第四章 冶金熔体
- 格式:ppt
- 大小:11.45 MB
- 文档页数:1
中南大学冶金原理题库第一篇冶金熔体第一章概述1.什么是冶金熔体?它分为几种类型?2.何为熔渣?简述冶炼渣和精炼渣的主要作用。
3.什么是富集渣?它与冶炼渣的根本区别在哪里?4.试说明熔盐在冶金中的主要应用。
5.熔锍的主要成分是什么?6.为什么熔盐电解是铝、镁、钠、锂等金属的惟一的或占主导地位的生产方法?第二章冶金熔体的相平衡1.在三元系的浓度三角形中画出下列熔体的组成点,并说明其变化规律。
X:A 10%,B 70%,C 20%;Y:A 10%,B 20%,C 70%;Z:A 70%,B 20%,C 10%;若将3kg X熔体与2kg Y熔体和5kg Z熔体混合,试依据杠杆规则用作图法和计算法求出混合后熔体的组成点。
2.试找出图2-44所示的三元系相图中的错误,说明原因并更正。
3.图2-45是生成了一个二元不一致熔融化合物的三元系相图(1)写出各界线上的平衡反应;(2)写出P、E两个无变点的平衡反应;(3)分析熔体1、2、3、4、5、6的冷却结晶路线。
4.某三元系相图如图2-46中所示,AmBn为二元不一致熔融化合物。
试分析熔体1、2、3的冷却结晶过程。
5.图2-47为生成一个三元化合物的三元相图,(1)判断三元化合物N的性质;(2)标出边界线的温度降低方向;(3)指出无变点K、L、M的性质,写出它们的平衡反应;(4)分析熔体1、2的冷却过程。
6.试分析图2-23熔体3、4、5、6的冷却过程。
7.试根据CaO-SiO2-A12O3系相图说明组成为(wB / %)CaO 40.53,SiO2 32.94,A12O3 17.23,MgO 2.55的熔渣冷却过程中液相及固相成分的变化。
8.试根据图2-30绘制CaO- A12O3- SiO2三元系1500°C时的等温截面图。
9.给出CaO-SiO2-FeO系相图中1500°C的等温截面图,标出各相区内的相平衡关系。
组成为(wB / %)CaO 45、SiO2 25、FeO 20的熔渣在此温度下析出什么晶相?怎样才能使此熔渣中的固相减少或消除?10.假定炉渣碱度为= 2。
冶金熔体和溶液的计算热力学1.引言1.1 概述热力学是研究能量转化和传递的一门科学,它为我们理解和解释自然界中各种现象提供了重要的理论基础。
在冶金过程中,熔体和溶液是广泛存在的物质形态,其热力学性质对于工艺设计和优化至关重要。
熔体是指在高温条件下,物质变为液体状态的物质,而溶液则是指在液体中溶解的其他物质的混合物。
研究熔体和溶液的热力学性质,可以帮助我们理解冶金过程中物质与能量之间的相互作用,探索材料的性能和特性,从而实现冶金工艺的优化和控制。
1.2 目的本文旨在探讨熔体和溶液的热力学特性,以期为冶金工艺的研究和应用提供参考和指导。
具体目的包括以下几个方面:我们将介绍热力学的基本概念和原理,包括热力学系统、状态函数、热力学方程等。
通过深入理解热力学的基本知识,我们可以建立起对熔体和溶液热力学性质的全面认识。
我们将详细讨论熔体的热力学性质。
熔体的特点包括其高温状态、内部结构和相变行为等,这些特性对于冶金工艺的研究具有重要的影响。
我们将探讨熔体的热容、熵、热传导等重要性质,以及在不同温度和压力下的热力学行为。
通过研究熔体的热力学性质,我们可以了解材料在高温条件下的特性,为冶金工艺的设计和操作提供依据。
我们将研究溶液的热力学性质。
溶液是冶金过程中常见的物质形态,其热力学性质对于材料的分离、提纯以及合金化等工艺具有重要的影响。
我们将讨论溶液的热力学行为,包括溶解度、溶液的基本性质和热力学模型等方面。
通过研究溶液的热力学性质,我们可以探索不同物质之间的相互作用,优化溶液的配比和制备方法,为冶金工艺的发展和进步提供支持。
综上所述,通过对熔体和溶液的热力学性质进行研究和分析,我们可以更好地理解材料的特性和行为,为冶金工艺的改进和创新提供理论依据和实践指导。
本文的研究结果将对各类冶金工程师、科研人员和学者具有重要的参考价值,也将为冶金行业的发展和应用做出贡献。
2.正文2.1 冶金熔体的热力学特性冶金熔体是在高温条件下形成的一种流动状态的金属或金属间化合物的混合物。
