线的解析式为:y=x2﹣x﹣3;(2)设运动时间为t秒,则AP=3t,BQ=t.∴PB=6﹣3t.由题意得,点C的坐标为(0,﹣3).在Rt△BOC中,BC==5.如图1,过点Q作QH⊥AB于点H.∴QH∥CO,∴△BHQ∽△BOC,∴=,即=,∴HQ=t.∴S△PBQ=PB•HQ=(6﹣3t)•t=﹣t2+t=﹣(t﹣1)2+.当△PBQ存在时,0<t<2∴当t=1时,S△PBQ最大=.答:运动1秒使△PBQ的面积最大,最大面积是;(3)设直线BC的解析式为y=kx+c(k≠0).把B(4,0),C(0,﹣3)代入,得,解得,∴直线BC的解析式为y=x﹣3.∵点K在抛物线上.∴设点K的坐标为(m,m2﹣m﹣3).如图2,过点K作KE∥y轴,交BC于点E.则点E的坐标为(m,m﹣3).∴EK=m﹣3﹣(m2﹣m﹣3)=﹣m2+m.当△PBQ的面积最大时,∵S△CBK:S△PBQ=5:2,S△PBQ=.∴S△CBK=.S△CBK=S△CEK+S△BEK=EK•m+•EK•(4﹣m)=×4•EK=2(﹣m2+m)=﹣m2+3m.即:﹣m2+3m=.解得m1=1,m2=3.∴K1(1,﹣),K2(3,﹣).方法二:(1)略.(2)设运动时间为t秒,则AP=3t,BQ=t,PB=6﹣3t,∴点C的坐标为(0,﹣3),∵B(4,0),∴l BC:y=x﹣3,过点Q作QH⊥AB于点H,∴tan∠HBQ=,∴sin∠HBQ=,∵BQ=t,∴HQ=t,∴S△PBQ=PB•HQ==﹣,∴当t=1时,S△PBQ最大=.(3)过点K作KE⊥x轴交BC于点E,∵S△CBK:S△PBQ=5:2,S△PBQ=,∴S△CBK=,设E(m,m﹣3),K(m,),S△CBK===﹣,∴﹣=,∴m1=1,m2=3,∴K1(1,﹣),K2(3,﹣).2016年6月8日。
2018年山东省济宁市中考数学模拟试卷(3月份)一、选择题:(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项符合题目要求)1. ﹣45的相反数是()A. ﹣45B.54C. ﹣54D.45【答案】D 【解析】根据只有符号不同的两个数互为相反数可得,﹣45的相反数是45,故选D.2. 如右图是用八块完全相同的小正方体搭成的几何体,从正面看几何体得到的图形是()A. B.C. D.【答案】B【解析】【分析】找到从正面看所得到的图形即可,注意所有从正面看到的棱都应表现在主视图中.【详解】解:从正面看该几何体,有3列正方形,分别有:2个,2个,2个,如图.故选B.【点睛】本题考查了三视图的知识,主视图是从物体的正面看到的视图,属于基础题型.3. 2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为()A. 186×108吨B. 18.6×109吨C. 1.86×1010吨D. 0.186×1011吨【答案】C【解析】试题解析:186亿吨=1.86×1010吨.故选C.4. 下列运算正确的是()A. (a+b)2=a2+b2B. (﹣1+x)(﹣x﹣1)=1﹣x2C. a4•a2=a8D. (﹣2x)3=﹣6x 3【答案】B【解析】解:A.(a+b)2=a2+2ab+b2,故本选项错误;B.(﹣1+x)(﹣x﹣1)=1﹣x2,故本选项正确;C.a4•a2=a4+2=a6,故本选项错误;D.(﹣2x)3=(﹣2)3x3=﹣8x3,故本选项错误.故选B.5. 一次数学检测中,有5名学生的成绩分别是86,89,78,93,90.则这5名学生成绩的平均分和中位数分别是()A. 87.2,89B. 89,89C. 87.2,78D. 90,93【答案】A【解析】这5名学生成绩重新排列为:78、86、89、90、93,则平均数为:(78+86+89+90+93) ÷5=87.2,中位数为89,故选A.6. 如图,下列说法中不正确的是()A. 1∠和3∠是同旁内角B. 2∠和3∠是内错角C. 2∠和4∠是同位角D. 3∠和5∠是对顶角【答案】C 【解析】A. ∠1和∠3是同旁内角,正确,不合题意;B. ∠2和∠3是内错角,正确,不合题意;C. ∠2和∠4是同位角,错误,符合题意;D. ∠3和∠5是对顶角,正确,不合题意; 故选C.7. 有下列命题: ①若x 2=x ,则x =1; ②若a 2=b 2,则a =b ;③线段垂直平分线上的点到线段两端的距离相等; ④相等的弧所对的圆周角相等;其中原命题与逆命题都是真命题的个数是( ) A. 1个 B. 2个C. 3个D. 4个【答案】B 【解析】解:若x 2=x ,则x =1或x =0,所以①错误; 若a 2=b 2,则a =±b ,所以②错误; 线段垂直平分线上的点到线段两端的距离相等,所以③正确;相等的弧所对的圆周角相等,所以④正确.四个命题的逆命题都是真命题. 故选B .点睛:本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论;命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可. 8. 如图,在△ABC 中,∠C =90°,∠B =30°,以点A 为圆心,任意长为半径画弧分别交AB ,AC 于点M和N ,再分别以点M ,N 为圆心画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是( )①AD 是∠BAC 的平分线 ②∠ADC =60°③△ABD 是等腰三角形④点D 到直线AB 的距离等于CD 的长度.A. 1B. 2C. 3D. 4【答案】D 【解析】根据基本作图,所以①正确,因为∠C =90°,∠B =30°,则∠BAC =60°,而AD 平分∠BAC ,则∠DAB =30°,所以∠ADC =∠DAB +∠B =60°,所以②正确;因为∠DAB =∠B =30°,所以△ABD 是等腰三角形,所有③正确;因为AD 平分∠BAC ,所以点D 到AB 与AC 的距离相等,而DC ⊥AC ,则点D 到直线AB 的距离等于CD 的长度,所以④正确. 故选D.9. 若一直角三角形的斜边长为c ,内切圆半径是r ,则内切圆的面积与三角形面积之比是( ) A.2rc rπ+ B.rc rπ+ C.2rc rπ+ D.22rc r π+【答案】B 【解析】试题解析:设直角三角形的两条直角边是a b ,,则有:.2a b c S r ++=又∵.2a b cr +-=∴2a b r c +=+, 将2a b r c +=+代入.2a b c S r ++=得:()222r cS r r r c +==+.又∵内切圆的面积是2π.r∴它们的比是π. r cr+故选B.10. 