数理统计之回归分析基础
- 格式:pdf
- 大小:552.76 KB
- 文档页数:34
北京市农业经济总产值的逐步回归分析姓名:学号:摘要:农业生产和农村经济是国民经济的基础,影响农村经济总产值的因素有多种,主要包括农林牧渔业。
本文以北京市农业生产和农村经济总产值为对象,首先分析了各种因素的线性相关性,建立回归模型,再利用逐步回归法进行回归分析,得到最符合实际情况的回归模型。
以SPSS 17.0为分析工具,给出了实验结果,并用预测值验证了结论的正确性。
关键词:农业生产和农村经济,线性回归模型,逐步回归分析,SPSS1.引言农林牧渔业统计范围包括辖区内全部农林牧渔业生产单位、非农行业单位附属的农林牧渔业生产活动单位以及农户的农业生产活动。
军委系统的农林牧渔业生产(除军马外)也应包括在内,但不包括农业科学试验机构进行的农业生产。
在近几年中国经济快速增长的带动下,各地区农林牧渔业也得到了突飞猛进的发展。
以北京地区为例,2005年的农业总产值为1993年的6倍。
因此用统计方法研究分析农业总产值对指导国民经济生产,合理有效的进行产业布局,提高生产力等有着重要意义。
表1 北京市农业经济产值及各产品产量统计数据本文以北京市农生产为对象,分析了农业经济总产值与粮食产量、棉花产量、油料产量、蔬菜产量、干鲜果品产量、猪牛羊肉产量、禽蛋产量、水产品产量的关系,并建立农业经济总产值的回归模型。
表1中列出了1999年至2008年间的统计数据(数据来源于北京统计信息网)。
2.线性回归模型的建立2.1 线性回归模型的假设为了研究农业经济总产值与各种农生产量的关系,必须要建立二者之间的数学模型。
数学模型可以有多种形式,比如线性模型,二次模型,指数模型,对数模型等等。
而实际生活中,影响农业经济总产值的因素很多,并且这些因素的影响不能简单的用某一种模型来描述,所以要建立农业经济总产值的数学模型往往是很难的。
但是为了便于研究,我们可以先假定一些前提条件,然后在这些条件下得到简化后的近似模型。
以下我们假定两个前提条件:1) 农产品的价格是不变的。
回归分析有哪些基本的步骤回归分析是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。
回归分析也有一定的步骤。
以下是由店铺整理回归分析的内容,希望大家喜欢!回归分析的简介①从一组数据出发,确定某些变量之间的定量关系式,即建立数学模型并估计其中的未知参数。
估计参数的常用方法是最小二乘法。
②对这些关系式的可信程度进行检验。
③在许多自变量共同影响着一个因变量的关系中,判断哪个(或哪些)自变量的影响是显著的,哪些自变量的影响是不显著的,将影响显著的自变量入模型中,而剔除影响不显著的变量,通常用逐步回归、向前回归和向后回归等方法。
④利用所求的关系式对某一生产过程进行预测或控制。
回归分析的应用是非常广泛的,统计软件包使各种回归方法计算十分方便。
在回归分析中,把变量分为两类。
一类是因变量,它们通常是实际问题中所关心的一类指标,通常用Y表示;而影响因变量取值的的另一类变量称为自变量,用X来表示。
回归分析研究的主要问题是:(1)确定Y与X间的定量关系表达式,这种表达式称为回归方程;(2)对求得的回归方程的可信度进行检验;(3)判断自变量X对因变量Y有无影响;(4)利用所求得的回归方程进行预测和控制。
回归分析的应用相关分析研究的是现象之间是否相关、相关的方向和密切程度,一般不区别自变量或因变量。
而回归分析则要分析现象之间相关的具体形式,确定其因果关系,并用数学模型来表现其具体关系。
比如说,从相关分析中我们可以得知“质量”和“用户满意度”变量密切相关,但是这两个变量之间到底是哪个变量受哪个变量的影响,影响程度如何,则需要通过回归分析方法来确定。
一般来说,回归分析是通过规定因变量和自变量来确定变量之间的因果关系,建立回归模型,并根据实测数据来求解模型的各个参数,然后评价回归模型是否能够很好的拟合实测数据;如果能够很好的拟合,则可以根据自变量作进一步预测。
例如,如果要研究质量和用户满意度之间的因果关系,从实践意义上讲,产品质量会影响用户的满意情况,因此设用户满意度为因变量,记为Y;质量为自变量,记为X。
第七章回归分析前几章所讨论的内容,其目的在于寻求被测量的最佳值及其精度。
在生产和科学实验中,还有另一类问题,即测量与数据处理的目的并不在于获得被测量的估计值,而是为了寻求两个变量或多个变量之间的内在关系,这就是本章所要解决的主要问题。
表达变量之间关系的方法有散点图、表格、曲线、数学表达式等,其中数学表达式能较客观地反映事物的内在规律性,形式紧凑,且便于从理论上作进一步分析研究,对认识自然界量与量之间关系有着重要意义。
而数学表达式的获得是通过回归分析方法完成的。
第一节回归分析的基本概念一、函数与相关在生产和科学实验中,人们常遇到各种变量。
从贬值辩证唯物主义观点来看,这些变量之间是相互联系、互相依存的,它们之间存在着一定的关系。
人们通过实践,发现变量之间的关系可分为两种类型:1.函数关系(即确定性关系)数学分析和物理学中的大多数公式属于这种类型。
