正电子发射型计算机断层显像-PET
- 格式:pptx
- 大小:73.52 MB
- 文档页数:29
什么是PET-CT,它的显像原理是什么?PET/CT是目前最为完美、最高档次的医学影像设备,同时也是一种独特的医疗诊断技术。
PET-CT的全称是正电子发射计算机断层-X线计算机体层成像,是正电子发射型计算机断层(PET)-X-射线计算机体层(CT)有机地一体化组合而成的功能分子影像成像系统。
这种影像技术是目前影像诊断中两种最具特色的技术---PET(功能显像)与CT(形态显像)的最优化组合。
它以PET特有的通过正电子核素或其标记的示踪剂,示踪人体内特定生物物质的生物活动,采用多层、环形排列于发射体周围的探头,由体外探测示踪剂所产生的光子,然后将获得的信息,通过计算机处理,以解剖影像的形式及其相应的生理参数,显示靶器官或病变组织的状况,藉此诊断疾病,又称为生化显像或功能分子显像,是目前唯一可以在活体分子水平完成生物学显示的影像技术;同时结合应用高档16排CT技术进行精确定位,可精确地提供靶器官的解剖和功能双重信息,并能够独立完成多排螺旋CT的临床显像,大大提高临床使用价值。
是当今临床用以诊断和指导治疗肿瘤、冠心病和神经精神疾病这三大威胁人类疾病的最佳手段。
1. PET显像是一种功能显像,它的长处在于它能较早而准确地揭示和捕获机体的异常生物学信息,甚至可在出现临床体征或结构形态改变之前发现病变。
与以显示解剖结构为主的常规医学影像技术(超声、CT、MRI)不同,PET就其原理而言,它是一种"放射性核素示踪医学影像技术"。
它的受检对象是活体,所揭示的是机体动态的生物学过程。
它是使用核素11C、 13N、15O和18F等(它们多是人体组成的基本元素)及其标记的人体生物物质如糖、氨基酸、脂肪、核酸、配基或抗体等作为示踪剂(这些示踪剂即为携带生物信息的分子),示踪人体内特定生物物质的生物活动,可在不影响内环境平衡的生理条件下,获得某一正常组织或病灶的在某一时刻的血流灌注、糖/氨基酸/核酸/氧代谢或受体的分布及其活性状况等功能信息。
正电子发射型计算机断层扫描仪(PET/CT)性能参数一、货物用途设备用于全身各脏器的功能代谢显像,尤其是肿瘤、心脑疾病的精准诊断及研究二、主要部件及性能参数提供最新最高端PET/CT设备三、基本结构1.PET系统1.1PET探测器:环数、晶体1.2 光电倍增管:数量、类型1.3采用CT衰减矫正1.4提供日常原厂质控、校准源:类型、数量、活度/根1.5TOF重建技术(包含软、硬件)2.提供128层以上CT2.1探测器:材料、最大层数、2.2球管:球管最低保用次数(万秒)3提供闭合式一体化机架:内置激光定位系统、交互式应答系统、孔径、驱动方式、冷却方式、开放门控接口4.扫描床:最大水平移动范围(cm)提供安全绑带、碰撞报警装置、承重量(kg)5计算机系统5.1 工作站:采集工作站、处理工作站2套5.2 采集工作站硬件配置:主频内存(GB)、硬盘容量(TB)数据外存方式、医学影像专用显示器(LCD)5.3 处理工作站硬件配置:主频、内存(GB)、硬盘容量(TB)、数据外存方式、客户端、医学影像专用显示器(LCD)5.4 网络要求:DICOM 3.0、DICOM RT5.辅助设备:头托、质控模型、PET NEMA质控模型、CT质控模型、PET-CT融合质控模型四、应用软件1 PET应用软件1.1 图像采集软件(包含静态, 动态, 门控, 3D,List mode, 脑,心脏专用等)1.2 图像处理(重建)软件1.3 图像显示软件1.4 定量分析软件(SUV,VOI)1.5 校正软件1.6 质量控制软件1.7 NEMA测试软件1.8 3D迭代重建软件1.9 肿瘤疗效评估软件1.10 其他软件2 CT应用软件2.1 图像采集软件2.2 图像处理(重建)软件2.3 图像显示软件2.4 图像分析软件2.5 校正软件2.6 质量控制软件2.7 辐射剂量计算软件2.8 低剂量软件2.9 放疗模拟定位和放疗计划2.10 自动剂量调节软件2.11 其他软件3 PET/CT应用软件3.1 同机图像融合软件3.2 异机图像融合软件3.3 图像处理软件3.4 图像显示软件3.5 图像分析软件3.6 校正软件3.7 质量控制软件3.8 图像传输软件3.9 其他软件五、辅助配件1.