近世代数环与域共55页文档
- 格式:ppt
- 大小:3.72 MB
- 文档页数:55
第四章环与域§1 环的定义一、主要内容1.环与子环的定义和例子。
在例子中,持别重要的是效域上的多项式环、n阶全阵环和线性变换环,以及集M的幂集环.2.环中元素的运算规则和环的非空子集S作成子环的充要条件:二、释疑解难1.设R是一个关于代数运算十,·作成的环.应注意两个代数运算的地位是不平等的,是要讲究次序的.所以有时把这个环记为(R,十,·)(或者就直接说“R对十,·作成一个环”).但不能记为R,·,十).因为这涉及对两个代数运算所要求满足条件的不同.我们知道,环的代数运算符号只是一种记号.如果集合只有二代数运算记为 ,⊕,又R对 作成一个交换群,对⊕满足结合律且⊕对 满足左、右分配律,即就是说,在环的定义里要留意两个代数运算的顺序.2.设R对二代数运算十,·作成一个环.那么,R对“十”作成一个加群,这个加群记为(R,十);又R对“·”作成一个半群,这个乍群记为(R,·).再用左、右分配律把二者联系起来就得环(R,十.·).三、习题4.1解答1.2.3.4.5.6.7.8.证明:循环环必是交换环,并且其子环也是循环环.§4.2 环的零因子和特征一、主要内容1.环的左、右零因子和特征的定义与例子.2.若环R 无零因子且阶大于1,则R 中所有非零元素对加法有相同的阶.而且这个相同的阶不是无限就是一个素数.这就是说,阶大于l 且无零因子的环的特征不是无限就是一个素数. 有单位元的环的特征就是单位元在加群中的阶.3.整环(无零因子的交换环)的定义和例子. 二、释疑解难1.由教材关于零因子定义直接可知,如果环有左零因子,则R 也必然有右零因子.反之亦然.但是应注意,环中一个元素如果是一个左零因子,则它不一定是一个右零因子.例如,教材例l 中的元素⎪⎪⎭⎫⎝⎛0001就是一个例子.反之,一个右零因子也不一定是一个左零因子.例如,设置为由一切方阵),(00Q y x y x ∈∀⎪⎪⎭⎫ ⎝⎛对方阵普通加法与乘法作成的环.则易知⎪⎪⎭⎫⎝⎛0001是R 的一个右零因子,但它却不是R 的左零因子.2.关于零因子的定义.关于零因子的定义,不同的书往往稍有差异,关键在于是否把环中的零元也算作零因子.本教材不把零元算作零因子,而有的书也把零元算作零因子.但把非牢的零因子称做真零因子.这种不算太大的差异,读者看参考书时请留意.3.关于整环的定义.整环的定义在不同的书中也常有差异.大致有以下4种定义方法: 定义1 无零因子的交换环称为整环(这是本教材的定义方法). 定义2 阶大于l 且无零因子的交换环,称为整环. 定义3 有单位元且无零因子的交换环,称为整环.定义4 阶大于1、有单位元且无零因子的交换环,称为整环.以上4种定义中,要求整环无零因子、交换是共同的,区别就在于是否要求有单位元和阶大于1.不同的定义方法各有利弊,不宜绝对肯定哪种定义方法好或不好.这种情况也许到某个时期会得到统一.但无论如何现在看不同参考书时应留意这种差异.本教材采用定义1的方法也有很多原因,现举一例。
第三章 环与域与群一样,环与域也是两个重要的代数系统。
但我们早在高等代数课程里就已经接触过它们了,在哪里,我们有数环和数域的概念,它们实际上就是特殊的环与域。
在本章里,我们只是介绍环与域的最基本的性质及几类最重要的环与域,通过本章的学习,将使得我们一方面对数环和数域有更清楚的了解,另一方面也为进一步学习研究代数学打下必备的基础。
§1 加群、环的定义一、加群在环的概念里要用到加群的概念,因此要先介绍一下什么是加群,实际上加群也不是什么新的群,在习惯上,抽象群的代数运算,都是用乘法的符号来表示的,但我们知道,一个代数运算用什么符号表示是没有什么关系的,对于一个交换群来说,它的代数运算在某种场合下,用加法的符号来表示更加方便。