如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为1a,第2幅图形中“●”的个数为2a,第3幅图形中“●”的个数为3a,…,以此类推,则123191111a a a a++++的值为()A.431760B.589840C.6184D.2021【答案】B【解析】【分析】首先根据图形中“●”的个数得出数字变化规律,进而求出即可.【详解】a1=3=1×3,a2=8=2×4,a3=15=3×5,a4=24=4×6,…,a n=n(n+2);∴123191111a a a a++++=11111324351921++++⨯⨯⨯⨯=12(1−13+12−14+13−15+14−16+…+119−121)=12(1+12−120-121)=589840,故选B.【点睛】此题考查图形的变化规律,找出图形之间的联系,找出规律解决问题.二、填空题:(本大题共5小题,每小题3分,共15分.)11. 因式分解2242x x-+=______.【答案】22(1)x-.【解析】解:2242x x-+=22(21)x x-+=22(1)x-,故答案为22(1)x-.12. 如图,正方形AFCE中,D是边CE上一点,B是CF延长线上一点,且AB=AD,若四边形ABCD的面积是24cm2.则AC长是_____cm.【答案】43【解析】【分析】证Rt△AED≌Rt△AFB,推出S△AED=S△AFB,根据四边形ABCD的面积是24cm2得出正方形AFCE的面积是24cm2,求出AE、EC的长,根据勾股定理求出AC即可.【详解】∵四边形AFCE是正方形,∴AF=AE,∠E=∠AFC=∠AFB=90°,∵AB=AD∴Rt△AED≌Rt△AFB(HL),∴S△AED=S△AFB,∵四边形ABCD的面积是24cm2,∴正方形AFCE的面积是24cm2,∴AE=EC=26根据勾股定理22AC=+=(26)(26)43【点睛】全等三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.13. 如图,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm,弧长是6πcm,那么围成的圆锥的高度是__________cm.【答案】4【解析】【分析】已知弧长即已知围成的圆锥的底面半径的长是6πcm,这样就求出底面圆的半径.扇形的半径为5cm就是圆锥的母线长是5cm .就可以根据勾股定理求出圆锥的高. 【详解】设底面圆的半径是r ,则2πr=6π, ∴r=3cm ,∴圆锥的高. 故答案为4.14. 已知M 、N 两点关于y 轴对称,且点M 在双曲线12y x=上,点N 在直线y=﹣x+3上,设点M 坐标为(a ,b ),则y=﹣abx 2+(a+b )x的顶点坐标为_____. 【答案】( ,112). 【解析】 【分析】【详解】∵M 、N 两点关于y轴对称,∴M 坐标为(a ,b ),N 为(-a ,b ),分别代入相应的函数中得,b=12a①,a+3=b ②,∴ab=12,(a+b )2=(a-b )2+4ab=11,a+b=,∴y=-12x 2x ,∴顶点坐标为(2b a -=,244ac b a -=112),即(112). 点睛:主要考查了二次函数的性质,函数图象上点的特征和关于坐标轴对称的点的特点.解决本题的关键是掌握好对称点的坐标规律.15. 【答案】406 【解析】 【分析】; ; =6=1+2+3; ,∴333331+2+3+4++28=1+2+3+4+…+28=406.故答案为406.三、解答题:(本大题共7小题,共55分)16. (1)计算:(12)﹣3+|3﹣2|﹣(﹣2017)0. (2)先化简,再求值:已知:(12x -+1)÷(x+12x -),其中x=4﹣2sin30°. 【答案】(1)9-3;(2)12【解析】试题分析:(1)首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可; (2)首先化简(12x -+1)÷(x+12x -),然后把x 的值代入化简后的算式即可. 试题解析:(1)原式=8+2−3−1=9−3;(2)原式=12x x --÷2(1)2x x --=11x -,x =4−2sin30°=4−2×12=3, ∴原式=131-=12. 17. 如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD .小明在山坡的坡脚A 处测得宣传牌底部D 的仰角为60°,沿山坡向上走到B 处测得宣传牌顶部C 的仰角为45°.已知山坡AB 的坡度i =1:,AB =10米,AE =15米,求这块宣传牌CD 的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)【答案】2.7米 【解析】解:作BF ⊥DE 于点F ,BG ⊥AE 于点G在Rt△ADE中∵tan∠ADE=,∴DE="AE" ·tan∠ADE=15∵山坡AB的坡度i=1:,AB=10∴BG=5,AG=,∴EF=BG=5,BF=AG+AE=+15∵∠CBF=45°∴CF=BF=+15∴CD=CF+EF—DE=20—10≈20—10×1.732=2.68≈2.7答:这块宣传牌CD的高度为2.7米.18. “食品安全”受到全社会的广泛关注,育才中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面的两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有________人,扇形统计图中“基本了解”部分所对应扇形的圆心角为_________ ;(2)请补全条形统计图;(3)若对食品安全知识达到“了解”程度的学生中,男、女生的比例恰为2:3,现从中随机抽取2人参加食品安全知识竞赛,则恰好抽到1个男生和1个女生的概率________. 【答案】(1)60,90;(2)图见详解;(3)35【解析】 【分析】(1)根据了解很少的人数和所占的百分比求出抽查的总人数,再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所对应扇形的圆心角的度数;(2)用调查的总人数减去“基本了解”“了解很少”和“不了解”的人数,求出了解的人数,从而补全统计图;(3)根据题意先画出树状图,再根据概率公式即可得出答案. 【详解】解:(1)接受问卷调查的学生共有30÷50%=60(人), 扇形统计图中“基本了解”部分所对应扇形的圆心角为360°×1560=90°, 故答案为:60,90.(2)了解的人数有:60−15−30−10=5(60−15−30−10=5(人)),补图如下:(3)画树状图得:∵共有20种等可能的结果,恰好抽到1个男生和1个女生的有12种情况, ∴恰好抽到1个男生和1个女生的概率为1220=35. 【点睛】此题考查了条形统计图、扇形统计图以及用列表法或树状图法求概率,读懂题意,根据题意求出总人数是解题的关键;概率==所求情况数与总情况数之比.19. 