近世代数之除环、域
- 格式:ppt
- 大小:901.50 KB
- 文档页数:33
第四章环与域§1 环的定义一、主要内容1.环与子环的定义和例子。
在例子中,持别重要的是效域上的多项式环、n阶全阵环和线性变换环,以及集M的幂集环.2.环中元素的运算规则和环的非空子集S作成子环的充要条件:二、释疑解难1.设R是一个关于代数运算十,·作成的环.应注意两个代数运算的地位是不平等的,是要讲究次序的.所以有时把这个环记为(R,十,·)(或者就直接说“R对十,·作成一个环”).但不能记为R,·,十).因为这涉及对两个代数运算所要求满足条件的不同.我们知道,环的代数运算符号只是一种记号.如果集合只有二代数运算记为 ,⊕,又R对 作成一个交换群,对⊕满足结合律且⊕对 满足左、右分配律,即就是说,在环的定义里要留意两个代数运算的顺序.2.设R对二代数运算十,·作成一个环.那么,R对“十”作成一个加群,这个加群记为(R,十);又R对“·”作成一个半群,这个乍群记为(R,·).再用左、右分配律把二者联系起来就得环(R,十.·).三、习题4.1解答1.2.3.4.5.6.7.8.证明:循环环必是交换环,并且其子环也是循环环.§4.2 环的零因子和特征一、主要内容1.环的左、右零因子和特征的定义与例子.2.若环R 无零因子且阶大于1,则R 中所有非零元素对加法有相同的阶.而且这个相同的阶不是无限就是一个素数.这就是说,阶大于l 且无零因子的环的特征不是无限就是一个素数. 有单位元的环的特征就是单位元在加群中的阶.3.整环(无零因子的交换环)的定义和例子. 二、释疑解难1.由教材关于零因子定义直接可知,如果环有左零因子,则R 也必然有右零因子.反之亦然.但是应注意,环中一个元素如果是一个左零因子,则它不一定是一个右零因子.例如,教材例l 中的元素⎪⎪⎭⎫⎝⎛0001就是一个例子.反之,一个右零因子也不一定是一个左零因子.例如,设置为由一切方阵),(00Q y x y x ∈∀⎪⎪⎭⎫ ⎝⎛对方阵普通加法与乘法作成的环.则易知⎪⎪⎭⎫⎝⎛0001是R 的一个右零因子,但它却不是R 的左零因子.2.关于零因子的定义.关于零因子的定义,不同的书往往稍有差异,关键在于是否把环中的零元也算作零因子.本教材不把零元算作零因子,而有的书也把零元算作零因子.但把非牢的零因子称做真零因子.这种不算太大的差异,读者看参考书时请留意.3.关于整环的定义.整环的定义在不同的书中也常有差异.大致有以下4种定义方法: 定义1 无零因子的交换环称为整环(这是本教材的定义方法). 定义2 阶大于l 且无零因子的交换环,称为整环. 定义3 有单位元且无零因子的交换环,称为整环.定义4 阶大于1、有单位元且无零因子的交换环,称为整环.以上4种定义中,要求整环无零因子、交换是共同的,区别就在于是否要求有单位元和阶大于1.不同的定义方法各有利弊,不宜绝对肯定哪种定义方法好或不好.这种情况也许到某个时期会得到统一.但无论如何现在看不同参考书时应留意这种差异.本教材采用定义1的方法也有很多原因,现举一例。
近世代数基础知识点总结近世代数是数学中的一个重要分支,它研究的是代数结构及其性质。
本文将对近世代数的基础知识点进行总结,包括群、环、域和向量空间等的定义和性质。
一、群群是近世代数的基础概念,它是一个集合和一个二元运算构成的代数结构。
群的定义包括四个要素:集合、封闭性、结合律和单位元,还需要满足可逆性。
群的性质有唯一性、消去律、幂等性和逆元的唯一性等。
二、环环是在群的基础上引入了乘法运算的代数结构。
环的定义包括三个要素:集合、封闭性和满足环公理。
环的性质有零元的唯一性、加法逆元的唯一性、分配律和幂等性等。
三、域域是在环的基础上引入了除法运算的代数结构。
域的定义包括四个要素:集合、封闭性、满足域公理和乘法逆元的存在性。
