粉末冶金原理第三章
- 格式:pdf
- 大小:2.25 MB
- 文档页数:75
本讲内容§3.1 粉末模压成形原理§3.2 成形技术-1§3.3 成形技术-2程继贵材料科学与工程学院本讲内容-成形技术部分一、成形前的粉末冶金二、模压成形技术三、等静压成形四、粉末连续成形五、浆料成形专题-粉末注射成形四、粉末连续成形定义:粉末在压力作用下由松散状态经过连续变化而成 为具有一定密度、强度以及所需尺寸形状压坯或 制品的过程。
主要包括:粉末轧制、挤压、喷射成形、楔形压制等基本特征:● 是模压成形方法的重要补充,可以生产 普通模压成形无法生产的多孔或致密的 板、带、棒、及管材等;● 比钢模压制需要较少的设备、容器。
(一)金属粉末轧制(Powder rolling)概述1.1. 概述粉末轧制的概念:粉末在一对轧棍之间在轧辊力的作用下压实成具有一定强度的连续带坯的过程。
粉末轧制的特点:● 与熔铸轧制相比:11)基本原理相同,要实现轧制:μ+ξ>α2)可轧制出熔铸轧制无法生产或难以生产的板、带材等(尤多层复合板、带)33)工艺流程短、节能、成本较低44)压坯或产品成分精确可控、轧制产品各向同性55)成材率较高● 与模压成形相比:1)轧制能耗比压制低22)可以生产模压成形无法生产的板、带材3)压坯密度更均匀,压坯长度原则上不限44)板带材宽度、厚度有限:δ=(1/100 ~1/300)D,一般≤10mm 粉末轧制适用于生产宽度几百mm,厚度10mm 以下,长度原则不限的板带材,或D/D/δδ很大的衬套等粉末轧制的分类:● 粉末直接轧制(direct powder rolling )应用较广泛:对塑性好的粉末 ● 粉末粘结轧制 (bonded powder rolling)加入粘结剂改善粉末体的成形性● 包套粉末热轧(canned powder hot rolling ) 对活性粉末以及要求高致密度的材料粉末冷轧粉末热轧按进料方式分为:水平、垂直和倾斜轧制轧制过程的定量关系(轧制带坯厚度、密度与粉末特性及轧辊尺寸之间的定量关系)基本概念及符号: 咬入层、咬入角α(α1) H α— 咬入宽度δR — 轧制带坯厚度D 、r r —— 轧辊直径、半径 ρ松、ρ压—粉末松装密度及轧坯密度V 进、V 轧— 粉末进料速度和轧制速度粉末料柱宽度 B ≈轧坯宽度 b H α图4-26 粉末轧制时的咬入区和变形区H αδ几何关系:质量关系:1cos 1cos 11−−=⎥⎦⎤⎢⎣⎡−+=z D D R R ηαδδαηρρ)()(松压进轧v v /=η松压ρρ/=z ——延伸系数————压紧系数 定量关系式:影响轧制过程的因素1)粉末性能● 松装密度: ρ松↑,ρ压↑,δ↑(保证轧制条件下)● 流动性: 流动性↑,V进↑,η↓, ρ压↑,δ↑(保证轧制条件下)● 粉末硬度:低的粉末硬度便于变形和形成高的机械啮 合,↑成形性,↑压坯强度2)轧辊直径↑D, ρ(δR固定);δR ↑(ρ一定)3)给料方式水平与垂直:垂直 V V进↑,ρ↑、δR↑4)轧制速度↑ω,ρ、δR↓(m不变)5)辊缝t↑t,轧制压力降低,ρ↓,δR↑粉末轧制工艺:粉末准备→ 喂料(水平、垂直方式)→轧制(冷轧、热轧) → 轧坯→烧结(直接烧结、成卷烧结)粉末冷轧工艺● 室温下轧制● 轧制速度较低:0.6-30m/s● 轧坯可卷成卷后烧结,也可烧结后卷成卷,还可烧结后再热轧冷轧冷轧+ 热轧粉末热轧工艺● 可以对粉末、预成形坯等进行轧制● 防氧化—包套(真空)轧制或气氛保护粉末轧制的应用�多孔板材,如过滤板、催化剂板材�层状复合材料带、板材�多层钢背支撑轴承�纤维增强复合材料粉末、粉末压坯或粉末烧结坯在外力作用下,通过挤压筒的挤压嘴挤成坯料或制品的成形方法(二)粉末挤压1. 