某商场准备进一批两种不同型号衣服,已知一件A 种型号比一件B 种型号便宜10元;若购进A 种型号衣服12件,B 种型号衣服8件,共需1880元;已知销售一件A 型号衣服可获利20元,销售一件B 型号衣服可获利30元,要使在这次销售中获利不少于780元,且A 型号衣服不多于28件.(1)求A 、B 型号衣服进价各是多少元?(2)若已知购进A 型号衣服是B 型号衣服的2倍还多4件,则商店在这次进货中可有几种方案并简述购货方案.【答案】(1)A 种型号的衣服每件90元,B 种型号的衣服100元;(2)有三种进货方案:(1)B 型号衣服购买10件,A 型号衣服购进24件;(2)B 型号衣服购买11件,A 型号衣服购进26件;(3)B 型号衣服购买12件,A 型号衣服购进28件.【解析】试题分析:(1)等量关系为:A 种型号衣服9件×进价+B 种型号衣服10件×进价=1810,A 种型号衣服12件×进价+B 种型号衣服8件×进价=1880;(2)关键描述语是:获利不少于699元,且A 型号衣服不多于28件.关系式为:18×A 型件数+30×B 型件数≥699,A 型号衣服件数≤28.试题解析:(1)设A 种型号的衣服每件x 元,B 种型号的衣服y 元,则:9101810{1281880x y x y +=+=, 解之得90{100x y ==. 答:A 种型号的衣服每件90元,B 种型号的衣服100元;(2)设B 型号衣服购进m 件,则A 型号衣服购进(2m+4)件,可得:18(24)30699{2428m m m +++, 解之得192⩽m ⩽12,∵m 为正整数,∴m=10、11、12,2m+4=24、26、28.答:有三种进货方案:(1)B 型号衣服购买10件,A 型号衣服购进24件;(2)B 型号衣服购买11件,A 型号衣服购进26件;(3)B 型号衣服购买12件,A 型号衣服购进28件.点睛:点睛:本题主要考查二元一次方程组和一元一次不等式组的实际问题的应用,解题的关键是读懂题目的意思,根据题目给出的条件,设出未知数,分别找出甲组和乙组对应的工作时间,找出合适的等量关系,列出方程组,再求解.20. 如图,⊙O是△ABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线,与AB的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△PBD∽△DCA;(3)当AB=6,AC=8时,求线段PB的长.【答案】(1)证明见解析;(2)证明见解析;(3)PB=254.【解析】【分析】(1)由直径所对的圆周角为直角得到∠BAC为直角,再由AD为角平分线,得到一对角相等,根据同弧所对的圆心角等于圆周角的2倍及等量代换确定出∠DOC为直角,与平行线中的一条垂直,与另一条也垂直得到OD与PD垂直,即可得证;(2)由PD与BC平行,得到一对同位角相等,再由同弧所对的圆周角相等及等量代换得到∠P=∠ACD,根据同角的补角相等得到一对角相等,利用两对角相等的三角形相似即可得证;(3)由三角形ABC为直角三角形,利用勾股定理求出BC的长,再由OD垂直平分BC,得到DB=DC,根据(2)的相似,得比例,求出所求即可.【详解】证明:∵圆心O在BC上,∴BC是圆O的直径,∴∠BAC=90°,连接OD,∵AD平分∠BAC,∴∠BAC=2∠DAC,∵∠DOC=2∠DAC,∴∠DOC=∠BAC=90°,即OD⊥BC,∵PD∥BC,∴OD⊥PD,∵OD为圆O的半径,∴PD是圆O的切线;证明:∵PD∥BC,∴∠P=∠ABC,∵∠ABC=∠ADC,∴∠P=∠ADC,∵∠PBD+∠ABD=180°,∠ACD+∠ABD=180°,∴∠PBD=∠ACD,∴△PBD∽△DCA;(3)解:∵△ABC为直角三角形,∴BC2=AB2+AC2=62+82=100,∴BC=10,∵OD垂直平分BC,∴DB=DC,∵BC为圆O的直径,∴∠BDC=90°,在Rt△DBC中,DB2+DC2=BC2,即2DC2=BC2=100,∴DC=DB=52,∵△PBD∽△DCA,∴PB BD DC AC=,则PB=DC BDAC⋅=5252⨯=254.21. 甲、乙两城市之间开通了动车组高速列车.已知每隔2h有一列速度相同的动车组列车从甲城开往乙城.如图,OA是第一列动车组列车离开甲城的路程s(km)与运行时间t(h)的函数图象,BC是一列从乙城开往甲城的普通快车距甲城的路程s(km)与运行时间t(h)的函数图象.请根据图中的信息,解答下列问题:(1)从图象看,普通快车发车时间比第一列动车组列车发车时间 1h(填”早”或”晚”),点B的纵坐标600的实际意义是;(2)请直接在图中画出第二列动车组列车离开甲城的路程s(km)与时间t(h)的函数图象;(3)若普通快车的速度为100km/h,①求第二列动车组列车出发多长时间后与普通快车相遇?②请直接写出这列普通快车在行驶途中与迎面而来的相邻两列动车组列车相遇的时间间隔.【答案】(1)晚;甲、乙两城市之间的距离为600千米;(2)作图见解析;(3)①第二列动车组列车出发2小时后与普通快车相遇;②间隔为1.2小时.【解析】【分析】(1)、根据图象中点B的实际意义即可得知;(2)、根据速度相同可知两直线平行,由间隔时间为2小时可知直线过(2,0),画出图象MN即可;(3)、①求出直线BC与直线MN的解析式,由解析式列出方程,解方程即可得相遇时间,继而可得答案;②求出直线BC与直线OA交点,即普通快车与第一辆动车相遇时间,由①可知相遇时间间隔.【详解】(1)由图可知,普通快车发车时间比第一列动车组列车发车时间晚1h;点B的纵坐标600的实际意义是:甲、乙两城市之间的距离为600千米;(2)如图所示:(3)、①设直线MN的解析式为:S=k1t+b1,∵M(2,0),N(6,600),∴,解得:,∴S=150t﹣300;∵直线BC的解析式为:S=﹣100t+700,∴可得:150t﹣300=﹣100t+700,解得:t=4,4﹣2=2.②根据题意,第一列动车组列车解析式为:y=150t,∴这列普通快车在行驶途中与迎面而来的相邻两列动车组列车相遇的时间间隔为:150t=﹣100t+700,解得:t=2.8,4﹣2.8=1.2(小时).22. 如图,抛物线y=ax2+bx﹣3与x轴交于A,B两点,与y轴交于C点,且经过点(2,﹣3a),对称轴是直线x=1,顶点是M.(1)求抛物线对应的函数表达式;(2)经过C,M两点作直线与x轴交于点N,在抛物线上是否存在这样的点P,使以点P,A,C,N为顶点的四边形为平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)设直线y=﹣x+3与y轴的交点是D,在线段BD上任取一点E(不与B,D重合),经过A,B,E三点的圆交直线BC于点F,试判断△AEF的形状,并说明理由;(4)当E是直线y=﹣x+3上任意一点时,(3)中的结论是否成立(请直接写出结论).