两种实际电源模型的等效互换
- 格式:doc
- 大小:28.50 KB
- 文档页数:1
电压源与电流源的等效变换实验报告总结电压源与电流源的等效变换实验报告总结电压源与电流源的等效变换实验报告总结篇一:实验一电压源与电流源的等效变换实验一电压源与电流源的等效变换学号: 132021520 姓名:XXX 班级:13通信X班指导老师:X老师实验组号:5 实验地点:1实203 实验日期:201X年5月18日一、实验目的和要求:1(掌握电源外特性的测试方法;2(验证电压源与电流源等效变换的条件。
二、实验仪器:一、可调直流稳压电源 1台二、直流恒流源 1台三、直流数字电压表 1只四、直流数字毫安表 1只五、电阻器 1个三、实验原理:1、一个直流稳压电源在一定的电流范围内,具有很小的内阻,故在实用中,常将它视为一个理想的电压源,即其输出电压不随负载电流而变,其外特性,即其伏安特性U=f(I)是一条平行于I轴的直线。
一个恒流源在使用中,在一定的电压范围内,可视为一个理想的电流源,即其输出电流不随负载的改变而改变。
2(一个实际的电压源(或电流源),其端电压(或输出电压)不可能不随负载而变,因它具有一定的内组值。
故在实验中,用一个小阻值的电阻(或大电阻)与稳压源(或恒流源)相串联(或并联)来模拟一个电压源(或电流源)的情况。
3(一个实际的电源,就其外部特性而言,既可以看成是一个电压源,又可以看成是一个电流源。
若视为电压源,则可用一个理想的电压源ES与一个电导g相并联的组合来表示,若它们向同样大小的负载供出同样大小的电流和端电压,则称这两个电源是等效的,即具有相同的外特性。
一个电压源与一个电流源等效变换条件为第 1 页共 4 页Is? 或 Es1 g= RR Es? 如下图6-1所示:Is1 R= g0g0四、实验内容:1(测定电压源的外特性(1)按图6-2(a)接线,ES为+6V直流稳压电源,调节R,令其阻值由大至小变化,记录两表的读数图6-2(a) 图6-2(b)(2)按图6-2(b)接线,虚线框可模拟为一个实际的电压源,调节R阻值,记录两表读数。
电压源与电流源的等效变换实验报告总结电压源与电流源的等效变换实验报告总结电压源与电流源的等效变换实验报告总结篇一:实验一电压源与电流源的等效变换实验一电压源与电流源的等效变换学号: 132021520 姓名:XXX 班级:13通信X班指导老师:X老师实验组号:5 实验地点:1实203 实验日期:201X年5月18日一、实验目的和要求:1(掌握电源外特性的测试方法;2(验证电压源与电流源等效变换的条件。
二、实验仪器:一、可调直流稳压电源 1台二、直流恒流源 1台三、直流数字电压表 1只四、直流数字毫安表 1只五、电阻器 1个三、实验原理:1、一个直流稳压电源在一定的电流范围内,具有很小的内阻,故在实用中,常将它视为一个理想的电压源,即其输出电压不随负载电流而变,其外特性,即其伏安特性U=f(I)是一条平行于I轴的直线。
一个恒流源在使用中,在一定的电压范围内,可视为一个理想的电流源,即其输出电流不随负载的改变而改变。
2(一个实际的电压源(或电流源),其端电压(或输出电压)不可能不随负载而变,因它具有一定的内组值。
故在实验中,用一个小阻值的电阻(或大电阻)与稳压源(或恒流源)相串联(或并联)来模拟一个电压源(或电流源)的情况。
3(一个实际的电源,就其外部特性而言,既可以看成是一个电压源,又可以看成是一个电流源。
若视为电压源,则可用一个理想的电压源ES与一个电导g相并联的组合来表示,若它们向同样大小的负载供出同样大小的电流和端电压,则称这两个电源是等效的,即具有相同的外特性。
一个电压源与一个电流源等效变换条件为第 1 页共 4 页Is? 或 Es1 g= RR Es? 如下图6-1所示:Is1 R= g0g0四、实验内容:1(测定电压源的外特性(1)按图6-2(a)接线,ES为+6V直流稳压电源,调节R,令其阻值由大至小变化,记录两表的读数图6-2(a) 图6-2(b)(2)按图6-2(b)接线,虚线框可模拟为一个实际的电压源,调节R阻值,记录两表读数。
实际电源模型间的等效互换
————————————————————————————————作者:————————————————————————————————日期:
实际电源模型间的等效互换
1、实际电源模型间等效互换的参数关系
一个电源既可以用实际电压源也可由实际电流源来表示吗?
