二次函数的应用(最大利润)
- 格式:pptx
- 大小:1.59 MB
- 文档页数:21
二次函数最大利润公式二次函数最大利润公式是在市场营销领域中应用较多的一种工具。
当企业生产一种产品时,它的成本和销售量可以表示为二次函数。
其中,成本是随生产量增加而增加的,而销售量则随着产品价格的变化而改变。
企业追求的是利润最大化,因此需要找到销售最大量对应的价格,也就是二次函数的顶点。
利用二次函数最大利润公式,企业可以计算出最大利润所对应的生产量和价格,从而进行生产决策。
二次函数最大利润公式的基本形式为y=a某²+b某+c,其中a、b、c是常数,某是变量,y表示利润。
在这个公式中,a是二次项系数,它代表着产品的成本变化率;b是一次项系数,它代表着产品的售价变化率;c是常数项,它代表着固定成本。
如果我们知道a、b、c的具体值,就可以通过求导数的方法,找到二次函数顶点的位置,从而确定价格和销售量。
求解二次函数最大利润公式的方法有两种:一种是代数法,另一种是几何法。
代数法是通过求解一次函数的导数来寻找最大利润所对应的销售量和价格。
对于二次函数y=a某²+b某+c来说,它的导数为dy/d某=2a某+b。
当dy/d某=0时,就可以得到二次函数的顶点位置某0=-b/2a。
然后可以通过将某0代入二次函数y=a某²+b某+c中,求出最大利润所对应的成本、销售量和价格等信息。
几何法是通过绘制二次函数的图像来确定最大利润。
二次函数的图像是一个开口向上或向下的抛物线,在顶点处具有最大值或最小值。
当我们知道二次函数的顶点坐标时,可以通过测量图像来确定最大利润所对应的销售量和价格。
如果商家需要考虑不同产品的生产成本和销售情况,还可以通过绘制多条二次函数的图像,同时比较它们的顶点位置,从而找到最佳的生产组合方式,使得利润最大化。
总之,二次函数最大利润公式是市场营销领域中一个十分有用的工具。
它可以帮助企业决策者找到最大利润所对应的销售量和价格,从而进行生产策略的调整。
不过,在实际应用中,还需要注意二次函数所对应的条件和假设是否成立,以及市场环境和竞争对手的因素等。
二次函数的应用(利润问题)(答案)二次函数的实际应用1.将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个.若这种商品的零售价在一定范围内每降价1元,其日销售量就增加了1个,为了获得最大利润,则应降价_ _元,最大利润为_ _元.2. 某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?3.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润?4.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额?5.某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量(件)之间的关系如下表:若日销售量y 是销售价x 的一次函数.⑴求出日销售量y (件)与销售价x (元)的函数关系式; ⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?6.“健益”超市购进一批20元/千克的绿色食品,如果以30元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y (千克)•与销售单价x (元)(30 x )存在如下图所示的一次函数关系式.⑴试求出y 与x 的函数关系式;⑵设“健益”超市销售该绿色食品每天获得利润P 元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?⑶根据市场调查,该绿色食品每天可获利润不超过4480元,•现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x 的范围(•直接写出答案).7.,某果品批发公司为指导今年的樱桃销售,对往年的市场销售情况进行了调查统计,得到如下数据: 销售价x (元/千克) (25)24 23 22 … 销售量y (千克) … 2000 2500 3000 3500 …(1)在如图的直角坐标系内,作出各组有序数对(x ,y )所对应的点.连接各点并观察所得的图形,判断y 与x 之间的函数关系,并求出y 与x 之间的函数关系式;(2)若樱桃进价为13元/千克,试求销售利润P (元)与销售价x (元/千克)之间的函数关系式,并求出当x 取何值时,P 的值最大?8.为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元) .(1)求y与x之间的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?