域的性质有乘法单位元的唯一性、乘法逆元的唯一性和消去律等。
四、向量空间向量空间是线性代数的基础概念,它是一个集合和一个数域上的向量运算构成的代数结构。
向量空间的定义包括十个要素:集合、封闭性、加法单位元、加法逆元、加法交换律、加法结合律、标量乘法结合律、标量乘法分配律、标量乘法单位元和标量乘法结合律。
向量空间的性质有零向量的唯一性、加法逆元的唯一性和标量乘法的分配律等。
五、同态映射同态映射是近世代数中的一个重要概念,它是保持代数结构之间运算关系的映射。
同态映射的定义要求保持运算的封闭性、满足运算关系和保持单位元。
同态映射的性质有保持运算的封闭性、满足运算关系和保持单位元等。
六、理想理想是环和域中的一个重要概念,它是一个子集,并且满足加法逆元、封闭性和分配律。
理想的性质有加法单位元的存在性、加法逆元的存在性和分配律等。
七、同余关系同余关系是环中的一个重要概念,它是一种等价关系,表示两个元素具有相同的余数。
同余关系的性质有自反性、对称性和传递性等。
八、域的扩张域的扩张是域论中的一个重要概念,它是在一个域上构造出一个更大的域。
域的扩张可以通过添加一个或多个元素来实现,使得新的域仍然满足域公理。
近世代数第四章-环与域题解讲解第四章环与域§ 1环的定义一、主要内容1.环与子环的定义和例子。
在例子中,持别重要的是效域上的多项式环、n阶全阵环和线性变换环,以及集M的幂集环.2.环中元素的运算规则和环的非空子集S作成子环的充要条件:a tiG S ——>■戊 f 占€ S *3 循环坏的定义和性质.■■;加群是循环群的环称为循环环•其性債在本节内的主要有s1)循环环必为交怏环;,2)循坏环的子环也是循坏环;3〉循环环的子加群必为子环;. '4)pq是互异素数)阶环必为循环环*二、释疑解难1 •设R是一个关于代数运算十,•作成的环•应注意两个代数运算的地位是不平等的,是要讲究次序的.所以有时把这个环记为(R,十,•)(或者就直接说“ R 对十,•作成一个环”)•但不能记为R,-,十)•因为这涉及对两个代数运算所要求满足条件的不同•我们知道,环的代数运算符号只是一种记号.如果集合只有二代数运算记为:,®,又R对:作成一个交换群,对®满足结合律且①对: 满足左、右分配律,即by) =(◎㊉仍叮门㊉门* (⑴力㊉匸=@0小{底^芒扎则就左能说尿对叫,㊉静作成一个氐或记为侦宀㊉X 就是说,在环的定义里要留意两个代数运算的顺序.2 •设R对二代数运算十,•作成一个环•那么,R对“十”作成一个加群,这个加群记为(R, 十);又R 对“ • ”作成一个半群,这个乍群记为(R,- )•再用左、右分配律把二者联系起来就得环(R,十.•).现在啊,引:K中的这个半辟(氏,* [是占lit有可能作血一小將呢?回甞是百定的"降非I ^1 = H禺若tJ^A—刖空#?中任蕊元隶日兴O懸右< .D -0=^=0,这说.明Q 不是^尺* • 7杓单悅元.W.B. <1在C R,・)中坦逑有逆元* 因此- )Hftfe作血半PT而不能作庇曲.遊--比"如覲去艸Oi^PA R的全睹耶呼元索对乘怯是否作成群呃?这是可能的.例如任何敢據就舅于这轴繪磁.芳播,R旳全休卄*元血荷不fife作就靜的*如傾數环和整觀歼★等等-& 由于在环K中倉;a *0 = ()P =<D »寂-- '芒显7?的左电右rXX边)单位兀=!=>芒启半那〔杞* •[的屋g r双边〉单便元.儿丹阶诟环环的稠竽元和其有単悅元酌承件-设R^<a>—{ 0 > cz » Su . < n—1〉£1、戈一个n阶餡环环,且/ —臭业収T 三例阐弱艮有学位元的鋼件和I其稱警兀的情况-以下三例均假W 尺=<« ). H阶馅环环,B- a2—山2. WWE.0>1 1 R 有单位元 Mn 保1.