答案是肯定的。
条件是这两种模型对外电路具有相同的伏安特性曲线。
对于实际电压源模型,伏安关系表达式有:
(式1)
对于实际电流源模型,伏安关系表达式有:
(式2)
式1和式2比较得出:
即如果两种模型参数满足上述关系,则这两种模型对外电路来说是等效的。
2、注意事项
① “等效”是指对外电路而言,是对外等效。
等效电路内部是不等效的,即内部各元件的工作情况(电压、电流、功率)是不同的。
②等效前后电压源电压方向与电流源电流方向要保持一致。
这个“一致”是指对外电路一致,电流源的电流一定是从正极流出。
电压源电压与电流源电流取非关联参考方向。
③理想电压源与理想电流源之间不能进行等效互换。
电压源的内阻RS=0,等效互换电流源IS=US/0=∞,不存在。
电压源和电流源的伏安特性曲线不重合。
如下图所示。
电压源与电流源的等效变换实验报告总结电压源与电流源的等效变换实验报告总结电压源与电流源的等效变换实验报告总结篇一:实验一电压源与电流源的等效变换实验一电压源与电流源的等效变换学号: 132021520 姓名:XXX 班级:13通信X班指导老师:X老师实验组号:5 实验地点:1实203 实验日期:201X年5月18日一、实验目的和要求:1(掌握电源外特性的测试方法;2(验证电压源与电流源等效变换的条件。
二、实验仪器:一、可调直流稳压电源 1台二、直流恒流源 1台三、直流数字电压表 1只四、直流数字毫安表 1只五、电阻器 1个三、实验原理:1、一个直流稳压电源在一定的电流范围内,具有很小的内阻,故在实用中,常将它视为一个理想的电压源,即其输出电压不随负载电流而变,其外特性,即其伏安特性U=f(I)是一条平行于I轴的直线。
一个恒流源在使用中,在一定的电压范围内,可视为一个理想的电流源,即其输出电流不随负载的改变而改变。
2(一个实际的电压源(或电流源),其端电压(或输出电压)不可能不随负载而变,因它具有一定的内组值。
故在实验中,用一个小阻值的电阻(或大电阻)与稳压源(或恒流源)相串联(或并联)来模拟一个电压源(或电流源)的情况。
3(一个实际的电源,就其外部特性而言,既可以看成是一个电压源,又可以看成是一个电流源。
若视为电压源,则可用一个理想的电压源ES与一个电导g相并联的组合来表示,若它们向同样大小的负载供出同样大小的电流和端电压,则称这两个电源是等效的,即具有相同的外特性。
一个电压源与一个电流源等效变换条件为第 1 页共 4 页Is? 或 Es1 g= RR Es? 如下图6-1所示:Is1 R= g0g0四、实验内容:1(测定电压源的外特性(1)按图6-2(a)接线,ES为+6V直流稳压电源,调节R,令其阻值由大至小变化,记录两表的读数图6-2(a) 图6-2(b)(2)按图6-2(b)接线,虚线框可模拟为一个实际的电压源,调节R阻值,记录两表读数。
电压源与电流源的等效变换实验报告总结电压源与电流源的等效变换实验报告总结电压源与电流源的等效变换实验报告总结篇一:实验一电压源与电流源的等效变换实验一电压源与电流源的等效变换学号: 132021520 姓名:XXX 班级:13通信X班指导老师:X老师实验组号:5 实验地点:1实203 实验日期:201X年5月18日一、实验目的和要求:1(掌握电源外特性的测试方法;2(验证电压源与电流源等效变换的条件。