第一篇冶金熔体第一章冶金熔体概述1. 什么是冶金熔体?它分为几种类型?2. 何为熔渣?简述熔渣成分的主要来源及冶炼渣和精炼渣的主要作用。
3. 熔锍的主要成分是什么?第二章冶金熔体的相平衡图1. 在三元系的浓度三角形中画出下列熔体的组成点,并说明其变化规律。
X :A 10% ,B 70% ,C 20% ;Y :A 10% ,B 20% ,C 70% ;Z :A 70% ,B 20% ,C 10% ;若将3kg X 熔体与2kg Y 熔体和5kg Z 熔体混合,试求出混合后熔体的组成点。
2. 试分析下图中熔体1 、2 、3 、4 、5 、6 的冷却结晶路线。
第三章冶金熔体的结构1. 熔体远程结构无序的实质是什么?2. 试比较液态金属与固态金属以及液态金属与熔盐结构的异同点。
3. 简述熔渣结构的聚合物理论。
其核心内容是什么?第四章冶金熔体的物理性质1. 试用离子理论观点说明熔渣的温度及碱度对熔渣的粘度、表面张力、氧化能力及组元活度的影响。
2. 什么是熔化温度?什么是熔渣的熔化性温度?3. 实验发现,某炼铅厂的鼓风炉炉渣中存在大量细颗粒铅珠,造成铅的损失。
你认为这是什么原因引起的?应采取何种措施降低铅的损失?第五章冶金熔体的化学性质与热力学性质1. 某工厂炉渣的组成为:44.5% SiO 2 ,13.8%CaO ,36.8%FeO ,4.9%MgO 。
试计算该炉渣的碱度和酸度。
原子量:Mg 24 Si 28 Ca 40 Fe 56 Mn 55 P 31 Zn 652. 什么是熔渣的碱度和酸度?3. 熔渣的氧化性主要取决于渣中碱性氧化物的含量,这种说法对吗?为什么?4. 已知某炉渣的组成为(W B / % ):CaO 20.78 、SiO2 20.50 、FeO 38.86 、Fe2O3 4.98 、MgO10.51 、MnO 2.51 、P2O5 1.67 ,试求该炉渣的碱度。
原子量:Mg 24 Si 28 Ca 40 Fe 56 Mn 55 P 31 Zn 65 5. 某铅鼓风炉熔炼的炉渣成分为(W B / % ):CaO 10 、SiO2 36 、FeO 40 、ZnO 8 ,试求该炉渣的酸度。
冶金原理课后题答案第一章冶金热力学基础1.基本概念:状态函数,标准态,标准生成自由能及生成焓,活度、活度系数和活度相互作用系数,分解压和分解温度,表面活性物质和表面非活性物质,电极电势和电池电动势,超电势和超电压。
2.△H 、△S 和△G 之间有何关系,它们的求算方法有什么共同点和不同点?3.化合物生成反应的ΔG °-T 关系有何用途?试根据PbO 、NiO 、SiO2、CO 的标准生成自由能与温度的关系分析这些氧化物还原的难易。
4.化学反应等温式方程联系了化学反应的哪些状态?如何应用等温方程的热力学原理来分析化学反应的方向、限度及各种因素对平衡的影响?5.试谈谈你对活度标准态的认识。
活度标准态选择的不同,会影响到哪些热力学函数的取值?哪些不会受到影响?6.如何判断金属离子在水溶液中析出趋势的大小?7.试根据Kelvin 公式推导不同尺寸金属液滴(半径分别为r1、r2)的蒸汽压之间的关系。
8.已知AlF 3和NaF 的标准生成焓变为ΔH °298K,AlF3(S)=-1489.50kJ ·mol -1, ΔH °298K,NaF(S)=-573.60kJ ·mol -1,又知反应AlF 3(S)+3NaF (S)=Na 3AlF 6(S)的标准焓变为ΔH °298K=-95.06kJ ·mol -1,求Na 3AlF 6(S)的标准生成焓为多少?(-3305.36 kJ ·mol -1)9.已知炼钢温度下:(1)Ti (S)+O 2=TiO 2(S) ΔH 1=-943.5kJ ·mol -1(2)[Ti]+O 2=TiO 2(S) ΔH 2=-922.1kJ ·mol -1 (3)Ti(S)=Ti(l) ΔH 3=-18.8kJ ·mol -1求炼钢温度下,液态钛溶于铁液反应Ti(l)=[Ti]的溶解焓。
分析熔渣物理化学性质及热力学性质的模型
熔体的热力学性质经常采用几何模型来分析计算,能解决问题的模型也相当多,例如相图与热力学的关系来分定量析热力学性质,解析法来描述热力学中的问题。