概述●粉末挤压的定义Powder Extrusion挤● 挤压的分类�粉末直接挤压(冷挤压):适应于塑性好的金属粉末�粉末增塑挤压:粉末加入一定量的成形剂或粘结剂后挤压,适应于硬质粉末如硬质合金粉末�粉末包套热挤:适应于弥散强化合金等�烧结坯或粉末压坯的热挤压:适应于塑性较好的有色金属材料。
粉末冶金原理粉末冶金是一种利用金属粉末或者金属粉末与非金属粉末混合后,再经过压制和烧结等工艺制造金属零件的方法。
在粉末冶金工艺中,粉末的特性和原理起着至关重要的作用。
粉末冶金原理主要包括粉末的制备、成型、烧结和后处理等几个方面。
首先,粉末的制备是粉末冶金的第一步。
金属粉末的制备可以通过机械研磨、化学方法和物理方法等多种途径。
机械研磨是指将金属块或者金属棒经过研磨机械的加工,得到所需的金属粉末。
化学方法则是通过化学反应得到金属粉末,而物理方法则是通过物理手段如电解、喷雾等得到金属粉末。
在粉末冶金中,粉末的制备质量直接影响着最终制品的质量和性能。
其次,成型是指将金属粉末进行成型工艺,使其成为所需形状的工件。
成型方法包括压制成型、注射成型、挤压成型等多种方式。
压制成型是将金属粉末放入模具中,再经过压制机械的加工,使其成为所需形状的工件。
注射成型则是将金属粉末与粘结剂混合后,通过注射成型机械将其注射成型。
挤压成型是将金属粉末放入容器中,再通过挤压机械的作用,使其成为所需形状的工件。
成型工艺的精密度和成型质量对于最终产品的质量和性能至关重要。
接下来,烧结是粉末冶金中的关键工艺。
烧结是指将成型后的金属粉末在高温下进行加热处理,使其颗粒间发生结合,形成致密的金属材料。
烧结工艺的温度、压力和时间等参数对于最终产品的致密度、硬度和耐磨性等性能有着重要影响。
最后,后处理是指对烧结后的金属制品进行表面处理、热处理和精加工等工艺。
表面处理可以提高金属制品的耐腐蚀性和美观度,热处理可以改善金属制品的硬度和强度,精加工则可以提高金属制品的精度和表面质量。
总之,粉末冶金原理是一个复杂而又精密的工艺体系,涉及到材料科学、机械工程、化学工程等多个领域的知识。
通过对粉末的制备、成型、烧结和后处理等环节的深入研究和探索,可以不断提高粉末冶金工艺的精度和效率,为制造业的发展和进步提供更加可靠的技术支持。
粉末冶金原理(Ⅰ)第一章导论1粉末冶金技术的发展史History of powder metallurgy粉末冶金是采用金属粉末(或非金属粉末混合物)为原料,经成形和烧结操作制造金属材料、复合材料及其零部件的加工方法。
粉末冶金既是一项新型材料加工技术,又是一项古老的技术。
.早在五千年前就出现了粉末冶金技术雏形,古埃及人用此法制造铁器件;.1700年前,印度人采用类似方法制造了重达6.5T的“DELI柱”(含硅Fe合金,耐蚀性好)。
.19世纪初,由于化学实验用铂(如坩埚)的需要,俄罗斯人、英国人采用粉末压制、烧结和热锻的方法制造致密铂,成为现代粉末冶金技术的基础。