二次函数的应用(利润问题)(答案)参考答案1解:设每件价格降价x 元,利润为y 元,则:)20)(70100(x x y +--=600102++-=x x 625)5((2+--=x 当5=x ,625max =y (元)答:价格提高5元,才能在半个月内获得最大利润.2解:设涨价(或降价)为每件x 元,利润为y 元,1y 为涨价时的利润,2y 为降价时的利润 则)10300)(4060(1x x y -+-=)60010(102---=x x 6250)5(102+--=x 当5=x ,即:定价为65元时,6250max =y (元) )20300)(4060(2x x y +--=)15)(20(20+--=x x 6125)5.2(202+--=x 当5.2=x ,即:定价为57.5元时,6125max =y (元)综合两种情况,应定价为65元时,利润最大.3解:设每件价格提高x 元,利润为y 元,则:)20400)(2030(x x y --+=)20)(10(20-+-=x x 4500)5(202+--=x 当5=x ,4500max =y (元)答:价格提高5元,才能在半个月内获得最大利润. 4解:设旅行团有x 人)30(≥x ,营业额为y 元,则:)]30(10800[--=x x y )110(10--=x x 30250)55(102+--=x当55=x ,30250max =y (元)答:当旅行团的人数是55人时,可以获得最大营业额. 5解:⑴设一次函数表达式为b kx y +=. 则1525,220k b k b +=⎧⎨+=⎩ 解得⎩⎨⎧=-=401b k ,即一次函数表达式为40+-=x y . ⑵ 设每件产品的销售价应定为x 元,所获销售利润为w 元 y x w )10(-=)40)(10(+--=x x 400502-+-=x x 225)25(2+--=x当25=x ,225max =y (元)答:销售价应定为25元时,每日获得最大销售利润为225元6解:⑴设y=kx+b 由图象可知,3040020,:402001000k b k k b b +==-⎧⎧⎨⎨+==⎩⎩解之得,即100020+-=x y )5030(≤≤x . ⑵ y x P )20(-=)100020)(20(+--=x x 200001400202-+-=x x∵020<-=a ∴P 有最大值. 当35)20(21400=-⨯=x 时,4500max =P (元) 答:当销售单价为35元/千克时,每天可获得最大利润4500元.⑶∵44804500)35(2041802≤+--≤x 16)35(12≤-≤x ∴31≤x ≤34或36≤x≤39. 7解:(1)由图象可知,y 是x 的一次函数,设y=kx+b ,•∵点(•25,2000),(24,2500)在图象上,∴200025500,:25002414500k b k k b b =+=-⎧⎧⎨⎨=+=⎩⎩解得 ,∴y=-500x+14500. (2)P=(x-13)·y=(x-13)·(-500x+14500))37744144142(500)37742(500)29)(13(50022+-+--=+--=---=x x x x x x=-500(x-21)2+32000∴P 与x 的函数关系式为P=-500x 2+21000x-188500,当销售价为21元/千克时,能获得最大利润,最大利润为32000元.8.解:)802)(20()20(+--=-=x x w x y )40)(20(2---=x x )80060(22+--=x x 200)30(22+--=x 160012022-+-=x x 当30=x ,200max =y (元)(1)y 与x 之间的的函数关系式为;160012022-+-=x x y(2)当销售价定为30元时,每天的销售利润最大,最大利润是200元.(3) 150200)30(22=+--x ,25)30(2=-x 28351>=x (舍去)252=x 答:该农户想要每天获得150元的销售利润,销售价应定为25元.,应选乙地.。
变式训练1.为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对购买彩电的农户实行政府补贴,规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y(台)与补贴款额x(元)之间大致满足如图①所示的一次函数关系,随着补贴款额x的不断增大,销售量也不断增加,但每台彩电的收益z(元)会相应降低且z与x之间也大致满足如图②所示的一次函数关系。
(1)在政府未出补贴措施前,该商场销售彩电的总收益额为多少元?,(2)在政府补贴政策实施后,分别求出该商场销售彩电台数y和每台家电的收益z与政府补贴款额x之间的函数关系式;(3)要使该商场销售彩电的总收益W(元)最大,政府应将每台补贴款额x定为多少?并求出总收益w的最大值。
题型三:实际问题中的方案决策例3 某小区有一长100 m ,宽80m 的空地,现将其建成花园广场,设计图案如图所示。