【答案】(1)y=x2﹣2x﹣3;(2)存在,P(2,﹣3);(3)△AEF是等腰直角三角形.理由见解析;(4)△AEF 是等腰直角三角形.【解析】【分析】(1)依题意联立方程组求出a,b的值后可求出函数表达式;(2)分别令x=0,y=0求出A、B、C三点的坐标,然后易求直线CM的解析式.证明四边形ANCP为平行四边形可求出点P的坐标;(3)求出直线y=-x+3与坐标轴的交点D,B的坐标.然后证明∠AFE=∠ABE=45°,AE=AF,可证得三角形AEF是等腰直角三角形;(4)根据(3)中所求,即可得出当E是直线y=-x+3上任意一点时,(3)中的结论仍成立.【详解】解:(1)根据题意,得342312a a bba-=+-⎧⎪⎨-=⎪⎩,解得12ab=⎧⎨=-⎩,∴抛物线对应的函数表达式为y=x2−2x−3;(2)存在.连接AP,CP,如下图所示:在y=x2−2x−3中,令x=0,得y=−3.令y=0,得x2−2x−3=0,∴x1=−1,x2=3.∴A(−1,0),B(3,0),C(0,−3).又y=(x−1)2−4,∴顶点M(1,−4),容易求得直线CM的表达式是y=−x−3.在y=−x−3中,令y=0,得x=−3.∴N(−3,0),∴AN=2,在y=x2−2x−3中,令y=−3,得x1=0,x2=2.∴CP=2,∴AN=CP.∵AN∥CP,∴四边形ANCP为平行四边形,此时P(2,−3);(3)△AEF是等腰直角三角形.理由:在y=−x+3中,令x=0,得y=3,令y=0,得x=3.∴直线y=−x+3与坐标轴的交点是D(0,3),B(3,0).∴OD=OB,∴∠OBD=45°,又∵点C(0,−3),∴OB=OC.∴∠OBC=45°,由图知∠AEF=∠ABF=45°,∠AFE=∠ABE=45°,∴∠EAF=90°,且AE=AF.∴△AEF是等腰直角三角形;(4)当点E是直线y=−x+3上任意一点时,(3)中的结论:△AEF是等腰直角三角形成立. 【点睛】本题综合考查了等腰直角三角形的判定以及二次函数结合图形的应用,难度较大.。
济宁市2018中考数学真题含答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(济宁市2018中考数学真题含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为济宁市2018中考数学真题含答案(word版可编辑修改)的全部内容。
济宁市二0一八年高中段学校招生考试数学试题注意事项:1.本试卷分第I卷和第I1卷两部分,共6页.第1卷为选择题,30分,第1卷为非选择题,70分;共100分,考试时间为120分钟。
2。
答题前,考生务必先核对条形码上的姓名,准考证号和座号,然后用0.5毫米黑色签字笔将本人的姓名、准考证号和座号填写在答题卡相应位置。
3。
答第1卷时,必须使用2B铅笔把答题卡上相应题目的答案标号(ABCD)涂黑,如需改动必须先用橡皮擦干净,再改涂其它答案。
4,在答第11卷时,必须使用0。
5毫米黑色签字笔在答题卡上书写,务必在题号所指示的答题区域内作答。
5。
填空题请直接将答案填写在答题卡上,解答题应写出文字说明、证明过程或演算步骤.6。
考试结束后,将本试卷和答题卡一并交回。
第|卷(选择题共30分)一.选择题:本大题共10小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求1.的值是A。
1 B。
-1 C.3 D。
—32。
为贯彻落实党中央、因务院关于推进城乡义务教育体化发展的部署,教育部会同有关部门近五年来共新建、改扩建校舍186000000平方米。
其中186000000用科学计数法表示是( )A.1.86x108B.186x106C.1.86x109 D。
0。
186x1093.下列运算正确的是A.a8÷a4 =a2B.(a2)2=a4C.a2·a3=a6 D,a2+a2 =2a44。
2018年山东省济宁市梁山县中考数学一模试卷一、精心选一选,相信自己的判断力!(本题共10小题,每小题3分.)1.2018的相反数是()A.8102 B.﹣2018 C.D.20182.如图,小明同学用剪刀沿着虚线将一张圆形纸片剪掉一部分,发现剩下纸片的周长比原来的周长要小,能正确解释这一现象的数学知识是()A.两点之间,直线最短B.经过一点,有无数条直线C.两点确定一条直线D.两点之间,线段最短3.若代数式有意义,则x的取值范围是()A.x>﹣1且x≠1 B.x≥﹣1 C.x≠1 D.x≥﹣1且x≠1 4.低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是()A.B.C.D.5.下列曲线所表示的y与x之间关系不是函数关系的是()A.B.C.D.6.如图:在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,则CE2+CF2等于()A.75 B.100 C.120 D.1257.如图所示,小琳总结了“解可化为一元一次方程的分式方程”的运算流程,那么A和B 分别代表的是()A.分式的基本性质,最简公分母=0B.分式的基本性质,最简公分母≠0C.等式的基本性质2,最简公分母=0D.等式的基本性质2,最简公分母≠08.如图,在△AEF中,尺规作图如下:分别以点E,点F为圆心,大于EF的长为半径作弧,两弧相交于G,H两点,作直线GH,交EF于点O,连接AO,则下列结论正确的是()A.AO平分∠EAF B.AO垂直平分EFC.GH垂直平分EF D.GH平分AF9.八年级(2)班学生积极参加献爱心活动,该班50名学生的捐款情况统计如表,则该班学生捐款金额的平均数和中位数分别是()金额/元 5 10 20 50 100人数 4 16 15 9 6 A.20.6元和10元B.20.6元和20元C.30.6元和10元D.30.6元和20元10.如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线AO方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;…按此规律运动到点A2018处,则点A2018与点A间的距离是()A.0 B.2 C.2D.4二、认真填一填,试试自己的身手!本大题共5小题,每小题3分,共15分,只要求填写最后结果,请把答案填写在答案卷题中横线上11.十九大报告中指出,我国经济建设取得重大成就,国内生产总值达到800000亿元,稳居世界第二,用科学记数法表示800000亿元=亿元.12.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是.13.如图,AB是⊙O的直径,CD⊥AB,∠ABD=60°,CD=2,则阴影部分的面积为.14.