因此,我们通常所说的加群,是指用加法符号表示代数运算的交换群。
由于加法符号与乘法符号有所不同,所以加群的许多运算规则与表示形式就要与乘法表示的群有所不同。
如:(1)加群G 的单位元用0表示,叫做零元。
即a G ∀∈,有00a a a +=+=。
(2)加群G 的元素a 的逆元用a -表示,叫做a 的负元。
即有()0a a a a -+=+-=。
利用负元可定义加群的减法运算:()a b a b-+-。
(3)()a a--=。
(4)a c b c b a+=⇔=-。
(5)(),()a b a b a b a b-+=----=-+(6)(00()()a a a n a nna nn a n+++⎧⎪==⎨⎪--⎩个相加)为正整数为负整数,且有(),()(),() ma na m n a m na mn a n a b na nb +=+=+=+请同学们在乘法群中写出以上各结论的相应结论。
加群G的一个非空子集S作成一个子群,a b S⇔∀∈,有,a b a S+-∈,a b S⇔∀∈,有a b S-∈。
加群G的子群H的陪集表示为:a H H a+=+。
二、环的定义设R是一个非空集合,“+”与“。
近世代数第四章-环与域题解讲解第四章环与域§ 1环的定义一、主要内容1.环与子环的定义和例子。
在例子中,持别重要的是效域上的多项式环、n阶全阵环和线性变换环,以及集M的幂集环.2.环中元素的运算规则和环的非空子集S作成子环的充要条件:a tiG S ——>■戊 f 占€ S *3 循环坏的定义和性质.■■;加群是循环群的环称为循环环•其性債在本节内的主要有s1)循环环必为交怏环;,2)循坏环的子环也是循坏环;3〉循环环的子加群必为子环;. '4)pq是互异素数)阶环必为循环环*二、释疑解难1 •设R是一个关于代数运算十,•作成的环•应注意两个代数运算的地位是不平等的,是要讲究次序的.所以有时把这个环记为(R,十,•)(或者就直接说“ R 对十,•作成一个环”)•但不能记为R,-,十)•因为这涉及对两个代数运算所要求满足条件的不同•我们知道,环的代数运算符号只是一种记号.如果集合只有二代数运算记为:,®,又R对:作成一个交换群,对®满足结合律且①对: 满足左、右分配律,即by) =(◎㊉仍叮门㊉门* (⑴力㊉匸=@0小{底^芒扎则就左能说尿对叫,㊉静作成一个氐或记为侦宀㊉X 就是说,在环的定义里要留意两个代数运算的顺序.2 •设R对二代数运算十,•作成一个环•那么,R对“十”作成一个加群,这个加群记为(R, 十);又R 对“ • ”作成一个半群,这个乍群记为(R,- )•再用左、右分配律把二者联系起来就得环(R,十.•).现在啊,引:K中的这个半辟(氏,* [是占lit有可能作血一小將呢?回甞是百定的"降非I ^1 = H禺若tJ^A—刖空#?中任蕊元隶日兴O懸右< .D -0=^=0,这说.明Q 不是^尺* • 7杓单悅元.W.B. <1在C R,・)中坦逑有逆元* 因此- )Hftfe作血半PT而不能作庇曲.遊--比"如覲去艸Oi^PA R的全睹耶呼元索对乘怯是否作成群呃?这是可能的.例如任何敢據就舅于这轴繪磁.芳播,R旳全休卄*元血荷不fife作就靜的*如傾數环和整觀歼★等等-& 由于在环K中倉;a *0 = ()P =<D »寂-- '芒显7?的左电右rXX边)单位兀=!=>芒启半那〔杞* •[的屋g r双边〉单便元.