大气数据
- 格式:ppt
- 大小:8.12 MB
- 文档页数:121
标准大气数据-回复标准大气数据是一组用于描述地球大气的物理性质的指标,主要包括气温、气压、湿度、风速等。
这些数据对于气象学、航空、环境科学等领域具有重要意义。
本文将从基本概念、测量方法、应用领域等多个方面,逐步介绍标准大气数据的相关知识。
首先,我们来了解一下标准大气。
所谓标准大气是指在某一给定的地点,特定的天气条件下,大气的平均状态。
通常,标准大气是在海平面上的某一高度上测定的。
标准大气可用于各种气象观测、气象模拟和飞行器的设计等。
在标准大气中,气温是最基本的指标之一。
气温指的是空气中的分子运动引起的热量。
标准大气中的气温随着海拔的升高而递减,大致呈指数下降的趋势。
一般来说,每上升1000米,气温降低6.5摄氏度。
这种气温的递减规律被称为标准大气温度递减率。
除了气温,气压也是标准大气数据中的重要指标之一。
气压是空气分子对单位面积的压力。
通过测量气压,可以得到地面与特定高度之间的垂直压力梯度。
标准大气的气压可以用巴(bar)或帕斯卡(Pascal)来表示。
一般海平面上的标准大气气压为1013.25帕斯卡。
湿度是指空气中水蒸气的含量。
湿度通常以相对湿度的百分比来表示。
相对湿度是指实际水蒸气含量与空气中饱和水蒸气含量的比值。
标准大气中的湿度随着海拔的升高而减小。
这是因为空气的温度下降会导致饱和水蒸气含量的减少。
风速是指空气运动的快慢程度。
在标准大气中,风速会随着海拔的升高而增大。
这是因为空气在高海拔区域的运动受到山脉、地形的影响较大,呈现出明显的飘动。
测量标准大气数据的方法主要有地面观测、气象卫星观测和大气探测器观测等。
地面观测一般通过气象站点布设气象仪器进行测量。
气象卫星观测利用卫星搭载的传感器,通过接收地面反射和热辐射等信息,获取大气数据。
大气探测器观测是通过飞行器搭载的探测仪器,在大气中进行实时观测。
标准大气数据在许多领域具有广泛的应用。
首先,在气象学中,标准大气数据是预测天气和制定气象模型的基础。
大气参数数据集1.引言【1.1 概述】大气参数数据集是指记录和收集大气条件、气候变化和天气预测等相关信息的数据集合。
它包含了一系列的气象观测数据,如温度、湿度、气压、风速、降水量等。
这些数据对于研究和预测气候变化、制定应对措施以及改善天气预报准确性具有重要意义。
大气参数数据集的获取和处理是通过气象观测站、卫星观测、雷达和模型模拟等多种手段进行的。
气象观测站是重要的数据采集点,它们分布在各个地理位置并定期记录气象数据。
卫星观测则利用人造卫星对地球不同区域进行遥感观测,获取全球范围的大气参数数据。
雷达技术可以通过测量分布在大气中的微小物体(如水滴和冰晶)反射的微波信号,获取降水量等信息。
模型模拟则是通过建立数学和物理模型对气象系统进行模拟,从而预测和分析大气参数。
大气参数数据集的处理方法包括数据清洗、校正和分析等步骤。
数据清洗主要是对收集到的数据进行筛选,剔除异常值和错误数据,确保数据的准确性和可靠性。
数据校正则是对数据进行修正和标定,以消除仪器误差和观测误差对数据的影响。
数据分析是对处理后的数据进行统计和建模,通过分析数据的时空分布特征和变化趋势,揭示出大气系统的规律和特点。
大气参数数据集在气象学、环境科学、农业、航空航天等领域具有广泛的应用价值。
它可以帮助科学家和决策者更好地理解和预测气候变化,为制定应对措施提供依据。
在农业领域,大气参数数据集可以用于优化农作物的种植和管理,提高农业生产效益。
在航空航天领域,大气参数数据集对于航班安全、航线规划和飞行效率的提升起着重要作用。
综上所述,大气参数数据集的获取和处理是多种技术手段的综合应用,它不仅为科学研究提供了重要的数据支持,也为各个领域的实际应用带来了诸多便利。
随着技术的不断进步和数据的日益完善,大气参数数据集在未来的发展中将会扮演更加重要的角色,并为人类社会的可持续发展做出更大的贡献。
1.2 文章结构文章结构部分的内容可以包括以下内容:文章结构部分旨在简要介绍整篇文章的组织结构,清晰地向读者展示文章主要内容的安排和逻辑顺序。
大气数据系统的发展及展望大气数据指航空器与机体气流的相对参数,主要包括总压、静压、静温、侧滑角、高度、指示空速、马赫数等参数,这些重要的大气参数是飞机动力系统、飞控系统、导航系统、指示系统等不可缺少的信息。
文章针对大气数据系统发展过程进行描述,并且对其所面临的技术问题等方面进行深入分析,最后对大气数据系统的发展趋势进行展望。
标签:大气;数据系统;发展;展望1 传统大气数据系统介绍传统大气数据系统由全静压传感器、全静压管路和大气数据计算机组成。