如图,在正方形ABCD中,AB=3,点E在CD边上,且CE=2DE,将△ADE沿直线AE对折至△AEF ,延长EF 交BC 于G ,连接AG ,则线段AG 的长为 .15.有一列数,记为a 1,a 2,…,a n ,我们记其前n 项和为S =a 1+a 2+…a n ,定义为这列数的“亚运和”,现如果有2018个数a 1,a 2,…,a 2018其“亚运和”为2019,则2,a 1,a 2,…,a 2018这2019个数的“亚运和”为 .三、专心解一解(本大题共7小题,满分55分)请认真读题,冷静思考,解答题应写出文字说明、证明过程或演算步骤16.(4分)计算:(﹣2)0+()﹣1+4cos30°﹣|﹣|.17.(6分)某学校“体育课外活动兴趣小组”,开设了以下体育课外活动项目:A .足球 B .乒乓球C .羽毛球 D .篮球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有 人,在扇形统计图中“D ”对应的圆心角的度数为 ;(2)请你将条形统计图补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加市里组织的乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).18.(9分)如图,已知双曲线y =(m >0)与直线y =kx 交于A 、B 两点,点A 的坐标为(3,2).(1)由题意可得m 的值为 ,k 的值为 ,点B 的坐标为 ;(2)若点P (n ﹣2,n +3)在第一象限的双曲线上,试求出n 的值及点P 的坐标;(3)在(2)小题的条件下:如果M为x轴上一点,N为y轴上一点,以点P、A、M、N 为顶点的四边形是平行四边形,试求出点M的坐标.19.(6分)如图1,一种折叠式小刀由刀片和刀鞘两部分组成.现将小刀打开成如图2位置,刀片部分是四边形ABCD,其中AD∥BC,AB⊥BC,CD=15mm,∠C=53°,刀鞘的边缘MN ∥PQ,刀刃BC与刀鞘边缘PQ相交于点O,点A恰好落在刀鞘另一边缘MN上时,∠COP =37°,OC=50mm,(1)求刀片宽度h.(2)若刀鞘宽度为14mm,求刀刃BC的长度.(结果精确到0.1mm)(参考数据:sin37°≈,cos37°≈,tan37°≈)20.(10分)在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根.比如对于方程x2﹣5x+2=0,操作步骤是:第一步:根据方程的系数特征,确定一对固定点A(0,1),B(5,2);第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A,另一条直角边恒过点B;第三步:在移动过程中,当三角板的直角顶点落在x轴上点C处时,点C的横坐标m即为该方程的一个实数根(如图1);第四步:调整三角板直角顶点的位置,当它落在x轴上另一点D处时,点D的横坐标n 即为该方程的另一个实数根.(1)在图2中,按照“第四步”的操作方法作出点D (请保留作出点D 时直角三角板两条直角边的痕迹);(2)结合图1,请证明“第三步”操作得到的m 就是方程x 2﹣5x +2=0的一个实数根;(3)上述操作的关键是确定两个固定点的位置.若要以此方法找到一元二次方程ax 2+bx +c =0(a ≠0,b 2﹣4ac ≥0)的实数根,请你直接写出一对固定点的坐标;(4)实际上,(3)中的固定点有无数对,一般地,当m 1,n 1,m 2,n 2与a ,b ,c 之间满足怎样的关系时,点P (m 1,n 1),Q (m 2,n 2)就是符合要求的一对固定点?21.(10分)探究活动一:如图1,正方形ABCD 和正方形QMNP ,∠M =∠B ,M 是正方形ABCD 的对称中心,MN 交AB 于F ,QM 交AD 于E ,线段ME 与线段MF 的数量关系是 .(不必证明,直接给出结论即可)探究活动二:如图2,将上题中的“正方形”改为“矩形”,且AB =mBC ,其他条件不变(矩形ABCD 和矩形QMNP ,∠M =∠B ,M 是矩形ABCD 的对称中心,MN 交AB 于F ,QM 交AD 于E ),探究并证明线段ME 与线段MF 的数量关系;探究活动三:根据前面的探索和图3,平行四边形ABCD 和平行四边形QMNP 中,若AB =mBC ,∠M =∠B ,M 是平行四边形ABCD 的对称中心,MN 交AB 于F ,QM 交AD 于E ,请探究并证明线段ME 与线段MF 的数量关系.22.(10分)如图,在平面直角坐标系中,顶点为(3,﹣4)的抛物线交y 轴于A 点,交x轴于B、C两点(点B在点C的左侧),已知A点坐标为(0,5).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C的位置关系,并给出证明;参考答案一、精心选一选,相信自己的判断力!1.2018的相反数是()A.8102 B.﹣2018 C.D.2018【分析】根据相反数的定义可得答案.【解答】解:2018的相反数﹣2018,故选:B.【点评】此题主要考查了相反数,关键是掌握只有符号不同的两个数叫做互为相反数.2.如图,小明同学用剪刀沿着虚线将一张圆形纸片剪掉一部分,发现剩下纸片的周长比原来的周长要小,能正确解释这一现象的数学知识是()A.两点之间,直线最短B.经过一点,有无数条直线C.两点确定一条直线D.两点之间,线段最短【分析】根据两点之间,线段最短解答.【解答】解:能正确解释这一现象的数学知识是两点之间,线段最短.故选:D.【点评】此题主要考查了线段的性质,关键是掌握两点之间,线段最短.3.若代数式有意义,则x的取值范围是()A.x>﹣1且x≠1 B.x≥﹣1 C.x≠1 D.x≥﹣1且x≠1 【分析】根据二次根式有意义的条件可得x+1≥0,根据分式有意义的条件可得x﹣1≠0,再解即可.【解答】解:由题意得:x+1≥0,且x﹣1≠0,解得:x≥﹣1,且x≠1,故选:D.【点评】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数,分式分母不为零.4.低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形.故选项正确;B、不是轴对称图形.故选项错误;C、不是轴对称图形.故选项错误;D、不是轴对称图形.故选项错误.故选:A.【点评】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,两边图象折叠后可重合.5.下列曲线所表示的y与x之间关系不是函数关系的是()A.B.C.D.【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.【解答】解:A,B,D的图象都符合对于x的每一个取值,y都有唯一确定的值与之对应,故A,B,D的都是函数;C、的图象不满足对于x的每一个取值,y都有唯一确定的值与之对应,故C不符合题意;故选:C.