阴影区域为绿化区域(四块绿化区域是全等矩形),空白区域为活动区域,且四周出口一样宽,宽度不小于50 m ,不大于60 m 。
预计活动区域每平方米造价60元,绿化区域每平方米造价50元。
(1)设其中一块绿化区域的长边长为xm ,写出工程总造价y (元)与x ( m )的函数式系式(写出x 的取值范围); (2)如果小区投资46.9万元,问能否完成工程任务?若能,请写出x 为整数的所有工程方案;若不能,请说明理由。
(参考数据:732.13 )一、能力培养某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件。
已知产销两种产品的有关信息如下表:产品每件售价(万元)每件成本(万元)每年其他费用(万元)每年最大产销量(件)甲 6 a20 200乙20 10 40+0.05x280其中a为常数,且3≤a≤5。
(1)若产销甲乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由。
变式训练1.为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对购买彩电的农户实行政府补贴,规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y(台)与补贴款额x(元)之间大致满足如图①所示的一次函数关系,随着补贴款额x的不断增大,销售量也不断增加,但每台彩电的收益z(元)会相应降低且z与x之间也大致满足如图②所示的一次函数关系。
(1)在政府未出补贴措施前,该商场销售彩电的总收益额为多少元?,(2)在政府补贴政策实施后,分别求出该商场销售彩电台数y和每台家电的收益z与政府补贴款额x之间的函数关系式;(3)要使该商场销售彩电的总收益W(元)最大,政府应将每台补贴款额x定为多少?并求出总收益w的最大值。
题型三:实际问题中的方案决策例3 某小区有一长100 m ,宽80m 的空地,现将其建成花园广场,设计图案如图所示。
阴影区域为绿化区域(四块绿化区域是全等矩形),空白区域为活动区域,且四周出口一样宽,宽度不小于50 m ,不大于60 m 。
预计活动区域每平方米造价60元,绿化区域每平方米造价50元。
(1)设其中一块绿化区域的长边长为xm ,写出工程总造价y (元)与x ( m )的函数式系式(写出x 的取值范围); (2)如果小区投资46.9万元,问能否完成工程任务?若能,请写出x 为整数的所有工程方案;若不能,请说明理由。
(参考数据:732.13 )一、能力培养某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件。
已知产销两种产品的有关信息如下表:产品每件售价(万元)每件成本(万元)每年其他费用(万元)每年最大产销量(件)甲 6 a20 200乙20 10 40+0.05x280其中a为常数,且3≤a≤5。
(1)若产销甲乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由。
第3课时 二次函数的实际应用——最大(小)值问题[例1]:求下列二次函数的最值:(1)求函数322-+=x x y 的最值.解:4)1(2-+=x y当1-=x 时,y 有最小值4-,无最大值.(2)求函数322-+=x x y 的最值.)30(≤≤x解:4)1(2-+=x y∵30≤≤x ,对称轴为1-=x∴当12330有最大值时;当有最小值时y x y x =-=.[例2]:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?解:设涨价(或降价)为每件x 元,利润为y 元,1y 为涨价时的利润,2y 为降价时的利润则:)10300)(4060(1x x y -+-= )60010(102---=x x6250)5(102+--=x当5=x ,即:定价为65元时,6250max =y (元))20300)(4060(2x x y +--= )15)(20(20+--=x x6125)5.2(202+--=x当5.2=x ,即:定价为57.5元时,6125max =y (元) 综合两种情况,应定价为65元时,利润最大.[练习]:1.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润?解:设每件价格提高x 元,利润为y 元, 则:)20400)(2030(x x y --+= )20)(10(20-+-=x x 4500)5(202+--=x当5=x ,4500max =y (元)答:价格提高5元,才能在半个月内获得最大利润.2.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额? 解:设旅行团有x 人)30(≥x ,营业额为y 元, 则:)]30(10800[--=x x y )110(10--=x x 30250)55(102+--=x当55=x ,30250max =y (元)答:当旅行团的人数是55人时,旅行社可以获得最大营业额.