.20世纪初,现代粉末冶金的发展起因于爱迪生的长寿命白炽灯丝的需要。
钨灯丝的生产标志着粉末冶金技术的迅速发展。
.1923年硬质合金的出现导致机加工的革命。
.20世纪30年代铜基含油轴承的制造成功,并在汽车、纺织、航空、食品等工业部门的广泛应用。
随后,铁基粉末冶金零部件的生产,发挥了粉末冶金以低的制造成本生产高性能零部件的技术优点。
.20世纪40年代,二战期间,促使人们开发研制高级的新材料(高温材料),如金属陶瓷、弥散强化合金作为飞机发动机的关键零部件。
.战后,迫使人们开发研制更高性能的新材料,如粉末高速钢、粉末超合金、高强度铁基粉末冶金零部件(热锻)。
大大扩大了粉末冶金零部件及其材料的应用领域。
.粉末冶金在新材料的研制开发过程中发挥其独特的技术优势。
2粉末冶金工艺粉末冶金技术的大致工艺过程如下:原料粉末+添加剂(合金元素粉末、润滑剂、成形剂)↓成形(模压、CIP、粉浆浇注、轧制、挤压、温压、注射成形等)↓烧结(加压烧结、热压、HIP等)↓粉末冶金材料或粉末冶金零部件—后续处理Fig.1-1 Typical Processing flowchart for Powder Metallurgy Technique 3粉末冶金技术的特点.低的生产成本:能耗小,生产率高,材料利用率高,设备投资少。
粉末冶金原理粉末冶金新技术摘要本文主要从粉末冶金的基本工艺过程阐述粉末冶金工业今年出现的新工艺,粉末冶金的制粉,成型,烧结等方面论述了粉末冶金的新工艺以及这些工艺的特点及相关应用,论述粉末冶金的新工艺的发展方向关键字:粉末冶金、新技术、粉末冶金工艺1.引言粉末冶金是制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结,制造金属材料、复合以及各种类型制品的工艺技术。
粉末冶金法与生产陶瓷有相似的地方,因此,一系列粉末冶金新技术也可用于陶瓷材料的制备。
由于粉末冶金技术的优点,它已成为解决新材料问题的钥匙,在新材料的发展中起着举足轻重的作用粉末冶金是一门新兴的材料制备技术。
近代粉末冶金兴起于19世纪末20世纪初。
至20世纪30年代, 粉末冶金整套技术逐步形成, 工业生产初具规模, 对工艺过程及其机理的研究也取得了一定成果。
20世纪中期, 粉末冶金生产技术发展迅速, 产品应用领域不断扩大, 成为现代工业的重要组成部分。
并在此基础上, 为适应科学技术飞速发展对材料性能和成形技术提出的更高要求, 开发了多项粉末冶金新工艺, 包括: 热等静压、燃烧合成、快速凝固、喷射成形、机械合金化、粉末注射成形、温压成形、快速全向压制、粉末锻造、热挤压、爆炸。
2.粉末冶金新技术--制粉2.1雾化法制备金属粉末---低氧含量铁粉生产在无氧气氛中进行, 并包含一些石蜡,这些分解为碳与氢。
碳与铁反应, 形成很薄的富碳表面层。
碳含量使颗粒的延性降低, 但提高了表面的烧结活性。
在粉末压块中, 碳易于扩散到颗粒中心及相邻的颗粒中, 因而可用于生产不需添加石墨的粉末冶金钢。
瑞典IPS钢粉公司每年低氧含量雾化铁粉, 其氧含量低于 (0.015%)。
对于粉末冶金应用来说,这种无氧粉末允许使用便宜的合金元素(铬和锰等)代替镍和铜。
镍作为战略性资源,不但价格昂贵,并且还是一种致癌物, 应尽量避免使用。
这种粉末也很适合于用温压与热等静压工艺来生产高强度部件。
第三章成形
成形是粉末冶金工艺的重要步骤。