【点评】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.6.如图:在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,则CE2+CF2等于()A.75 B.100 C.120 D.125【分析】根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值.【解答】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC为直角三角形,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=100.故选:B.【点评】本题考查角平分线的定义,直角三角形的判定以及勾股定理的运用,解题的关键是首先证明出△ECF为直角三角形.7.如图所示,小琳总结了“解可化为一元一次方程的分式方程”的运算流程,那么A和B 分别代表的是()A.分式的基本性质,最简公分母=0B.分式的基本性质,最简公分母≠0C.等式的基本性质2,最简公分母=0D.等式的基本性质2,最简公分母≠0【分析】根据解分式方程的步骤,可得答案.【解答】解:去分母的依据是等式基本性质2,检验时最简公分母等于零,原分式方程无解故选:C.【点评】本题考查了解分式方程,利用解分式方程的步骤是解题关键.8.如图,在△AEF中,尺规作图如下:分别以点E,点F为圆心,大于EF的长为半径作弧,两弧相交于G,H两点,作直线GH,交EF于点O,连接AO,则下列结论正确的是()A.AO平分∠EAF B.AO垂直平分EFC.GH垂直平分EF D.GH平分AF【分析】直接根据线段垂直平分线的作法即可得出结论.【解答】解:由题意可得,GH垂直平分线段EF.故选:C.【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法是解答此题的关键.9.八年级(2)班学生积极参加献爱心活动,该班50名学生的捐款情况统计如表,则该班学生捐款金额的平均数和中位数分别是()金额/元 5 10 20 50 100人数 4 16 15 9 6 A.20.6元和10元B.20.6元和20元C.30.6元和10元D.30.6元和20元【分析】根据平均数和中位数的定义求解即可,平均数是所有数据的和除以数据的总个数;中位数是将一组数据从小到大重新排列后,找出最中间两个数的平均数.【解答】解:平均数=(5×4+10×16+20×15+50×9+100×6)=30.6;∵共有50个数,∴中位数是第25、26个数的平均数,∴中位数是(20+20)÷2=20;故选:D.【点评】此题考查了中位数与平均数公式;熟记平均数公式,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).10.如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线AO方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;…按此规律运动到点A2018处,则点A2018与点A间的距离是()A.0 B.2 C.2D.4【分析】根据题意求得A0A1=4,AA2=2,AA3=2,AA4=2,AA5=2,AA6=0,AA7=4,…于是得到A2018与A2重合,即可得到结论.【解答】解:如图,∵⊙O的半径=2,由题意得,A0A1=4,AA2=2,AA3=2,AA4=2,AA5=2,AA6=0,AA7=4,…∵2018÷6=336…2,∴按此规律运动到点A2018处,A2018与A2重合,∴A0A2018=AA2=2,故选:C.【点评】本题考查了图形的变化类,等边三角形的性质,解直角三角形,正确的作出图形是解题的关键.二、认真填一填,试试自己的身手!本大题共5小题,每小题3分,共15分,只要求填写最后结果,请把答案填写在答案卷题中横线上11.十九大报告中指出,我国经济建设取得重大成就,国内生产总值达到800000亿元,稳居世界第二,用科学记数法表示800000亿元=8×105亿元.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值是易错点,由于800000有6位,所以可以确定n=6﹣1=5.【解答】解:800 000=8×105.故答案为:8×105.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.12.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是a2+2ab+b2=(a+b)2.【分析】通过用不同的计算方法来表示大正方形的面积即可得到这一公式.【解答】解:首先用分割法来计算,即a2+2ab+b2;再用整体计算即为(a+b)2.因此a2+2ab+b2=(a+b)2.【点评】利用不同的方法表示同一个图形的面积也是证明公式的一种常用方法.13.如图,AB是⊙O的直径,CD⊥AB,∠ABD=60°,CD=2,则阴影部分的面积为.【分析】连接OD,则根据垂径定理可得出CE=DE,继而将阴影部分的面积转化为扇形OBD的面积,代入扇形的面积公式求解即可.【解答】解:连接OD.∵CD⊥AB,∴CE=DE=CD=,故S△OCE =S△ODE,即可得阴影部分的面积等于扇形OBD的面积,又∵∠ABD=60°,∴∠CDB=30°,∴∠COB=60°,∴OC=2,∴S扇形OBD==,即阴影部分的面积为.故答案为:.【点评】本题考查的是垂径定理,扇形的面积的计算,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.14.如图,在正方形ABCD中,AB=3,点E在CD边上,且CE=2DE,将△ADE沿直线AE对折至△AEF,延长EF交BC于G,连接AG,则线段AG的长为.【分析】先根据正方形的性质可得AD=AB=BC=CD,∠D=∠B=∠BCD=90°,再根据折叠的性质可得AD=AF,DE=EF,∠D=∠AFE=90°,再证明△ABG≌△AFG可得FG=GB,然后设BG=x,则CG=12﹣x,GE=x+4,再利用勾股定理算出x的值,进而运用勾股定理可得到AG的长.【解答】解:在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,∵将△ADE沿AE对折至△AFE,∴AD =AF ,DE =EF ,∠D =∠AFE =90°, ∴AB =AF ,∠B =∠AFG =90°, 在Rt △ABG 和Rt △AFG 中,,∴△ABG ≌△AFG (HL ), ∴FG =GB , ∵CE =2DE ,AB =3, ∴DE =1,CE =2,设BG =x ,则CG =3﹣x ,GE =x +1, ∵GE 2=CG 2+CE 2∴(x +1)2=(3﹣x )2+22, 解得x =, ∴BG =, ∴Rt △ABG 中,AG ==,故答案为:.