二、实验仪器:一、可调直流稳压电源 1台二、直流恒流源 1台三、直流数字电压表 1只四、直流数字毫安表 1只五、电阻器 1个三、实验原理:1、一个直流稳压电源在一定的电流范围内,具有很小的内阻,故在实用中,常将它视为一个理想的电压源,即其输出电压不随负载电流而变,其外特性,即其伏安特性U=f(I)是一条平行于I轴的直线。
一个恒流源在使用中,在一定的电压范围内,可视为一个理想的电流源,即其输出电流不随负载的改变而改变。
2(一个实际的电压源(或电流源),其端电压(或输出电压)不可能不随负载而变,因它具有一定的内组值。
故在实验中,用一个小阻值的电阻(或大电阻)与稳压源(或恒流源)相串联(或并联)来模拟一个电压源(或电流源)的情况。
3(一个实际的电源,就其外部特性而言,既可以看成是一个电压源,又可以看成是一个电流源。
若视为电压源,则可用一个理想的电压源ES与一个电导g相并联的组合来表示,若它们向同样大小的负载供出同样大小的电流和端电压,则称这两个电源是等效的,即具有相同的外特性。
一个电压源与一个电流源等效变换条件为第 1 页共 4 页Is? 或 Es1 g= RR Es? 如下图6-1所示:Is1 R= g0g0四、实验内容:1(测定电压源的外特性(1)按图6-2(a)接线,ES为+6V直流稳压电源,调节R,令其阻值由大至小变化,记录两表的读数图6-2(a) 图6-2(b)(2)按图6-2(b)接线,虚线框可模拟为一个实际的电压源,调节R阻值,记录两表读数。
实验二 电源等效电路综合实验一、实验目的1、掌握建立电源模型、电源外特性的测试方法。
2、研究电源模型等效变换的条件,加深对电压源和电流源特性的理解。
3、验证戴维南定理、诺顿定理,掌握测量有源二端网络等效参数的一般方法。
4、理解阻抗匹配,掌握最大功率传输的条件。
5、掌握根据电源外特性设计实际电源模型的方法。
二、实验原理1、实际电压源和实际电流源的等效互换理想电压源具有端电压保持恒定不变,而输出电流的大小由负载决定的特性。
实验中使用的恒压源在规定的电流范围内,具有很小的内阻,可以将它视为一个电压源。
理想电流源具有输出电流保持恒定不变,而端电压的大小由负载决定的特性。
实验中使用的恒流源在规定的电压范围内,具有极大的内阻,可以将它视为一个电流源。
实际电压源可以用一个内阻R S 和电压源U S 串联表示,其端电压U 随输出电流I 增大而降低。
在实验中,可以用一个小阻值的电阻与恒压源相串联来模拟一个实际电压源。
实际电流源是用一个内阻R S 和电流源I S 并联表示,其输出电流I 随端电压U 增大而减小。
在实验中,可以用一个大阻值的电阻与恒流源相并联来模拟一个实际电流源。
一个实际的电源,就其外部特性而言,既可以看成是一个电压源,又可以看成是一个电流源。
若视为电压源,则可用一个电压源U s 与一个电阻R S 相串联表示;若视为电流源,则可用一个电流源I S 与一个电阻R S 相并联来表示。
若它们向同样大小的负载供出同样大小的电流和端电压,则称这两个电源是等效的,即具有相同的外特性。
实际电压源与实际电流源等效变换的条件为: (1)取实际电压源与实际电流源的内阻均为R S ;(2)已知实际电压源的参数为U s 和R S ,则实际电流源的参数为SSS R U I =和R S , 若已知实际电流源的参数为I s 和R S ,则实际电压源的参数为S S S R I U =和R S 。
2、戴维南定理和诺顿定理戴维南定理指出:任何一个有源二端网络,总可以用一个电压源U S 和一个电阻R S 串联组成的实际电压源来代替,其中:电压源U S 等于这个有源二端网络的开路电压U OC , 内阻R S 等于该网络中所有独立电源均置零(电压源短接,电流源开路)后的等效电阻R O 。