证发、则有整救材心茨 矗 lt+ HU = 1 - 于屋对R 中仟意元巌如冇(伍心)(珂“ )—(sztjfc »U = 5< 1 ——NTT JtL — Sti ・ 由于斥足可换环,故叫是尺的单■也元* 反之+设尺有樂位尤-=炖’则w = a 、 «(r<? * =s C/>r>Hti — U (tk — 1 ><!/ = 0 T 于是算I M —丄”设th 一 1 =呵丫则tk + «<—7 >—1 > 放"山)・1“ 例2 田是R 的科等元=> k 泌产一札 证 设S 显环尺的科尊元,耻 {£«>' = t 2Au = co > CA ;F — f)a=0,01由于a^R 灼加醉的H 砂応索.枚比I 和一" 反之■设^\kt^ — “则因科皿一0.故(点卢一i 、0=a 冃.ta — jfer 14 — e £*ku —^^ = <iu)\却皿是*的幕等元. 例3 环R 有2冲一"屛个幕零元・Jl 中少【小为扣的不同*因 数的个栽•声 n 为压与打 的盘大公闵ffcdm 》的不同素因数的 个數. 证 设”=时拧…金冇 是啊旋标准分解式・由上例知・R 中壽 等充的个数就足冋余式 kI 1 — J — 0 (nv^l rr) ( 1 ) 的解的个數・疝这牛同余式的济的个数等于m个同余式■ b 匕工* — j=0 < mod <i^1 ,2 »**- t JM) < 2)的解的个敷的来税.但易知,对一令固定2,当帆I 矗时ft(2)R 冇册小半a 杠fll-[bT(X 故脅證致 获仪|总剔=1..于是 p.^Vt 戸?丨此匸一】* 悄\讥屋巳一、、一2 —工 战卞是方磊住> 的一个非零粧*又0晁然为其一解哀而冃方程(仍没冇别昶擀.即此时方程O 只有阿亍解.干堆同余式门)有2旳l申w个解,即R有旷梢计名柿牛慕奪元.三、习题4. 1解答1・1H 虽據覇知乘怯。
环简介一个具有两种二元运算的代数系统。
在抽象代数产生的19世纪,数学家们开始研究满足所有合成律(即加法交换律、结合律,乘法交换律、结合律,以及乘法对加法的分配律等等)或者满足其中的一部分的集合。
倘若一个集合具有加法、乘法和相应的运算性质,它就称为环。
整数集Z就构成一个(数)环。
在20世纪,数学家们开始研究一种新型结构叫“环”。
环是一个集合,其中的元素能通过一种类似加法运算按下面的方式结合起来:1. 若a和b都是环中的元素,那么a+b也是环中的元素;2. 加法符合结合律:若a、b和c都属于这个环,那么a+(b+c)=(a+b)+c;3. 在环中存在一个类似于0的元素--甚至也可以称它为0--具有性质:对于环中的任一元素a,有0+a=a;4. 对于环中的每个元素a和b,a+b=b+a都成立。
在环中,还对这些元素定义了另一个类似于乘法的运算,它具有下面两个性质:1. 若a和b属于环,那么它们的乘积ab也属于环;2. 若a、b和c属于环,那么结合律成立:a(bc)=(ab)c。
环的乘法通常不满足交换律(ab=ba 一般不成立),而且并不是环中的每个元素都有一个乘法的逆元。
各种n×n矩阵的集合连同运算选出来,就形成一个具体的环的例子。
在20世纪的前30多年中,由于德国数学家诺特(Emmy Noether,1882-1935年)的工作,环的结构的研究变得非常重要。
环论往往相当抽象。
虽然许多对环论感兴趣的数学家常常用字母表示环中的元素,但是由于他们对矩阵的理解非常深刻,给出了许多卓有成效的解释,所以有时把一个特殊的环表示成一个n×n矩阵的集合。
这类矩阵表示,不仅能使数学家们把环理解成具体的,甚至是可以计算的问题,而且能使数学家们去运用数学理论家的那种非常抽象的思想。
这种用矩阵集合表示环或群的方法,已经成为了当代数学、物理学,以及理论化学的一个重要组成部分。