高压注射器2台2.中文报告系统1套3.激光打印机1套4.放疗定位灯1台5.PET入墙注射防护台6.自动注射系统7.辐射防护用品7.1 钨合金药物分装翻转防护罐1个(30ml)7.2 注射器钨合金防护套(3cc和5cc规格)各1套7.3药物转运防护罐7.4正电子药物使用废物桶7.5个人防护:铅眼镜(平光、近视300、近视500度)、柔软性铅背心、铅帽、铅围脖四件为1套、共3套(0.5mmPb)7.6 数字化辐射剂量监测系统(需涵盖整个PET/CT楼放射工作场所及周边环境)1套8.阅片电脑+竖屏6套。
PET/CTPET/CT是一种将PET(功能代谢显像)和CT(解剖结构显像)两种影像技术有机地结合的新型影像设备,是将微量的正电子核素示踪剂注射到人体内,然后采用特殊的体外探测仪(PET)探测这些正电子核素人体各脏器的分布情况,通过计算机断层显像的方法显示人体的主要器官的生理代谢功能,同时应用CT技术为这些核素分布情况进行精确定位,使这台机器同时具有PET 和CT的优点,发挥出各自的最大优势。
中文名正电子发射断层显像/X 线计算机体层成像仪PET/CTPET/CT(positron emission tomography / computedtomography )全称为正电子发射断层显像/X 线计算机体层成像仪,是一种将PET(功能代谢显像)和CT(解剖结构显像)两种先进的影像技术有机地结合在一起的新型的影像设备. 它是将微量的正电子核素示踪剂注射到人体内,然后采用特殊的体外探测仪(PET)探测这些正电子核素人体各脏器的分布情况,通过计算机断层显像的方法显示人体的主要器官的生理代谢功能,同时应用CT 技术为这些核素分布情况进行精确定位,使这台机器同时具有PET 和CT 的优点,发挥出各自的最大优势[1] 。
PET/CT是PET和CT的组合体,将PET和CT设计为一体,由一个工作站控制[2] 。
单PET进行核医学显像时,有其它诊断设备无法比拟的早期发现灵敏性等优越特性,但因药物及其原理所限,其定位精度不够好,有厂商后来将PET和CT设计为一体,扫描时根据需求同时进行PET显像和CT显像[3] ,并由工作站将两种图像融合到一起,以达到更好的鉴别和定位。
2 发展历史编辑PET/CT近年来,影像诊断学的一个重要进展,就是图像融合技术的发展与应用。
图像融合包括硬件与软件,是一个全自动图像配准及多种图像的解读技术,它不仅具有全自动的功能与解剖图像的融合,还可以让具有不同特征的影像在同一平台显示、解读,对比与分析,为临床诊断与治疗之间架起了一座高速、流畅的桥梁。
区分PET和PET-CTPET(Positron Emission computed Tomography)中文名字叫正电子发射型计算机断层扫描,其临床应用历史已有有四十多年了。
1974年第一台商业化PET进入临床,1992年第一台全身PET开始使用,随着2003年带16排CT的全身PET-CT开始商用,全球各大厂商停止了单独PET的生产销售。
PET/CT作为核医学科的新锐检查手段,是医学影像界的又一次革命,正如其名字里含有的Pet(宠物)一样,其已经成为现代核医学科的新宠,到目前为止国内各大医院核医学科已经装机200余台,而且随着市场准入的门槛逐渐降低,未来有可能进入医保或部分进入医保以及诸如联影等国内公司等在大型医疗装备方面的国产化努力,其装机数量逐渐呈现井喷态势。
PET/CT在给大众健康事业带来惊喜和福音的同时,因其在过去10年宽泛而不加节制的体检,甚至部分机构夸大其效用宣传,已引起专业人士与民众对其质疑、恐慌,甚至公开或半的激烈争论也间歇呈现。
比如学界医对其质疑、恐慌,甚至公开或半的激烈争论也间歇呈现。
比如学界医对其质疑、恐慌,甚至公开或半的激烈争论也间歇呈现。