儿丹阶诟环环的稠竽元和其有単悅元酌承件-设R^<a>—{ 0 > cz » Su . < n—1〉£1、戈一个n阶餡环环,且/ —臭业収T 三例阐弱艮有学位元的鋼件和I其稱警兀的情况-以下三例均假W 尺=<« ). H阶馅环环,B- a2—山2. WWE.0>1 1 R 有单位元 Mn 保1.证发、则有整救材心茨 矗 lt+ HU = 1 - 于屋对R 中仟意元巌如冇(伍心)(珂“ )—(sztjfc »U = 5< 1 ——NTT JtL — Sti ・ 由于斥足可换环,故叫是尺的单■也元* 反之+设尺有樂位尤-=炖’则w = a 、 «(r<? * =s C/>r>Hti — U (tk — 1 ><!/ = 0 T 于是算I M —丄”设th 一 1 =呵丫则tk + «<—7 >—1 > 放"山)・1“ 例2 田是R 的科等元=> k 泌产一札 证 设S 显环尺的科尊元,耻 {£«>' = t 2Au = co > CA ;F — f)a=0,01由于a^R 灼加醉的H 砂応索.枚比I 和一" 反之■设^\kt^ — “则因科皿一0.故(点卢一i 、0=a 冃.ta — jfer 14 — e £*ku —^^ = <iu)\却皿是*的幕等元. 例3 环R 有2冲一"屛个幕零元・Jl 中少【小为扣的不同*因 数的个栽•声 n 为压与打 的盘大公闵ffcdm 》的不同素因数的 个數. 证 设”=时拧…金冇 是啊旋标准分解式・由上例知・R 中壽 等充的个数就足冋余式 kI 1 — J — 0 (nv^l rr) ( 1 ) 的解的个數・疝这牛同余式的济的个数等于m个同余式■ b 匕工* — j=0 < mod <i^1 ,2 »**- t JM) < 2)的解的个敷的来税.但易知,对一令固定2,当帆I 矗时ft(2)R 冇册小半a 杠fll-[bT(X 故脅證致 获仪|总剔=1..于是 p.^Vt 戸?丨此匸一】* 悄\讥屋巳一、、一2 —工 战卞是方磊住> 的一个非零粧*又0晁然为其一解哀而冃方程(仍没冇别昶擀.即此时方程O 只有阿亍解.干堆同余式门)有2旳l申w个解,即R有旷梢计名柿牛慕奪元.三、习题4. 1解答1・1H 虽據覇知乘怯。
第16 讲第三章环与域§加群、环的定义(additive group and definition of ring)本讲的教学目的和要求:本讲开始在群理论的基础上讨论具有两个二元运算的代数体系—环的基本性质.环也是近世代数中一类重要的、基本的代数体系.由于它具有二个二元运算,所以不能避免地会迁到在群论不能接触的概念.在群的讨论中,无论在思考问题,提出问题的基本想法,还是在分析问题、解决问题的主要手法方面,对于近世代数对于近世代数来说,都具有普遍的典型的意义。
可以说基本上体现了近世代数研究问题的格调与模式。
这些对于环的讨论会有重要的启发和借鉴作用。
本讲中,主要介绍环的概念—环的主要特性及它与群的联系和区别。
在教学还引出了一批环的类别。
以及讨论了环在二个运算方面具有的基本性质。
由于是刚刚引入一种新的代数体系,所以受到内容的限制,这一讲中不会碰到什么难点。
但重点是:清楚环这种代数体系中二种运算中的谐调关系。
一.环的定义及例子定义设},;R是具有两个代数运算的代数体系,如果它+{⋅满足(1)}R是一个加法交换群{+;(2)};{⋅R 一个半群.(3)R 的乘法”·”对加法”+”满足左右分配律,即ac ab c b a +=+)(且.)(ca ba a c b +=+ R c b a ∈∀,,那么称},;{⋅+R 是一个环,在不产生混淆的前提下,可以记这个环为R .注意1.上定义中说到};{+R 是加法交换群.意味着};{+R 满足群的四条,其中单位元为0—零元.R a ∈∀,a 的逆元为一 a a —的负元.而};{⋅R 是乘法半群,意味着R 对”·”满足封闭和结合律.例1. },;{⋅+R 中设Z 为整数集,”+”和”·”为Z 中通常的整数加法和乘法.易知},;{⋅+R 是一个环.——习惯上称它为整数环,记为Z . 同理还有有理数环,实数环,复数环。