用于分析计算熔体的物理化学性质的模型也相当多,以上提到的许多数学模型、物理模型、传统的几何模型都可以用来计算熔渣。
几何模型的计算常采用两种方法:把应用的几何模型直接用到其他多元系中;几何模型与其他模型共同使用来分析。
如今提出的质量三角形模型是一个比较新的模型,该模型当两组元相同时可以还原为低阶模型;对组元的安排可以避免人为的干预;可由低阶模型简单地升为高阶模型;该模型不仅限于常用的热力学性质,也能用来估算其他物理化学性质,如表面张力、密度、扩散系数等,这是一个值得研究的方向。
第四章第章冶金熔体热力学模型参考数目(1)•《物理化学》复旦大学化学系物理化学教研室编,北京人民教育出版社1977阿特金斯著天津大学物理化学教研•《物理化学》英∙阿特金斯著,天津大学物理化学教研室译高教出版社1990•《物理化学》南京大学物理化学教研室,傅献彩、陈南京大学物理化学教研室傅献彩陈瑞华编人民教育出版社1980结构化学何福成朱和人民教育出版社•《结构化学》何福成、朱正和,1984 •《化学热力学》韩德刚、高执棣主编,高等教育出版社1997•《化学热力学问题300例》屈松生主编,高等教育出版社1996参考数目(2)•《钢铁冶金原理》冶金工业出版社,黄希祜•《钢铁冶金物理化学》冶金工业出版社,陈襄武•《钢铁冶金学》冶金工业出版社,陈家祥主编•《物理化学》蔡文娟主编,冶金工业出版社蔡文娟主编冶金工业出版社1994•《物理化学》冶金工业出版社梁英教•《金属学》冶金工业出版社宋维锡主编参考数目(3)•冶金工业出版社,《冶金与材料物理化学》冶金业出版社李文超主编,2001•《硅酸盐物理化学》饶东生主编,冶金工业出版社,1991出版社•《硅酸盐物理化学》贺可音主编,武汉工业大学出版社,1995•《冶金熔体的计算热力学》张鉴著,冶金工业出版社,1998工业出版社稀溶液正规溶液1亚正规溶液•几何模型经验模型•SELF-SReM Model•分子理论•离子理论•分子离子共存模型一、分子理论分子论①分子结构理论是最早出现的关于熔渣结构的理论。
②分子理论是基于对固态炉渣结构的研究结果。
分子理论是基于对固态炉渣结构的研究结果③分子结构理论在熔渣结构的研究中已很少应用。
④在冶金生产实践中仍常用分子结构理论来讨论和分析冶金现象。
分子理论的基本观点1、分子理论的基本观点z 熔渣是由电中性的分子组成的。
有的是简单氧化物或称自由氧化物如¾有的是简单氧化物(或称自由氧化物),如:CaO 、MgO 、FeO 、MnO 、SiO 2、Al 2O 3等¾有的是由碱性氧化物和酸性氧化物结合形成的复杂化合物(或称结合氧化物),如:2CaO ∙SiO 2,CaO ∙SiO 2、2FeO ∙SiO 2、3CaO ∙P 2O 5等z 分子间的作用力为范德华力。
第四章 冶金熔体冶金熔体包括金属熔体和熔渣。
在火法冶金的冶炼和铸錠过程中,许多物理化学反应都与金属熔体和熔渣的物理化学性质有密切的关系。
例如炼钢过程中的脱碳、脱磷、脱硫和脱氧反应,铸锭过程中各种元素的偏析和非金属夹杂物的排除等,均与钢液中参与该反应的元素的浓度和活度有密切的关系。
同时也与钢液的粘度、表面张力和各元素在钢液中的扩散性有关。
因此研究他们的物理化学性质对冶金过程十分重要。
由于高温熔体本身的复杂性和高温下的实验研究比困难,至今对他们的理化性质的研究还很不够。
很多数据差别较大,还有许多问题尚待进一步研究。
这里只是根据某些实验研究结果,主要以铁合金和炼钢炉渣为例,来分析讨论金属熔体的结构、金属熔体的物理性质、各种元素在金属熔体中的溶解度和相作用、熔渣的结构、熔渣的物理性质、熔渣的化学性质和熔渣相图等问题。
4.1 金属溶体的结构在冶金过程中,金属熔体的温度一般只比其熔点高100~150℃左右,在这种情况下,金属熔体的性质和结构是与固体相近的。
下列事实可以作为证明。
1)金属熔化时体积增加很少,通常只有3%左右,纯铁熔化时体积只增加3.5%,即熔化时质点间的距离只增大l%左右。
这就说明各种金属在液态时其质点之间的距离是与固体相近的。
2)各种物质在熔化时的熔化潜热和熵变比蒸发和升华时的潜热及相应的熵变要小得多。