全静压传感器安装在机体外部,主要用于准确收集气流的全压和静压,全压孔用来收集气流的全压,全压口位于全静压传感器中正对气流方向,空气流至全压孔时,完全受阻,流速为零,因而得到气流的全压。
静压孔用来收集气流的静压,静压孔位于机身周围没有紊流的地方,静压经静压管路进入大气数据计算机。
全静压传感器是流线型的管子,表面十分光滑,其目的是减少对气流的扰动。
大气数据计算机通过对全静压传感器和全静压管路收集到的全压和静压进行解算,得到飞机重要的参数如高度,空速,升降速度,马赫数等等。
传统的大气数据系统的缺陷也十分明显,首先全静压管路存在压力延迟,若飞机当前压力变化较快,会出现飞行指示空速或高度滞后于实际飞机空速或高度,对于民航客机,这种情况主要影响地面起飞滑跑,由于飞机起飞时,总压变化较快,管路的迟滞对起飞速度和滑跑距离有着直接的影响,所以FAA发布109号修正案,针对延迟情况进行了具体的规定。
同时,为了保证测量的准确性,对全静压管路的安装和维护有着很高的要求,同时,管路越长,出现管路堵塞或泄漏的可能性越大,而管路堵塞或泄漏会造成飞机空速和高度的误指示,给飞机带来灾难性的影响,所以FAA咨询通报AC25-11A将飞机所有空速高度误指示定为灾难类的风险,法航447事故也是由于全静压传感器的堵塞造成飞行员得到错误的空速高度指示,最终导致机毁人亡的惨剧。
但是传统的大气数据系统存在的问题也非常明显,首先,过长的压力管路会导致管路压力延迟过大,影响飞机测试参数的实时性;其次,为了保证大气数据测量的准确性,对大气数据管路的安装要求非常高,不利于维护工作;再次过多的组件导致此类大气数据系统结构复杂,不利于减重并且降低了可靠性。
大气数据参数(1)总温:气流相对于飞机运动时,在正对气流运动方向的飞机表面,气流完全受阻,速度降至零,这时气流的动能全部转化为内能,空气气温升高,这个温度就称为总温。
(2)静压:(飞机停在停机坪,机翼两表面空气的压差几乎为0,这是空气的静压,飞机飞行过程中,机翼两表面的压力差能托起飞机,这是动压,这是流体和物体间有相对运动造成的压力。
)(3)全压:最基本的皮托管具有一个直接处于气流中的管道。
可在此管充有流体后测量其压差;由于管道中并无出口,流体便在管中停滞。
此时测量的压强为流体的滞压,也称为总压。
(4)迎角:迎角是气流方向和翼弦的夹角. 当传感器相对于飞机的纵轴平行安装时,风标旋转的角度就是飞机的迎角值。
(5)空速:飞行员在飞行中,需要了解2种空速:"指示空速"和"真空速"。
①指示空速:表示的是飞行器空气动力的大小,它对飞机的操纵性能和飞行安全有着重要的意义②真空速:即真实空速,是表示飞行器飞行时相对于周围空气运动的速度,其缩写形式为TAS,用符号VT表示。
(6)高度:飞机的飞行高度是指飞机在空中距某一个基准面的垂直距离。
根据所选基准面,飞行中使用的飞行高度大致可分为以下四种:①绝对高度:飞机从空中到平均海平面的垂直距离也称为绝对高度。
在海上飞行时,需要知道绝对高度。
②相对高度:飞机从空中到某一既定机场地面的垂直距离称为相对高度。
飞机起飞、降落时,必须知道相对高度。
③真实高度:飞机从空中到正下方接触面(水面,地面,山顶等)的垂直距离称为真实高度。
在飞越高山,空中摄影、航测时,需要准确测量真实高度。
④标准气压高度:飞机从空中到标准气压海平面的垂直距离称为标准气压高度。
标准气压高度是国际上通用的高度,飞机在加入航线时使用的高度,主要防止同一空域、同一航线上的飞机在同一气压面上飞行时两机发生相撞。
(7)马赫数:马赫数是以奥地利物理学家 E.马赫的姓命名的,简称M数,真空速与当地音速的比值。
标准大气数据-回复"标准大气数据"是一组用于描述和计算地球大气层中的气体性质和变化的标准参考值。
这些数据通过科学研究和实测所得,对于气象学、航空航天等领域的计算和设计具有重要意义。
本文将逐步介绍标准大气数据的内容、应用和计算方法。
首先,了解标准大气数据的起源和目的是很重要的。
它们首次得到广泛应用是在20世纪中叶,当时航空、卫星和导弹技术迅猛发展,需要准确的大气物理数据来进行计算和设计。
为了统一数据来源和参考标准,国际民航组织(ICAO)和世界气象组织(WMO)于1956年联合发布了第一版的"国际标准大气",以后逐步进行修订和扩充。
标准大气数据最重要的三个方面是:温度、气压和气密度。
首先是温度,标准大气数据将地球大气按高度分成了八层,每层的温度随高度变化。
最底层是地面层,地面温度取决于地理位置、季节和时间等因素。
随着高度的增加,温度逐渐下降,直至达到最低点(即对流层顶)。
在对流层顶之上,温度随高度增加而增加,这一层被称为平流层。
标准大气数据给出了每个高度层的温度值,用于计算大气物理学参数。
其次是气压,标准大气数据给出了每个高度层的气压值。