____摘自:《代数学-集合、符号和思维的语言》[美]约翰·塔巴克著,商务印书馆,2007年7月第1版环的定义在非空集合R中,若定义了两种代数运算加和乘,且满足:1)集合R在加法运算下构成Abel群。
《近世代数》作业参考答案一.概念解释1.代数运算:一个集合B A ⨯到集合D 的映射叫做一个B A ⨯到D 的代数运算。
2.群的第一定义:一个非空集合G 对乘法运算作成一个群,只要满足:1)G 对乘法运算封闭;2)结合律成立:)()(bc a bc a =对G 中任意三个元c b a ,,都成立。
3)对于G 的任意两个元b a ,来说,方程b ax =和b ya =都在G 中有解。
3.域的定义:一个交换除环叫做一个子域。
4.满射:若在集合A 到集合A 的映射Φ下,A 的每一个元至少是A 中的某一个元的象,则称Φ为A 到A 的满射。
5.群的第二定义:设G 为非空集合,G 有代数运算叫乘法,若:(1)G 对乘法封闭;(2)结合律成立;(3)单位元存在;(4)G 中任一元在G 中都有逆元,则称G 对乘法作成群。
6.理想:环R 的一个非空子集N 叫做一个理想子环,简称理想,假若:(1)N b a N b a ∈-⇒∈,(2)N ar N ra N r N a ∈∈⇒∈∈,,7.单射:一个集合A 到A 的映射,a a →Φ:,A a A a ∈∈,,叫做一个A 到A 的单射。
若:b a b a ≠⇒≠。
8. 换:一个有限集合的一个一一变换叫做一个置换。
9. 环:一个环R 若满足:(1)R 至少包含一个不等于零的元。
(2)R 有单位元。
(3)R 的每一个非零元有一个逆元,则称R 为除环。
10.一一映射:既是满射又是单射的映射,叫做一一映射。
11.群的指数:一个群G 的一个子群H 的右陪集(或左陪集)的个数,叫做群H 在G 里的指数。
12.环的单位元:设R 是一个环,R e ∈,若对任意的R a ∈,都有a ae ea ==,则称e 是R 的单位元。
二.判断题1.×;2.×;3. √;4.×;5.√;6.√;7.√; 8,√;9.√;10.√;11.×;12.√13、√ 14、× 15、√三.证明题1. 证:G 显然非空,又任取A ,B G ∈,则1,1±=±=B A ,于是AB 是整数方阵,且1±=⋅=B A AB , 故G AB ∈,即G 对乘法封闭。
近世代数第四章- 环与域题解讲解第四章环与域§ 1 环的定义一、主要内容1.环与子环的定义和例子。
在例子中,持别重要的是效域上的多项式环、n 阶全阵环和线性变换环,以及集M 的幂集环.2.环中元素的运算规则和环的非空子集S 作成子环的充要条件:二、释疑解难1.设R 是一个关于代数运算十,·作成的环.应注意两个代数运算的地位是不平等的,是要讲究次序的.所以有时把这个环记为(R,十,·)(或者就直接说“ R 对十,·作成一个环”).但不能记为R,· ,十).因为这涉及对两个代数运算所要求满足条件的不同.我们知道,环的代数运算符号只是一种记号.如果集合只有二代数运算记为,⊕,又R 对作成一个交换群,对⊕满足结合律且⊕对满足左、右分配律,即就是说,在环的定义里要留意两个代数运算的顺序.2.设R 对二代数运算十,·作成一个环.那么,R 对“十”作成一个加群,这个加群记为(R, 十);又R 对“· ”作成一个半群,这个乍群记为(R,·).再用左、右分配律把二者联系起来就得环(R,十.·).2.三、习题 4.1 解答1.3.4.5.6.7.8.证明:循环环必是交换环,并且其子环也是循环环.§ 4.2 环的零因子和特征一、主要内容1.环的左、右零因子和特征的定义与例子.2.若环R无零因子且阶大于1,则R中所有非零元素对加法有相同的阶.而且这个相同的阶不是无限就是一个素数.这就是说,阶大于l 且无零因子的环的特征不是无限就是一个素数.有单位元的环的特征就是单位元在加群中的阶.3.