上述的四个环都是由数组成。
近世代数第四章- 环与域题解讲解第四章环与域§ 1 环的定义一、主要内容1.环与子环的定义和例子。
在例子中,持别重要的是效域上的多项式环、n 阶全阵环和线性变换环,以及集M 的幂集环.2.环中元素的运算规则和环的非空子集S 作成子环的充要条件:二、释疑解难1.设R 是一个关于代数运算十,·作成的环.应注意两个代数运算的地位是不平等的,是要讲究次序的.所以有时把这个环记为(R,十,·)(或者就直接说“ R 对十,·作成一个环”).但不能记为R,· ,十).因为这涉及对两个代数运算所要求满足条件的不同.我们知道,环的代数运算符号只是一种记号.如果集合只有二代数运算记为,⊕,又R 对作成一个交换群,对⊕满足结合律且⊕对满足左、右分配律,即就是说,在环的定义里要留意两个代数运算的顺序.2.设R 对二代数运算十,·作成一个环.那么,R 对“十”作成一个加群,这个加群记为(R, 十);又R 对“· ”作成一个半群,这个乍群记为(R,·).再用左、右分配律把二者联系起来就得环(R,十.·).2.三、习题 4.1 解答1.3.4.5.6.7.8.证明:循环环必是交换环,并且其子环也是循环环.§ 4.2 环的零因子和特征一、主要内容1.环的左、右零因子和特征的定义与例子.2.若环R无零因子且阶大于1,则R中所有非零元素对加法有相同的阶.而且这个相同的阶不是无限就是一个素数.这就是说,阶大于l 且无零因子的环的特征不是无限就是一个素数.有单位元的环的特征就是单位元在加群中的阶.3.整环(无零因子的交换环)的定义和例子.二、释疑解难1.由教材关于零因子定义直接可知,如果环有左零因子,则R 也必然有右零因子.反之亦然.但是应注意,环中一个元素如果是一个左零因子,则它不一定是一个右零因子.例如,教材例l 中的元素10 00就是一个例子.反之,一个右零因子也不一定是一个左零因子. 例如,设置为由 一切方阵 对方阵普通加法与乘法作成的环. 则易知 10 00 是R 的一个右零因子,但它却不是 R 的左零因子.2. 关于零因子的定义.关于零因子的定义,不同的书往往稍有差异, 关键在于是否把环中的零元也算作零因子. 本教 材不把零元算作零因子, 而有的书也把零元算作 零因子. 但把非牢的零因子称做真零因子. 这种 不算太大的差异,读者看参考书时请留意.3.关于整环的定义.整环的定义在不同的书中也常有差异. 大致有 以下 4 种定义方法:定义 1 无零因子的交换环称为整环 (这是本 教材的定义方法 ).定义 2 阶大于 l 且无零因子的交换环,称为 整环.定义 3 有单位元且无零因子的交换环, 称为 整环. 定义 4 阶大于 1、有单位元且无零因子的交 换环,称为整环.以上 4 种定义中, 要求整环无零因子、 交换是 xy00 ( x,y Q)共同的,区别就在于是否要求有单位元和阶大于1.不同的定义方法各有利弊,不宜绝对肯定哪种定义方法好或不好.这种情况也许到某个时期会得到统一.但无论如何现在看不同参考书时应留意这种差异.本教材采用定义1 的方法也有很多原因,现举一例。
近世代数环和域环和域无零因子环的特征数同态和理想子环极大理想和费尔马定理定义13.1.1设R是一个非空集合,R上有两个代数运算,一个称为加法,用“+”表示,另一个称为乘法,用“◦”表示。