【点评】此题主要考查了翻折变换,正方形的性质以及勾股定理的运用,解题的关键是证明△ABG ≌△AFG 得到FG =GB ,再利用勾股定理计算出BG 的长.15.有一列数,记为a 1,a 2,…,a n ,我们记其前n 项和为S =a 1+a 2+…a n ,定义为这列数的“亚运和”,现如果有2018个数a 1,a 2,…,a 2018其“亚运和”为2019,则2,a 1,a 2,…,a 2018这2019个数的“亚运和”为 2021 .【分析】由题意可知,2,a 1,a 2,…,a 2018这2019个数的“亚运和”即为2与a 1,a 2,…,a 2018的“亚运和”之和,则可求得.【解答】解:由题意知:2,a 1,a 2,…,a 2018这2019个数的“亚运和”为S =2+a 1+a 2+…+a 2018=2+2019=2021.故答案为:2021.【点评】本题考察对题目定义运算的理解,关键要理解清楚题目中所定义的运算. 三、专心解一解(本大题共7小题,满分55分)请认真读题,冷静思考,解答题应写出文字说明、证明过程或演算步骤 16.(4分)计算:(﹣2)0+()﹣1+4cos30°﹣|﹣|.【分析】根据实数的运算顺序计算,注意:(﹣2)0=1,()﹣1=3,cos30°=,|﹣|=2.【解答】解:原式=1+3+4×﹣=4+2﹣2=4.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.17.(6分)某学校“体育课外活动兴趣小组”,开设了以下体育课外活动项目:A .足球 B .乒乓球C .羽毛球 D .篮球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有 200 人,在扇形统计图中“D ”对应的圆心角的度数为 72° ;(2)请你将条形统计图补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加市里组织的乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).【分析】(1)利用扇形统计图得到A类的百分比为10%,则用A类的频数除以10%可得到样本容量;然后用B类的百分比乘以360°得到在扇形统计图中“D”对应的圆心角的度数;(2)先计算出C类的频数,然后补全统计图;、(3)画树状图展示所有12种等可能的结果,再找出恰好选中甲、乙两位同学的结果数,然后根据概率公式求解.【解答】解:(1)20÷=200,所以这次被调查的学生共有200人,在扇形统计图中“D”对应的圆心角的度数=×360°=72°;故答案为200,72°;(2)C类人数为200﹣80﹣20﹣40=60(人),完整条形统计图为:(3)画树状图如下:由上图可知,共有12种等可能的结果,其中恰好选中甲、乙两位同学的结果有2种.所以P(恰好选中甲、乙两位同学)==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.18.(9分)如图,已知双曲线y=(m>0)与直线y=kx交于A、B两点,点A的坐标为(3,2).(1)由题意可得m的值为 6 ,k的值为,点B的坐标为(﹣3,﹣2);(2)若点P(n﹣2,n+3)在第一象限的双曲线上,试求出n的值及点P的坐标;(3)在(2)小题的条件下:如果M为x轴上一点,N为y轴上一点,以点P、A、M、N 为顶点的四边形是平行四边形,试求出点M的坐标.【分析】(1)把A坐标代入反比例解析式求出m的值,确定出反比例解析式,把A坐标代入直线解析式求出k的值,利用对称性求出B坐标即可;(2)把P坐标代入反比例解析式求出n的值,确定出P坐标即可;(3)分两种情况考虑:当M1在x轴正半轴,N1在y轴上半轴时,如图1所示;当M2在x轴负半轴,N2在y轴下半轴时,如图2所示,分别求出M坐标即可.【解答】解:(1)把A(3,2)代入反比例解析式得:m=6;把A(3,2)代入直线解析式得:k=,由对称性得:B(﹣3,﹣2);故答案为:6;;(﹣3,﹣2);(2)把P(n﹣2,n+3)代入y=中得:(n﹣2)(n+3)=6,整理得:n2+n﹣12=0,即(n﹣3)(n+4)=0,解得:n=3或n=﹣4(舍去),则P(1,6);(3)分两种情况考虑:当M1在x轴正半轴,N1在y轴上半轴时,如图1所示,过P 作PQ ∥y 轴,过A 作AQ ∥x 轴,交于点Q , ∵A (3,2),P (1,6), ∴AQ =3﹣1=2,由平移及平行四边形性质得到OM 1=2,即M 1(2,0); 当M 2在x 轴负半轴,N 2在y 轴下半轴时,如图2所示, 同理得到OM 2=2,即M 2(﹣2,0).【点评】此题属于反比例函数综合题,涉及的知识有:待定系数法求反比例函数及一次函数解析式,坐标与图形性质,平移的性质,平行四边形的性质,熟练掌握待定系数法是解本题的关键.19.(6分)如图1,一种折叠式小刀由刀片和刀鞘两部分组成.现将小刀打开成如图2位置,刀片部分是四边形ABCD ,其中AD ∥BC ,AB ⊥BC ,CD =15mm ,∠C =53°,刀鞘的边缘MN ∥PQ ,刀刃BC 与刀鞘边缘PQ 相交于点O ,点A 恰好落在刀鞘另一边缘MN 上时,∠COP =37°,OC =50mm , (1)求刀片宽度h .(2)若刀鞘宽度为14mm ,求刀刃BC 的长度.(结果精确到0.1mm )(参考数据:sin37°≈,cos37°≈,tan37°≈)【分析】(1)利用锐角三角函数即可得出结论;(2)先求出AG ,进而求出BG ,用三角函数求出BO 即可得出结论. 【解答】解:(1)作DE ⊥BC 于E ,在Rt △DEC 中,∠CDE =90°﹣53°=37°, ∴DE =DC •cos37°=15×=12, 即:刀片的宽度h 为12mm ;(2)作AF⊥PQ于F,延长AB交PQ于G,∵∠COP=37°,∴∠BOG=∠FAG=37°,在Rt△AFG中,AF=14,∴AG==,BG=AG﹣AB=,AB⊥BC,∴∠OBG=90°,在Rt△BOG中,BO==,∴BC=OC+OB=50+≈57.3.【点评】此题是解直角三角形的应用,锐角三角函数,解本题的关键是熟练运用锐角三角函数求出线段.20.(10分)在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根.比如对于方程x2﹣5x+2=0,操作步骤是:第一步:根据方程的系数特征,确定一对固定点A(0,1),B(5,2);第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A,另一条直角边恒过点B;第三步:在移动过程中,当三角板的直角顶点落在x轴上点C处时,点C的横坐标m即为该方程的一个实数根(如图1);第四步:调整三角板直角顶点的位置,当它落在x轴上另一点D处时,点D的横坐标n 即为该方程的另一个实数根.