整环(无零因子的交换环)的定义和例子.二、释疑解难1.由教材关于零因子定义直接可知,如果环有左零因子,则R 也必然有右零因子.反之亦然.但是应注意,环中一个元素如果是一个左零因子,则它不一定是一个右零因子.例如,教材例l 中的元素10 00就是一个例子.反之,一个右零因子也不一定是一个左零因子. 例如,设置为由 一切方阵 对方阵普通加法与乘法作成的环. 则易知 10 00 是R 的一个右零因子,但它却不是 R 的左零因子.2. 关于零因子的定义.关于零因子的定义,不同的书往往稍有差异, 关键在于是否把环中的零元也算作零因子. 本教 材不把零元算作零因子, 而有的书也把零元算作 零因子. 但把非牢的零因子称做真零因子. 这种 不算太大的差异,读者看参考书时请留意.3.关于整环的定义.整环的定义在不同的书中也常有差异. 大致有 以下 4 种定义方法:定义 1 无零因子的交换环称为整环 (这是本 教材的定义方法 ).定义 2 阶大于 l 且无零因子的交换环,称为 整环.定义 3 有单位元且无零因子的交换环, 称为 整环. 定义 4 阶大于 1、有单位元且无零因子的交 换环,称为整环.以上 4 种定义中, 要求整环无零因子、 交换是 xy00 ( x,y Q)共同的,区别就在于是否要求有单位元和阶大于1.不同的定义方法各有利弊,不宜绝对肯定哪种定义方法好或不好.这种情况也许到某个时期会得到统一.但无论如何现在看不同参考书时应留意这种差异.本教材采用定义1 的方法也有很多原因,现举一例。
《近世代数》课程教学大纲第一部分大纲说明一、课程概况适用专业:数学与应用数学课程名称:近世代数课程编码:0741123090教学时数:72二、总则1.本课程的目的和要求:近世代数不仅在数学中占有及其重要的地位,而且在学科中也有广泛的应用,如理论物理、计算机学科等。
其研究的方法和观点,对其他学科产生了越来越大的影响。
群、环、域、模是本课程的基本内容,要求学生熟练掌握群、环、域的基本理论和方法,并对模的概念有所理解。
2.本课程的主要内容:本课程讲授代数中典型的代数系统:群、环、域。
要求学生能了解群的各种定义,循环群,n阶对称群,变换群,陪集,不变子群的定义及其性质,了解环、域、理想、唯一分解环的定义。
能够计算群的元素阶,环中可逆元,零因子、素元,掌握Lagrange定理,群、环同态和同构基本定理,掌握判别唯一分解环的方法。
3.教学重点与难点:重点:群、正规子群、环、理想、同态基本原理.难点:商群、商环。
4.本课程的知识范围及与相关课程的关系集合论初步与高等代数(线性代数)是学习本课程的准备知识。
本课程学习以后可以继续研读:群论、环论、模论、李群、李代数、计算机科学等。
三、课程说明1. 课程代码:(中文)近世代数(英文)Abstract Algebra2. 课程类别:专业必修课3.学分:4学分4. 学时:72学时5.适用专业:数学与应用数学6. 适用对象:本科7.首选教材:《近世代数基础》,张禾瑞,人民教育出版社,1978年修订本。
二选教材:《近世代数》,吴品三,高等教育出版社,1978年修订本。
8. 考核方式和成绩记载说明考核方式为考试。
严格考核学生出勤情况,达到学籍管理规定的旷课量则取消考试资格。
综合成绩根据平时成绩和期末考试成绩评定,平时成绩占20%,期末考试成绩占80%。
四、教学安排《近世代数》课程的讲授为一个学期,共72学时,内容包括第1章到第4章的内容。
学时分配五、教学环节该课程是理论性较强的学科,由于教学时数所限,本课程的理论推证较少,因此必须通过做练习题来加深对概念的理解和掌握,熟悉各种公式的运用,从而达到消化、掌握所学知识的目的。
环与域§1.2环、除环、域的定义1 判断题:1.1 偶数环是有单位元的环。
