高一数学2015北师大版高中数学必修四模块高考热点透视课件
- 格式:ppt
- 大小:2.79 MB
- 文档页数:44
北师大版高中数学必修四详细知识点加例题解析(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--高中数学北师版必修四全册知识点含例题分析第一章 三角函数⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、象限的角:在直角坐标系内,顶点与原点重合,始边与x 轴的非负半轴重合,角的终边落在第几象限,就是第几象限的角;角的终边落在坐标轴上,这个角不属于任何象限,叫做轴线角。
第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角,连同角α在内,都可以表示为集合{Z k k ∈⋅+=,360|αββ} 4、弧度制:(1)定义:等于半径的弧所对的圆心角叫做1弧度的角,用弧度做单位叫弧度制。
半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l rα=. (2)度数与弧度数的换算:π=180 rad ,1 rad '185730.57)180(=≈=π(3)若扇形的圆心角为α(α是角的弧度数),半径为r ,则:弧长公式:r l ||α= ;扇形面积:2||2121r lr S α===5、三角函数:(1)定义:①设α是一个任意角,它的终边与单位圆交于点P那么v 叫做α的正弦,记作sin α,即sin α= v ; u 叫做α弦,记作cos α,即cos α=u ; 当α的终边不在y 轴上时,uv 做α的正切,记作tan α, 即tan α=uv . ②设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y,它与原点的距离是()0r OP r ==>,则sin y r α=,cos x r α=,()tan 0yx xα=≠ (2)三角函数值在各象限的符号:口诀:第一象限全为正;二正三切四余弦.6()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z .口诀:终边相同的角的同一三角函数值相等.()()2sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()3sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-. ()()4sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=.αsinx y+ + _ _O x y + +__ αcosOαtanx y++_ _O()()5sin 2sin παα-=-,()cos 2cos παα-=,()tan 2tan παα-=-.口诀:函数名称不变,正负看象限.()6sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭,tan cot 2παα⎛⎫-= ⎪⎝⎭. ()7sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭,tan cot 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,正负看象限.7、正弦函数、余弦函数和正切函数的图象与性质:sin y x = cos y x = tan y x =图象定义域 R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域值域: []1,1-当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min 1y =-. 值域:[]1,1-当()2x k k π=∈Z 时, max 1y =;当2x k ππ=+ ()k ∈Z 时,min 1y =-. 值域:R 既无最大值也无最小值周期性 sin y x =是周期函数;周期为2,T k k Z π=∈且0k ≠; 最小正周期为2πcos y x =是周期函数;周期为2,T k k Z π=∈且0k ≠;最小正周期为2πtan y x =是周期函数;周期为,T k k Z π=∈且0k ≠;最小正周期为π 奇偶性奇函数偶函数奇函数单调性 在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦ ()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+ ⎪⎝⎭ ()k ∈Z 上是增函数.对称性 对称中心()(),0k k π∈Z 对称轴()2x k k ππ=+∈Z 对称中心(),02k k ππ⎛⎫+∈Z⎪⎝⎭对称中心(),02k k π⎛⎫∈Z ⎪⎝⎭8、函数)0,0()sin(>>++=ωϕωA bx A y 的相关知识:(1)()sin y x b ωϕ=A ++的图象与x y sin =图像的关系:①振幅变换:x y sin = x A y sin =②周期变换:x y sin =x y ωsin =③相位变换:x y sin =)sin(ϕ+=x y④平移变换:sin(ϕω+=x A y ()sin y x b ωϕ=A ++先平移后伸缩:函数sin y x =的图象整体向左(0>ϕ)或向右(0<ϕ)平移ϕ个单位,得到函数()sin y x ϕ=+ 的图象;再将函数()sin y x ϕ=+的图象上每个点的横坐标变为原来的1ω倍,纵坐标不变,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上每个点的纵坐标变为原来的A 倍,横坐标不变,得到函数()sin y x ωϕ=A +的图象;再将函数()sin y x ωϕ=+的图象整体向上(0>b )或向下(0<b )平移b 个单位,得到函数()sin y x b ωϕ=A ++. 先伸缩后平移:函数sin y x =的图象上每个点的横坐标变为原来的1ω倍,纵坐标不变,得到函数sin y x ω=的图象;再将函数sin y x ω=的图象整体向左(0>ϕ)或向右(0<ϕ)平移ϕω个单位,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上每个点的纵坐标变为原来的A 倍,横坐标不变,得到函数()sin y x ωϕ=A +的图象;再将函数()sin y x ωϕ=+的图象整体向上(0>b )或向下(0<b )平移b 个单位,得到函数()sin y x b ωϕ=A ++.图象上每个点的横坐标不变,纵坐标变为原来的A 倍图象上每个点的横坐标变为原来的ω1倍,纵坐标不变(2)函数)0,0()sin(>>++=ωϕωA bx A y 的性质: ①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ.定义域:R值域:[],A b A b -++当22x k πωϕπ+=+()k ∈Z 时,max y A b =+; 当22x k πωϕπ+=-()k ∈Z 时,min y A b =-+. 周期性:函数)0,0()sin(>>++=ωϕωA b x A y 是周期函数;周期为ωπ2=T单调性:x ωϕ+在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上时是增函数; x ωϕ+在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上时是减函数.对称性:对称中心为(),0k k πϕω-⎛⎫∈Z⎪⎝⎭;对称轴为x ωϕ+()2k k ππ=+∈Z第二章 平面向量1、向量定义:既有大小又有方向的量叫做向量,向量都可用同一平面内的有向线段表示.2、零向量:长度为0的向量叫零向量,记作0;零向量的方向是任意的.3、单位向量:长度等于1个单位长度的向量叫单位向量;与向量a 平行的单位向量:||a e ±=.4、平行向量(共线向量):方向相同或相反的非零向量叫平行向量也叫共线向量,记作b a //;规定0与任何向量平行.5、相等向量:长度相同且方向相同的向量叫相等向量,零向量与零向量相等.注意:任意两个相等的非零向量,都可以用同一条有向线段来表示,并且与有向线段的起点无关。