如果下面三个条件成立:1(R,+)是一个Abel群。
2(R,◦)是一个半群。
3乘法对加法满足左右分配律:对∀a,b,c∈R有a◦(b+c)=a◦b+a◦c(b+c)◦a=b◦a+c◦a则称代数系(R,◦,+)是一个环。
Definition(定义13.1.2)如果环(R,◦,+)的乘法满足交换律,即对∀a,b∈R有a◦b=b◦a,则称(R,◦,+)是一个交换环或可换环。
Example(例13.1.1)整数集合Z对通常的加法和乘法构成一个环(Z,+,·),这个环是一个交换环。
Example(例13.1.2)有理数集Q、实数集R和复数集C对通常的加法和乘法分别构成交换环(Q,+,·)、(R,+,·)和(C,+,·)。
Example(例13.1.3)设M n为所有n×n实矩阵的集合,则M n对矩阵的加法和乘法构成一个非交换环(M n,+,·),这个环称为n阶矩阵环。
Definition(定义12.1.3)环(R,◦,+)称有限换环,如果R是非空有限集合,即|R|<+∞。
Example(例13.1.4)文字x的整系数多项式之集设Z[x]对多项式的加法和乘法构成一个交换环。
Example(例13.1.5)设S={0},则S对数的通常加法和乘法构成一个环,称为零环,它仅有一个元素。
Example(例12.1.6)有限环的一类重要例子是模n剩余类环(Z n,+,·),其中Z n是全体整数集合Z对模n的同余类之集Z n={[0],[1],···,[n−1]}在环(R,+,◦)中,加法的单位元用0表示,并称为R的零元(素)。
对∀a∈R,a对加法的逆元素记为−a,并称为a的负元素。
近世代数基础第三章环与域第三章环与域本章主要讨论两种代数系统,在⾼代中看到了,全体整数作⼀个环,全体有理数,全体实数或全体复数都作⼀个域,由此可见,环与域这两个概念的重要性。
§3.1 加群、环的意义●课时安排约1课时●教学内容本书P80-84定义:⼀个交换群叫做⼀个加群,假如我们把这个群的代数运算叫做加法,并且⽤符号+来表⽰。
在群中有零元、负元定义:⼀个集R叫做⼀个环,假如:1、R是⼀个加群;‘2、R对乘法运算封闭3、适合结合律4、两个分配律成⽴●教学重点加群和环的定义●教学难点环的运算性质的证明●教学要求了解加群和环的关系●布置作业P84 2●精选习题P84 1§3.2 交换律、单位元、零因⼦、整环●课时安排约1课时●教学内容本书P84-P89定义:⼀个环R叫做⼀个交环环,假如ab=ba不管a1b是R的哪两个元定义:⼀个环R的⼀个元e叫做⼀个单位元。
假如对R的任意元a来说,都有:ea = ae = a例1:书上P85定义:⼀个有单位元环的⼀个元b叫做a的⼀个逆元。
假如:ba=ab=1例2:P86定义:若是在⼀个环⾥a≠0,b≠0,但ab=0则a是环的⼀个左零因⼦,b是⼀个右零因⼦。
例3:P88定理:在⼀个没有零因⼦的环⾥两个消去律都成⽴。
a≠0,ab=ac=>b=c a≠0,ba=ca=>b=c反之也成⽴推论:在⼀个环⾥如果有⼀个消去律成⽴,那么另⼀个消去律也成⽴。
定义:⼀个环R叫做⼀个整环,假如:1、乘法适合交换律:ab=ba;2、R有单位元1:|a=a|=a3、R没有零因⼦:ab=0=>a=0或b=0●教学重点交换环、整环、单位元、零因⼦●教学难点剩余类环和定理的证明●教学要求掌握以上内容●布置作业P89 1,2,5●精选习题P89 3,4§3.3 除环、域●课时安排约1课时●教学内容P89-93例1:P90例2:P90定义:⼀个环R叫做⼀个除环,假如:1、R⾄少包含⼀个不等于零的元;2、R有⼀个单位元;3、R的每⼀个不等于零的元有⼀个逆元。