气压是指单位面积上受到气体分子碰撞的力量。
由于空气的压缩能力和分子间作用力的影响,气压随着高度的增加而逐渐减小。
标准大气数据中的气压值是以帕斯卡(Pa)为单位给出的,用于计算机模拟、飞行器设计和大气动力学方程的求解。
最后是气密度,它是指单位体积内所含气体分子的数量。
气密度与温度、气压和所含气体的种类有关。
标准大气数据中给出了每个高度层的气密度值,用于计算飞行器在空气中的运动参数、空气动力学和燃烧传热等方面。
标准大气数据的应用十分广泛。
在航空领域,它们用于计算飞行器的性能、燃料消耗和导航等方面。
在气象学中,它们用于构建气象模型、预测天气和研究气候变化等。
此外,标准大气数据还可以应用于地球科学、太空探索、气候调控和环境保护等领域。
1. 标准大气数据参数计算: 1.1 参数列表1.2 计算公式1.2.1 计算气压高度Hpb (m):Hpb=])(1[0RPS PSB T ⨯-ττ( PSB ≥22.631 kp a )( PSB < 22.631 kp a )Hpb=)631.22(110001PSBLN T R ⨯⨯-1.2.2 计算校正空速Vcb (km/h):Vcb=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛+-⨯⨯115058.12257/20PS PSB PTB )89293.0(0≤-PS PSBPTB[]1)058.1225()(7058.1225)(9216.1665.22270--⨯⨯⨯=-Vcb Vcb PS PSB PTB)89293.0(>-PS PSBPTB1.2.3 计算马赫数Mb:Mb=51)(7/2⨯⎥⎦⎤⎢⎣⎡-PSB PTB )89293.1(≤PSB PTB5.227)1)(7()(9216.166-⨯⨯=Mb Mb PSB PTB )89293.1(>PSB PTB1.2.4 计算大气静温Tsb (K):)1()(2.012732N Mb Tt Tsb ∆-⨯⨯++=1.2.5 计算真空速Vtb(km/h):Tsb Mb Vtb ⨯⨯=1658.721.2.6 计算大气密度比Sigb:Sigb=TSBPSBPS T ⨯001.2.7 计算压力比Prb:Prb=0PS PSB1.2.8 计算修正气压高度Hpbc(m):设场压装订的值为PBS ,用代替PSB ,代入公式(1.1),得到一个中间值,设为HPBS; Hpbc=Hpb-HPBS;1.2.9 计算真攻角aoa(º):根据攻角补偿曲线,代入局部攻角LAOA ,插值计算出真攻角;1.2.10 计算爬升率Vyb(m/s): Vyb=)()(s d Hpb d ;1.3 误差计算1.3.1 Ehp=Hp-Hpb; (m)1.3.2 Ehpc=Hpc-Hpbc; (m)1.3.3 Evc=Vc-Vcb; (km/h)1.3.4 Evt=Vt-Vtb; (km/h)1.3.5 EM=M-Mb;1.3.6 Ett=TT-TTI; (℃)1.3.7 Esig=Sig-Sigb;1.3.8 Evy=Vy-Vyb; (m/s)1.3.9 Eaoa=Taoa-aoa; (゜)1.4 计算公式中的常量如下: T 0=288.15K T 1=216.65K τ=0.0065K/m R=29.27m/K PS 0=101.325kPa ΔN=0.0052. 惯性导航系统计算 2.12.2 计算公式R=K ∑∑==n i m j ijiitRER m n 112)(11 (1)式中:R -圆概率径向误差K -系数,可以根据概率的要求得到不同的系数(如:计算常用的圆概率误差CEP 时,K =0.83,计算95%圆概率径向误差时,K =1.73。
标准大气数据是一个常用于描述大气状态的标准参考数据,它包含了一系列的参数和值,以反映标准大气条件下的大气特性。
这些参数和值对于气象学、航空航天、环境科学等领域非常重要,可以用于比较不同地点和时间的大气状态,以及进行相关的计算和分析。
标准大气数据通常包括以下参数和值:
1.温度:标准大气温度通常为15摄氏度(59华氏度),这是在海平面的平均气温。
2.压力:标准大气压力通常为101325帕斯卡(hPa),这是在海平面的平均气压。
3.湿度:标准大气湿度通常为100%相对湿度,表示空气中的水蒸气含量。
4.海拔高度:标准大气条件下的海拔高度通常为0米,表示海平面高度。
5.风速:标准大气风速通常为0米/秒,表示没有风速。
6.风向:标准大气风向通常为无定向,表示没有固定的风向。
这些参数和值并不是固定不变的,因为实际的大气状态会受到许多因素的影响,如地理位置、季节、气候条件等。
然而,标准大气数据仍然是一个有用的参考点,可以帮助科学家和工程师更好地理解大气特性和相关现象。