(1)在图2中,按照“第四步”的操作方法作出点D (请保留作出点D 时直角三角板两条直角边的痕迹);(2)结合图1,请证明“第三步”操作得到的m 就是方程x 2﹣5x +2=0的一个实数根;(3)上述操作的关键是确定两个固定点的位置.若要以此方法找到一元二次方程ax 2+bx +c =0(a ≠0,b 2﹣4ac ≥0)的实数根,请你直接写出一对固定点的坐标;(4)实际上,(3)中的固定点有无数对,一般地,当m 1,n 1,m 2,n 2与a ,b ,c 之间满足怎样的关系时,点P (m 1,n 1),Q (m 2,n 2)就是符合要求的一对固定点?【分析】(1)根据“第四步”的操作方法作出点D 即可;(2)过点B 作BD ⊥x 轴于点D ,根据△AOC ∽△CDB ,可得=,进而得出=,即m 2﹣5m +2=0,据此可得m 是方程x 2﹣5x +2=0的实数根;(3)方程ax 2+bx +c =0(a ≠0)可化为x 2+x +=0,模仿研究小组作法可得一对固定点的坐标;(4)先设方程的根为x ,根据三角形相似可得=,进而得到x 2﹣(m 1+m 2)x +m 1m 2+n 1n 2=0,再根据ax 2+bx +c =0,可得x 2+x +=0,最后比较系数可得m 1,n 1,m 2,n 2与a ,b ,c 之间的关系.【解答】解:(1)如图所示,点D 即为所求;(2)如图所示,过点B 作BD ⊥x 轴于点D ,根据∠AOC =∠CDB =90°,∠ACO =∠CBD ,可得△AOC ∽△CDB ,∴=,∴=,∴m(5﹣m)=2,∴m2﹣5m+2=0,∴m是方程x2﹣5x+2=0的实数根;(3)方程ax2+bx+c=0(a≠0)可化为x2+x+=0,模仿研究小组作法可得:A(0,1),B(﹣,)或A(0,),B(﹣,c)等;(4)如图,P(m1,n1),Q(m2,n2),设方程的根为x,根据三角形相似可得=,上式可化为x2﹣(m1+m2)x+m1m2+n1n2=0,又∵ax2+bx+c=0,即x2+x+=0,∴比较系数可得m1+m2=﹣,m 1m2+n1n2=.【点评】本题属于三角形综合题,主要考查的是一元二次方程的解,相似三角形的判定与性质的综合应用,解决问题的关键是作辅助线构造相似三角形,依据相似三角形的对应边成比例,列出比例式并转化为等积式.21.(10分)探究活动一:如图1,正方形ABCD和正方形QMNP,∠M=∠B,M是正方形ABCD的对称中心,MN交AB 于F,QM交AD于E,线段ME与线段MF的数量关系是ME=MF.(不必证明,直接给出结论即可)探究活动二:如图2,将上题中的“正方形”改为“矩形”,且AB=mBC,其他条件不变(矩形ABCD和矩形QMNP,∠M=∠B,M是矩形ABCD的对称中心,MN交AB于F,QM交AD于E),探究并证明线段ME与线段MF的数量关系;探究活动三:根据前面的探索和图3,平行四边形ABCD和平行四边形QMNP中,若AB=mBC,∠M=∠B,M是平行四边形ABCD的对称中心,MN交AB于F,QM交AD于E,请探究并证明线段ME 与线段MF的数量关系.【分析】(1)过点M作MH⊥AB于H,MG⊥AD于G,连接AM,首先证明M是正方形ABCD 对角线的交点,然后证明△MHF≌△MGE,利用全等三角形的性质得到ME=MF;(2)过点M作ME⊥AB于E,MG⊥AD于G,利用矩形ABCD性质和已知条件证明∠HMF=∠GME,∠MGE=∠MHF,得出△MGE∽△MHF,然后利用相似三角形的性质即可求解;(3)平行四边形ABCD和平行四边形QMNP中,∠M=∠B,AB=mBC,由于M是平行四边形ABCD的对称中心,MN交AB于F,AD交QM于E,则ME=mMF.证明方法和(1)(2)类似.【解答】解:(1)ME=MF.理由:如图1,过点M作MH⊥AB于H,MG⊥AD于G,连接AM,则∠MHF=∠MGE=90°,∵M是正方形ABCD的对称中心,∴AM平分∠BAD,∴MH=MG,在正方形ABCD中,∠DAB=90°,而∠MHA=∠MGA=90°,∴∠EMF=∠HMG=90°,∴∠FMH=∠EMG,在△MHF和△MGE中,∴△MHF≌△MGE(ASA),∴MF=ME,故答案为:MF=ME;(2)ME=mMF.理由:如图2,过点M作MG⊥AB于G,MH⊥AD于H,则∠MHE=∠MGF=90°,在矩形ABCD中,∠A=90°,∴在四边形GMHA中,∠GMH=90°,又∵∠EMF=90°,∴∠HME=∠GMF,又∵∠MGF=∠MHE=90°,∴△MGF∽△MHE,∴=,又∵M是矩形ABCD的对称中心,∴MG=BC,MH=AB,∵AB=mBC,∴==m,∴ME=mMF;(3)ME=mMF,理由:如图3,过点M作MG⊥AB于G,MH⊥AD于H,则∠MHE=∠MGF=90°,在平行四边形ABCD中,∠A+∠B=180°,而∠EMF=∠B,∴∠A+∠EMF=180°,又∵在四边形AGMH中,∠A+∠HMG=180°,∴∠EMF=∠GMF,又∵∠MGF=∠MHE=90°,∴△MGF∽△MHE,∴=,连接AM、BD,∴M为BD中点,∴S△ABM =S△ADM,∴AB•MG=BC•MH,∴,∵AB=mBC,∴===m,∴ME=mMF.【点评】此题属于四边形综合题,主要考查了正方形、矩形、平行四边形的性质、全等三角形、相似三角形的性质和判定的综合应用,解决问题的关键是作辅助线构造全等三角形或相似三角形,运用相似三角形的对应边成比例进行推导.22.(10分)如图,在平面直角坐标系中,顶点为(3,﹣4)的抛物线交y轴于A点,交x 轴于B、C两点(点B在点C的左侧),已知A点坐标为(0,5).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C的位置关系,并给出证明;【分析】(1)利用顶点式将点A的坐标代入即可求得a的值,从而确定二次函数的解析式;(2)首先求得B(1,0),C(5,0),设切点为E,连接CE,根据Rt△ABO∽Rt△BCE得到比例式,从而求得CE=;根据点C到对称轴x=3的距离为2,2>,从而确定抛物线的对称轴l与⊙C相离.【解答】(1)解:设抛物线解析式为:y=a(x﹣3)2﹣4,将A(0,5)代入求得:a=1,∴抛物线解析式为y=(x﹣3)2﹣4或y=x2﹣6x+5.(2)抛物线的对称轴l与⊙C相离.证明:令y=0,即x2﹣6x+5=0,得x=1或x=5,∴B(1,0),C(5,0).如图所示,设切点为E,连接CE,由题意易证Rt△ABO∽Rt△BCE,∴=,即=,求得⊙C的半径CE=;而点C到对称轴x=3的距离为2,2>,∴抛物线的对称轴l与⊙C相离.【点评】本题是二次函数的综合题型,其中涉及到的知识点:待定系数法确定函数关系式,相似三角形的判定与性质,圆与直线的距离,难度不是很大.。