【关键字】理想《电路分析基础》知识归纳一、基本概念1.电路:若干电气设备或器件按照一定方式组合起来,构成电流的通路。
2.电路功能:一是实现电能的传输、分配和转换;二是实现信号的传递与处理。
3.集总参数电路近似实际电路需满足的条件:实际电路的几何尺寸l(长度)远小于电路正常工作频率所对应的电磁波的波长λ,即。
4.电流的方向:正电荷运动的方向。
5.关联参照方向:电流的参照方向与电压降的参照方向一致。
6.支路:由一个电路元件或多个电路元件串联构成电路的一个分支。
7.节点:电路中三条或三条以上支路连接点。
8.回路:电路中由若干支路构成的任一闭合路径。
9.网孔:对于平面电路而言,其内部不包含支路的回路。
10.拓扑约束:电路中所有连接在同一节点的各支路电流之间要受到基尔霍夫电流定律的约束,任一回路的各支路(元件)电压之间要受到基尔霍夫电压定律约束,这种约束关系与电路元件的特性无关,只取决于元件的互联方式。
11.理想电压源:是一个二端元件,其端电压为一恒定值(直流电压源)或是一定的时间函数,与流过它的电流(端电流)无关。
12.理想电流源是一个二端元件,其输出电流为一恒定值(直流电流源)或是一定的时间函数,与端电压无关。
13.激励:以电压或电流形式向电路输入的能量或信号称为激励信号,简称为激励。
14.响应:经过电路传输处理后的输出信号叫做响应信号,简称响应。
15.受控源:在电子电路中,电源的电压或电流不由其自身决定,而是受到同一电路中其它支路的电压或电流的控制。
16.受控源的四种类型:电压控制电压源、电压控制电流源、电流控制电压源、电流控制电流源。
17.电位:单位正电荷处在一定位置上所具有的电场能量之值。
在电力工程中,通常选大地为参照点,认为大地的电位为零。
电路中某点的电位就是该点对参照点的电压。
18.单口电路:对外只有两个端钮的电路,进出这两个端钮的电流为同一电流。
19.单口电路等效:如果一个单口电路N1和另一个单口电路N2端口的伏安关系完全相同,则这两个单口电路对端口以外的电路而言是等效的,可进行互换。
电源的两种模型及其等效变换
一个实际的直流电源(如直流发电机、蓄电池等)可以抽象成两种模型:
一种由独立电压源与线性时不变电阻元件串联而成;另一种由独立电流源与线性时不变电导并联而成。
在前一种电源模型中,电阻元件的电阻R称为原电源的内电阻,电压源的电压Us等于原电源的开路电压;在后一种电源模型中,线性时不变电阻元件的电导G称为原电源的内电导,电流源的电流Is等于原电源的短路电流。
由于它们代表同一个实际电源而有相同的外特性,所以它们能够等效互换。
两种模型等效互换的条件为Us和Is在电路计算中,为了计算方便,有时需要把一种电源模型变换成另一种电源模型。
把电压源模型换成电流源模型时,后者的电流源电流Is 必须等于Us,内电导必须等于电阻的倒数;反之亦然。
电压源与电流源的等效变换实验报告总结电压源与电流源的等效变换实验报告总结电压源与电流源的等效变换实验报告总结篇一:实验一电压源与电流源的等效变换实验一电压源与电流源的等效变换学号: 132021520 姓名:XXX 班级:13通信X班指导老师:X老师实验组号:5 实验地点:1实203 实验日期:201X年5月18日一、实验目的和要求:1(掌握电源外特性的测试方法;2(验证电压源与电流源等效变换的条件。