( )1.2 偶数环2Z 是整环。
( )1.3 设R 是一个环,则下列三条是相互等价的。
( )A )R 中无零因子;B ) R 的乘法适合左消去律;C ) R 的乘法适合右消去律;1.4在一个环中,若左消去律成立,则消去律成立。
( ) 1.5对于环R,若a 是R 的左零因子,则a 必同时是R 的右零因子. ( ) 1.6剩余类环是一个整环 ( ) 1.7整环(R ,+, )若对乘法成群,则这个整环是域( ) 1.8若(R,+,∙)是一个环,且(R,∙)也构成一个群,则(R,+,∙)是一个除环。
1.9 设环(R ·,+ ·)≠{0},则R 的零元0也是环R 的单位。
( )1.10 设环>∙+<,,R 的加法群是循环群,那么环R 必是交换环. ( )1.11 整数环是无零因子环,但它不是除环。
( )1.12 含2个元素的环是域。
( )1.13无零因子环的特征1.14 无零因子环的特征一定是素数。
( )1.151.16 无零因子环R 的特征或是零或是一个素数。
( )1.17 剩余类m Z 是无零因子环的充分必要条件是m 为素数. ( )1.18 模27的剩余类环Z 27是域。
( )1.19 存在特征是2004的无零因子环。
( )1.201.21 含7个元的环是交换环。
( )1.22 含8个元的环是交换环。
( )1.231.24子环、环的同态1.251.261.271.281.291.30理想1.311.321.33 在整环中,左理想一定是理想。
( )1.34 没有非平凡理想的环是除环。
( )1.351.361.37 环R 的主理想(a)={ra|r ∈R} 。
剩余类环、同态与理想最大理想1.38 在交换环R 中,极大理想一定是素理想。
( )1.39 在整数环Z 中,(-3)是极大理想。
近世代数基础第三章环与域第三章环与域本章主要讨论两种代数系统,在⾼代中看到了,全体整数作⼀个环,全体有理数,全体实数或全体复数都作⼀个域,由此可见,环与域这两个概念的重要性。
§3.1 加群、环的意义●课时安排约1课时●教学内容本书P80-84定义:⼀个交换群叫做⼀个加群,假如我们把这个群的代数运算叫做加法,并且⽤符号+来表⽰。
在群中有零元、负元定义:⼀个集R叫做⼀个环,假如:1、R是⼀个加群;‘2、R对乘法运算封闭3、适合结合律4、两个分配律成⽴●教学重点加群和环的定义●教学难点环的运算性质的证明●教学要求了解加群和环的关系●布置作业P84 2●精选习题P84 1§3.2 交换律、单位元、零因⼦、整环●课时安排约1课时●教学内容本书P84-P89定义:⼀个环R叫做⼀个交环环,假如ab=ba不管a1b是R的哪两个元定义:⼀个环R的⼀个元e叫做⼀个单位元。
假如对R的任意元a来说,都有:ea = ae = a例1:书上P85定义:⼀个有单位元环的⼀个元b叫做a的⼀个逆元。
假如:ba=ab=1例2:P86定义:若是在⼀个环⾥a≠0,b≠0,但ab=0则a是环的⼀个左零因⼦,b是⼀个右零因⼦。
例3:P88定理:在⼀个没有零因⼦的环⾥两个消去律都成⽴。
a≠0,ab=ac=>b=c a≠0,ba=ca=>b=c反之也成⽴推论:在⼀个环⾥如果有⼀个消去律成⽴,那么另⼀个消去律也成⽴。
定义:⼀个环R叫做⼀个整环,假如:1、乘法适合交换律:ab=ba;2、R有单位元1:|a=a|=a3、R没有零因⼦:ab=0=>a=0或b=0●教学重点交换环、整环、单位元、零因⼦●教学难点剩余类环和定理的证明●教学要求掌握以上内容●布置作业P89 1,2,5●精选习题P89 3,4§3.3 除环、域●课时安排约1课时●教学内容P89-93例1:P90例2:P90定义:⼀个环R叫做⼀个除环,假如:1、R⾄少包含⼀个不等于零的元;2、R有⼀个单位元;3、R的每⼀个不等于零的元有⼀个逆元。