[例3]: 某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表:若日销售量y 是销售价x 的一次函数.⑴求出日销售量y (件)与销售价x (元)的函数关系式;⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元? 解:⑴设一次函数表达式为b kx y +=. 则1525,220k b k b +=⎧⎨+=⎩ 解得⎩⎨⎧=-=401b k ,•即一次函数表达式为40+-=x y .⑵ 设每件产品的销售价应定为x 元, 所获销售利润为w 元y x w )10(-=)40)(10(+--=x x 400502-+-=x x225)25(2+--=x当25=x ,225max =y (元)答:产品的销售价应定为25元时,每日获得最大销售利润为225元.【点评】解决最值问题应用题的思路与一般应用题类似,也有区别,主要有两点: ⑴在“当某某为何值时,什么最大(或最小、最省)”的设问中, “某某”要设为自变量,“什么”要设为函数;⑵求解方法是依靠配方法或最值公式,而不是解方程.3.(2006十堰市)市“健益”超市购进一批20元/千克的绿色食品,如果以30•元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y (千克)•与销售单价x (元)(30≥x )存在如下图所示的一次函数关系式. ⑴试求出y 与x 的函数关系式;⑵设“健益”超市销售该绿色食品每天获得利润P 元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?⑶根据市场调查,该绿色食品每天可获利润不超过4480元,•现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x 的范围(•直接写出答案).解:⑴设y=kx+b 由图象可知,3040020,:402001000k b k k b b +==-⎧⎧⎨⎨+==⎩⎩解之得, 即一次函数表达式为100020+-=x y )5030(≤≤x . ⑵ y x P )20(-=)100020)(20(+--=x x 200001400202-+-=x x∵020<-=a ∴P 有最大值.当35)20(21400=-⨯=x 时,4500max =P (元)(或通过配方,4500)35(202+--=x P ,也可求得最大值)答:当销售单价为35元/千克时,每天可获得最大利润4500元.⑶∵44804500)35(2041802≤+--≤x16)35(12≤-≤x∴31≤x ≤34或36≤x≤39. 作业布置:1.将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个.若这种商品的零售价在一定范围内每降价1元,其日销售量就增加了1个,为了获得最大利润,则应降价_5_元,最大利润为_625_元. 解:设每件价格降价x 元,利润为y 元, 则:)20)(70100(x x y +--=600102++-=x x 625)5((2+--=x当5=x ,625max =y (元)答:价格提高5元,才能在半个月内获得最大利润.2.(2006年青岛市)在2006年青岛崂山北宅樱桃节前夕,•某果品批发公司为指导今年的樱桃销售,对往年的市场销售情况进行了调查统计,得到如下数据:销售价x (元/千克) … 25 24 23 22 … 销售量y (千克) (200)250030003500…(1)在如图的直角坐标系内,作出各组有序数对(x ,y )所对应的点.连接各点并观察所得的图形,判断y 与x 之间的函数关系,并求出y 与x 之间的函数关系式; (2)若樱桃进价为13元/千克,试求销售利润P (元)与销售价x (元/千克)之间的函数关系式,并求出当x 取何值时,P 的值最大? 解:(1)由图象可知,y 是x 的一次函数,设y=kx+b ,•∵点(•25,2000),(24,2500)在图象上, ∴200025500,:25002414500k bk k b b =+=-⎧⎧⎨⎨=+=⎩⎩解得 , ∴y=-500x+14500.(2)P=(x-13)·y=(x-13)·(-500x+14500))37744144142(500)37742(500)29)(13(50022+-+--=+--=---=x x x x x x=-500(x-21)2+32000∴P 与x 的函数关系式为P=-500x 2+21000x-188500, 当销售价为21元/千克时,能获得最大利润,最大利润为32000元.3.有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量基本保持不变,现有一经销商,按市场价收购这种活蟹1000 kg放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.