二、实验仪器:一、可调直流稳压电源 1台二、直流恒流源 1台三、直流数字电压表 1只四、直流数字毫安表 1只五、电阻器 1个三、实验原理:1、一个直流稳压电源在一定的电流范围内,具有很小的内阻,故在实用中,常将它视为一个理想的电压源,即其输出电压不随负载电流而变,其外特性,即其伏安特性U=f(I)是一条平行于I轴的直线。
一个恒流源在使用中,在一定的电压范围内,可视为一个理想的电流源,即其输出电流不随负载的改变而改变。
2(一个实际的电压源(或电流源),其端电压(或输出电压)不可能不随负载而变,因它具有一定的内组值。
故在实验中,用一个小阻值的电阻(或大电阻)与稳压源(或恒流源)相串联(或并联)来模拟一个电压源(或电流源)的情况。
3(一个实际的电源,就其外部特性而言,既可以看成是一个电压源,又可以看成是一个电流源。
若视为电压源,则可用一个理想的电压源ES与一个电导g相并联的组合来表示,若它们向同样大小的负载供出同样大小的电流和端电压,则称这两个电源是等效的,即具有相同的外特性。
一个电压源与一个电流源等效变换条件为第 1 页共 4 页Is? 或 Es1 g= RR Es? 如下图6-1所示:Is1 R= g0g0四、实验内容:1(测定电压源的外特性(1)按图6-2(a)接线,ES为+6V直流稳压电源,调节R,令其阻值由大至小变化,记录两表的读数图6-2(a) 图6-2(b)(2)按图6-2(b)接线,虚线框可模拟为一个实际的电压源,调节R阻值,记录两表读数。
统一电源形式下的两种电源模型等效变换粟世玮;马强;熊炜【摘要】利用电压源与电流源两种模型之间的等效变换求解某一支路电压、电流,这在电路化简中是一种非常方便的方法.文章提出统一电源形式下的等效变换的方法,并介绍了在化简过程中对特殊元件的处理技巧,使得化简过程更简单、快捷.【期刊名称】《通信电源技术》【年(卷),期】2013(030)001【总页数】3页(P37-38,41)【关键词】电压源;电流源;等效变换;化简;统一电源【作者】粟世玮;马强;熊炜【作者单位】三峡大学电气与新能源学院,湖北宜昌443002;宜昌供电公司电能计量中心,湖北宜昌443002;三峡大学电气与新能源学院,湖北宜昌443002【正文语种】中文【中图分类】TN86在对复杂电路进行计算分析时,往往遇到只需求某一支路电流或电压的问题。
当然,解决方法多种多样,例如:支路法、网孔法、节点法等等。
这些方法的缺点是电路越复杂,所列方程越多,求解越困难。
若能利用电压源与电流源之间的等效变换逐步化简电路,则能免除解联立方程组的问题,使最终的计算变得非常简便。
但是,等效变换只能在实际电压源与实际电流源之间进行,而理想电压源与理想恒流源之间则不能进行变换,使得这种方法的运用受到了很大的限制。
为此,若对理想电压源及理想电流源的性质进行一些补充,使问题得以方便、快捷的解决,那么等效变换的运用范围就可以大大扩展。
1 两种电源模型及其等效变换一个实际电源可以用两种不同的电路模型来表示,分别是电压源模型和电流源模型,即可以用理想电压源与电阻的串联、理想电流源与电阻的并联来表示。
图1所示为电压源E和内阻R0的串联组合,在端子ab处的电压U与电流I的关系为:图2所示为电流源Is和内阻R0的并联组合,在端子ab处的电压U与电流I的关系为:即:所谓的等效变换,是对外等效,是对外部电路而言,两种电源模型具有完全相同的伏安特性。
由式(1)和式(3)可知,两个方程完全相同,也就是电压源模型与电流源模型在端子ab处的U和I的关系完全相同。