这就说明固体在熔化时质点间的作用力变化不大,并且体系的无秩序排列程度增加不多。
3)金属在熔化时的热容量变化不大。
这就证明液体中质点的热运动特点与固体中的很相近,而没有很大的变化。
4)用X射线衍射法研究金属熔体的结构,证明在熔点附近其结构与固体相近。
熔铁的原子径向分布曲线如图4—1所示。
图中竖线是晶体的衍射线,它们表示晶体中的原子分布情况,由于晶体的晶格很规则而各个原子有固定的空间排列,因此只在某几个球面上有原子分布,所以分布曲线是不连续的竖线。
液体中缺乏规则的晶格且原子位置经常发生变化,只能得到具有一个个峰的曲线,因此表示液体中原子分布的情况只能用原子径向分布函数这个概率的概念。
第一篇冶金熔体第一章冶金熔体概述1. 什么是冶金熔体?它分为几种类型?在火法冶金过程中处于熔融状态的反应介质和反应产物(或中间产品)称为冶金熔体。
它分为:金属熔体、熔渣、熔盐、熔锍。
2.何为熔渣?简述冶炼渣和精炼渣的主要作用。
熔渣是指主要由各种氧化物熔合而成的熔体。
冶炼渣主要作用在于汇集炉料中的全部脉石成分,灰分以及大部分杂质,从而使其与熔融的主要冶炼产物分离。
精炼渣主要作用是捕集粗金属中杂质元素的氧化物,使之与主金属分离。
3.什么是富集渣?它与冶炼渣的根本区别在哪里?富集渣:使原料中的某些有用成分富集与炉渣中,以便在后续工序中将它们回收利用。
冶炼渣:汇集大部分杂质使其与熔融的主要冶炼产物分离。
4.试说明熔盐在冶金中的主要应用。
在冶金领域,熔盐主要用于金属及其合金的电解生产与精炼。
熔盐还在一些氧化物料的熔盐氯化工艺以及某些金属的熔剂精炼法提纯过程中广泛应用。
第二章冶金熔体的相平衡图1. 在三元系的浓度三角形中画出下列熔体的组成点,并说明其变化规律。
X :A 10% ,B 70% ,C 20% ;Y :A 10% ,B 20% ,C 70% ;Z :A 70% ,B 20% ,C 10% ;若将3kg X 熔体与2kg Y 熔体和5kg Z 熔体混合,试求出混合后熔体的组成点。
2.下图是生成了一个二元不一致熔融化合物的三元系相图(1)写出各界限上的平衡反应(2)写出P、E两个无变点的平衡反应(3)分析下图中熔体1 、2 、3 、4 、5 、6 的冷却结晶路线。
3.在进行三元系中某一熔体的冷却过程分析时,有哪些基本规律?答:1 背向规则2杠杆规则3直线规则4连线规则5 三角形规则6重心规则7切线规则8共轭规则等第三章冶金熔体的结构1. 熔体远距结构无序的实质是什么?2.试比较液态金属与固态金属以及液态金属与熔盐结构的异同点。
3.简述熔渣结构的聚合物理论。
其核心内容是什么?第四章冶金熔体的物理性质1.什么是熔化温度?什么是熔渣的熔化性温度?解:熔化温度是指由其固态物质完全转变成均匀的液态时的温度。
冶金熔体定义及分类
分为:炉渣熔体和金属熔体两种
溶体是指溶质原子溶入金属溶剂的晶格中所组成的合金相。
两组元在液态下互溶,固态也相互溶解,且形成均匀一致的物质。
形成固溶体时,含量大者为溶剂,含量少者为溶质;溶剂的晶格即为固溶体的晶格。
●固溶体的分类
按溶质原子在晶格中的位置不同可分为置换固溶体和间隙固溶体。
1、置换固溶体溶质原子占据溶剂晶格中的结点位置而形成的固溶体称置换固溶体。
当溶剂和溶质原子直径相差不大,一般在15%以内时,易于形成置换固溶体。
铜镍二元合金即形成置换固溶体,镍原子可在铜晶格的任意位置替代铜原子。
2、间隙固溶体溶质原子分布于溶剂晶格间隙而形成的固溶体称间隙固溶体。
间隙固溶体的溶剂是直径较大的过渡族金属,而溶质是直径很小的碳、氢等非金属元素。
其形成条件是溶质原子与溶剂原子直径之比必须小于0.59。
如铁碳合金中,铁和碳所形成的固溶体――铁素体和奥氏体,皆为间隙固溶体。
另外,按溶质元素在固溶体中的溶解度,可分为有限固溶体和无限固溶体。
但只有置换固溶体有可能成为无限固溶体。
从冶金熔体中组元的活度及其标准态的概念和定义出发,分析和讨论了在冶金领域应用质量分数和质量百分浓度的差异.指出采用质量百分浓度或质量分数来表示金属溶液中组元的含量,决不仅是简单的单位或数值变换,而且涉及冶金物理化学的基本原则,必须予以认真考虑和对待.。