成形的目的是制得具有一定形状、尺寸、密度、孔隙度和强度
3.1 成形前的原料预处理
粉末退火,筛分,混合,制粒,加润滑
一般指将两种或两种以上不同成分
各种混合机将粉末或混合料机硬质合金或含易氧化组份合金的生
将金属或化合物粉末与添加金属的盐溶液均匀混合,或者是各组元全部以某种盐的溶液形式混合,然后经沉淀、干燥、还原等处理
筛分的目的在于把颗粒大小不匀的原始粉末进行分级,使粉末能够按照粒度分成大小范围更
将小颗粒的粉末制成大颗粒或团粒的工序,常
成形剂是为了提高压坯强度或为了防止粉末混合
润滑剂是为了降低压形时粉末颗粒与模壁和模冲间摩擦、改善压坯的密度分布、
选择成形剂、润滑剂的基本条件:
(1)有较好的粘结性和润滑性能,在混合粉末中容(2)软化点较高,混合时不易因温度升高而熔化;
原料粉末其它添加剂
等静压制轧制挤压粉末冶金成品
(2)赋予坯体以精确的几何形状与尺寸,应
工序组成:称粉、装粉、压制、保压及脱模。
自动装粉方式
a)落入法b)吸入法c)多余充填法
2012/3/617
基本压制方式
a)单向压制b)双向压制c)浮动压制
2012/3/618
①粉末颗粒移动,孔隙减小,颗粒间相互挤紧;
②粉末挤紧,小颗粒填入大颗粒间隙中,颗粒开始
③粉末颗粒表面的凹凸部分被压紧且啮合成牢固接
二、金属粉末压制时的位移与变形
粉末在松装堆集时,由于表面不规则,彼此之间有摩擦,颗粒相互搭架而形成拱桥孔洞的现象。
当施加压力时,粉末体内的拱桥效应遭到破坏,粉末
滑动;(d)粉末颗粒的转动;(e)粉末颗粒因粉碎而产生的移动2012/3/623
压坯反抗外力作用保持其几何形状和尺寸不变的
3.3 压制压力与压坯密度的关系
图3-10 压坯密度与成形压
力的关系
二、压制压力与压坯密度关系的解析
粉末压制理论研究粉末压制成形过程中颗粒移动和变形的规律,讨论并定量描述压坯密度和压制
方程假设粉末体在压制时发生弹性压缩变形,服从虎克定律,不考虑粉末压制时加工硬化的影响,并假设
式(3-12)为巴尔申半对数压制方程,表示压制压力对数(lgp)与粉末相对体积β成线性关系。
的压制,对
在高压与低压情形下出现偏差的原因粉末颗粒以位移方式填充孔隙空间为主
巴尔申方程曲线之所以与实际情况不大一将粉末体当作理想弹性体看待,运用虎克定律
由日本人川北公夫于1956年以经验公式的形式提出,
3)粉末层各断面上的外压力与该断面上粉末的实际断面积受的压力总和保持平衡;
4)每个粉末颗粒仅能承受它所固有的屈服极
3.艾西-沙皮罗-柯诺皮斯基压制理论简介
由德国人柯诺皮斯基(K.Konopicky)于40年代提出。
我国黄培云教授首次将粉末视为标准非线性弹滞体,考虑粉末体的非弹性性质、加工硬化、模壁摩擦和压制时间(弛豫)对粉末压制成形的
(3-49) (3-53)
,适用于粉末压。
用回归分析方法整理铜、锡、钨、钼、碳化钨粉末的模压成形和冷等静压成形实验数据表明,与巴尔申、
巴尔申方程用于硬粉末比软粉末效果好
川北公夫方程在压制压力不太大时优越性显著
压制过程中由垂直压力所引起的模壁
粉末体与模壁之摩擦力的大小与摩擦系
46
在没有润滑剂的情况下,外摩擦的压力损失可达60-90%,这是引起压块密度沿高度分布不均匀的根本原因。
使压坯由模中脱出所需的压力。
49
弹性后效:在压制过程中,当除去压制压力并把压坯压出压模后,由于内应力。