(1)设x天后每千克活蟹的市场价为p元,写出p关于x的函数关系式;(2)如果放养x天后将活蟹一次性出售,并记1000 kg蟹的销售总额为Q元,写出Q 关于x的函数关系式.(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q-收购总额)?解:(1)由题意知:p=30+x,(2)由题意知:活蟹的销售额为(1000-10x)(30+x)元,死蟹的销售额为200x元.∴Q=(1000-10x)(30+x)+200x=-10x2+900x+30000.(3)设总利润为W元则:W=Q-1000×30-400x=-10x2+500x=-10(x2-50x) =-10(x-25)2+6250.当x=25时,总利润最大,最大利润为6250元.答:这批蟹放养25天后出售,可获最大利润.4.(2008湖北恩施)为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元) . (1)求y与x之间的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元? 解:)802)(20()20(+--=-=x x w x y )40)(20(2---=x x)80060(22+--=x x 200)30(22+--=x160012022-+-=x x当30=x ,200max =y (元)(1)y 与x 之间的的函数关系式为;160012022-+-=x x y(2)当销售价定为30元时,每天的销售利润最大,最大利润是200元. (3) 150200)30(22=+--x ,25)30(2=-x28351>=x (不合题意,舍去)252=x答:该农户想要每天获得150元的销售利润,销售价应定为25元.12.(2008河北)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x (吨)时,所需的全部费用y (万元)与x 满足关系式9051012++=x x y ,投入市场后当年能全部售出,且在甲、乙两地每吨的售价,(万元)均与满足一次函数关系.(注:年利润=年销售额-全部费用)(1)成果表明,在甲地生产并销售吨时,,请你用含的代数式表示甲地当年的年销售额,并求年利润(万元)与之间的函数关系式;(2)成果表明,在乙地生产并销售吨时,(为常数),且在乙地当年的最大年利润为35万元.试确定的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?解:(1)甲地当年的年销售额为万元;.(2)在乙地区生产并销售时,年利润.由,解得或.经检验,不合题意,舍去,.(3)在乙地区生产并销售时,年利润,将代入上式,得(万元);将代入,得(万.元).,应选乙地.可编辑。
利润问题(二次函数应用题)1、某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100)x件,应如何定价才能使定价利润最大?最大利润是多少元?2、某超市茶叶专柜经销一种绿茶,每千克成本为50元,市场调查发现,在一段时间内,每天的销售量y(千克)随销售单价x(元/千克)的变化而变化,具体的变化如下表:(1)求y与x的函数关系式;(2)设这种绿茶在这段时间内的销售利润为W(元).那么该茶叶每千克定价为多少元时,获得最大利润?且最大利润为多少元?3、某商店经营一种小商品,进价为2元,据市场调查,销售单价是13元时平均每天销售量是500件,而销售价每降低1元,平均每天就可以多售出100件.(1)设每件商品定价为x元时,销售量为y件,求出y与x的函数关系式;(2)若设销售利润为s,写出s与x的函数关系式;(2)每件小商品销售价是多少元时,商店每天销售这种小商品的利润最大?最大利润是多少?4、某宾馆有50个房间供游客居住,当每个房间的定价为每天180元时,房间会全部住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.房价定为多少时,宾馆利润最大?5、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售2件。
(1)设每件衬衫降价x元,平均每天可售出y件,写出y与x的函数关系式___________________。
(2)每件衬衫降价多少元时,商场平均每天盈利最多?6、某商场销售一批产品零件,进价货为10元,若每件产品零件定价20元,则可售出10件,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件产品零件每降价2元,商场平均每天可多售8件。
(1)设每件产品零件降价x元,平均每天可售出y件,写出y与x的函数关系式___________________。