如以速度v作匀速运动的物体,走过的距离s与时间t之间,有如下确定的函数关系:s=vt若上式中的变量有两个已知,则另一个就可由函数关系精确地求出。
2.相关关系在实际问题中,绝大多数情况下变量之间的关系不那么简单。
例如,在车床上加工零件,零件的加工误差与零件的直径之间有一定的关系,知道了零件直径可大致估计其加工误差,但又不能精确地预知加工误差。
这是由于零件在加工过程中影响加工误差的因素很多,如毛坯的裕量、材料性能、背吃刀量、进给量、切削速度、零件长度等等,相互构成一个很复杂的关系,加工误差并不由零件直径这一因素所确定。
像这种关系,在实践中是大量存在的,如材料的抗拉强度与其硬度之间;螺纹零件中螺纹的作用中径与螺纹中径之间;齿轮各种综合误差与有关单项误差之间;某些光学仪器、电子仪器等开机后仪器的读数变化与时间之间;材料的性能与其化学成分之间等等。
这些变量之间既存在着密切的关系,又不能由一个(或几个)变量(自变量)的数值精确地求出另一个变量(因变量)的数值,而是要通过试验和调查研究,才能确定它们之间的关系,我们称这类变量之间的关系为相关关系。
统计学中的回归分析方法统计学是一门应用科学,可以帮助我们理解和解释数据。
在统计学中,回归分析是一种常用的方法,用于研究变量之间的关系以及预测未来的趋势。
回归分析是一种基于概率论和数理统计的方法,用于描述和模拟数据的线性关系。
通过回归分析,我们可以确定一个或多个自变量与因变量之间的数学关系。
这使得我们能够根据已有的数据预测未来的趋势和结果。
回归分析的核心概念是回归方程。
回归方程是用于描述自变量与因变量之间关系的数学公式。
在简单线性回归中,回归方程可以用y = a+ bx来表示,其中y是因变量,x是自变量,a和b是回归方程的参数。
通过回归方程,我们可以计算自变量对因变量的影响程度。
回归的目标是找到最适合数据的回归方程,并通过该方程对未知数据做出预测。
回归分析有不同的类型。
简单线性回归是最基本的形式,用于研究两个变量之间的关系。
多元线性回归则用于研究多个自变量对因变量的影响。
此外,还有逻辑回归用于处理二元分类问题,和多项式回归适用于非线性关系。
回归分析还可以帮助我们评估各个变量对因变量的相对重要性。
通过计算回归方程中各个参数的显著性,我们可以确定哪些自变量对因变量的影响更为显著。
在回归分析中,误差的处理也是非常重要的。
误差代表了回归模型无法解释的数据波动。
最小二乘法是一种常用的方法,用于最小化回归模型的总体误差。
除了简单的回归分析,还有一些衍生的方法可以扩展回归模型的适用范围。
岭回归和Lasso回归是用于应对多重共线性问题的方法。
弹性网络回归则是将岭回归和Lasso回归进行结合,取两种方法的优点。
回归分析在许多领域都有广泛的应用。
在经济学中,回归分析常用于研究经济指标之间的关系。
在市场营销中,回归模型可以用于预测销量和分析市场趋势。
在医学研究中,回归分析可以帮助研究人员研究疾病和治疗方法之间的关系。
总之,统计学中的回归分析是一种强大的工具,用于研究变量之间的关系和预测未来的趋势。
通过回归分析,我们可以理解数据并做出有意义的预测。
数理统计分析知识及回归分析方法把研究对象的全体称为总体,构成总体的每个单位称为 个体,通常用N 表示总体所包含的个体数。
总体的一部分称 为样本(或成子样),通常用n 表示样本所含的个体数,称 为样本容量。
从总体中抽区样本称为抽样。
若总体中每个个体被抽取的可能性相同,这样的抽样称为随机抽样,所获得的样本称 为随机样本。
在许多情况下不可能直接试验或研究总体,例如灯泡的 寿命、混凝土强度等,总是采用抽样的方法,通过试验或研 究样品的特性,去估计该批产品的特性或质量状况。
数理统 计就是一种以概率论为理论基础、 通过研究随机样本(样品) 对总体的特性或质量状况作出估计和评价的方法。
对于工程试验中常见的正态分布,主要计算样本的三个 统计量,即平均值、标准差(或极差)和变异系数。
一、样本平均值:以算术平均值 X 表示,可按下式计xi式中:xi ——各个试验数据试验数据个数nxi各个试验数据之和、样本标准差:以标准差s表示,可按下式计算:xi上式又称贝塞尔公式。
标准差表示一组试验数据对于其平均值的离散程度,也就是数据的波动情况,具有与平均值相同的量纲。
在相同平均值条件下,标准差大表示数据离散程度大,即波动大;标准差小表示数据离散程度小,波动小三、样本极差:极差也可以表示数据的离散程度。
极差是数据中最大值与最小值之差:极差也可以表示数据的离散程度。
极差是数据中最大值与最小值之差:当一批数据不多时(n W 10),可用样本极差估计总体标准差:A式中::标准差的估计值;R :极差;dn:与n有关的系数,一般,dn可近似地取为:X max x mins1ni 1,2< n W 10四、样本变异系数:变异系数表示数据的相对波动大小,按下式表示:sC v 100%x数据的性Cv可用于不同平均制条件下数据饿波动情况,更能反映质。
回归分析回归分析是一重处理变量与变量之间关系的数学方法。
变量与变量之间存在对应关系的,称为函数关系。