比如学界、医界对其早期发现肿瘤的能力、辐射危害大小一直存在争论,如今公众对这个高逼格影像检查产生的辐射与危害,甚而到了谈辐色变地步。
为了客观有效地使PET-CT这种好装备更好地为适合的患者服务,本文将为你掀开PET/CT 的神秘面纱,瞧瞧它的庐山真面目,以便好钢用在刀刃上。
说起PET与PET-CT,ECT自然是个绕不过的话题。
严格地将讲,PET与SPECT均属于ECT家族成员,但由于历史习惯的原因,在我国一般说起ECT就单指SPECT,而PET-CT 因其贵、新被大家单独对待。
下图名词集粹详细地列出了它们之间的区别与联系。
首先来说说PET这种影像检查后神器的工作原理及构成,也就是它是怎么干活的。
PET是反映病变的基因、分子、代谢及功能状态的显像设备。
PET/CT简介Contents1.概述 (2)1.1 PET、CT、PET/CT概念 (2)1.2 PET/CT技术发展和应用过程简述 (3)2.PET原理及结构 (4)2.1 PET原理 (4)2.2 PET结构 (6)3.CT原理及结构 (7)3.1 CT原理 (7)3.2 CT结构 (8)4.PET/CT原理及结构 (9)5.PET/CT软件结构及功能 (12)6.PET/CT操作过程概述 (14)6.1 PET/CT扫描操作基本采集概述 (15)6.2 PET、CT图像融合操作概述 (15)7.PET/CT临床应用检查流程概述 (15)8.PET/CT图像质量注意事项 (18)9.PET/CT市场情况简介 (18)9.1 PET/CT市场保有量统计 (18)9.2 PET/CT市场保有量国别结构统计 (19)9.3 PET/CT市场保有量品牌结构统计 (20)1.概述1.1 PET、CT、PET/CT概念PET是正电子发射计算机断层显像(Positron Emission computed Tomography)的英文缩写。
将标有带正电子化合物的放射性核素注射到受检者体内,让受检者在PET的有效视野范围内进行PET扫描,放射核素发射出的正电子与组织中的负电子结合发生湮灭辐射,产生两个能量相等(511 KeV)、方向相反的γ光子。
两个光子被两个探测器探测到并判断为一个符合事件,探测系统探测到大量的符合事件,对数据进行分类后,得出不同符合线方向上的事件量,通过电子计算机处理,重建出人体内正电子核素聚集分布的断层图像。
CT是电子计算机X射线断层成像系统(X-Ray computed tomography)的英文简称。
用X射线发生器发射的 X射线对人体投射,经探测器测定透射人体后的X放射量,对数据进行分类后,得出不同透射方向上的放射量,通过电子计算机处理,重建出人体组织密度和成分分布的断层图像。
正电子发射断层扫描正电子发射断层扫描(PET)可以了解人体身体内部脏器的三维图像,而且图像可以清晰的显示我们重点关注的部位,包括不正常区域,并能显示在某一特定功能下组织器官的运行情况。
PET扫描通常与CT扫描相结合,从而提供更详细的图像信息,即我们熟知的PET-CT。
而PET扫描也可以与磁共振成像(MRI)相结合,被称为PET-MRI。
为什么使用PET扫描?PET扫描的优点是,它可以显示出身体某一部位的工作情况,而不是仅仅是该部位本身的外型。
尤其对于癌症确诊、癌症的远处转移对治疗的反应性方面PET扫描具有明显的优势。
对于冠脉搭桥手术和癫痫的脑部手术,PET扫描也能起到很好的辅助作用。
对于老年痴呆等影响大脑功能的疾病,PET扫描也可以协助其诊断。
PET扫描是如何运行工作的?PET扫描是通过检测辐射发出的物质(即放射性示踪剂分布在体内不同的部位)。
大部分的PET的放射性示踪剂为氟脱氧葡萄糖(FDG),这种糖与自然代谢产生的糖类似,以至于人体会按照同样的方式对FDG进行处理。
通过分析FDG在各个地方存在与否,从而分析出身体某个脏器的功能和识别出异常情况。
举个例子:FDG在身体某个组织高度聚集将有助于识别肿瘤细胞,因为肿瘤细胞对于糖的利用来说是高于正常细胞的。
在PET扫描时会发生什么?PET扫描一般在门诊进行,这就意味着你不用在医院过夜。
很重要的是,你必须按时到达你检查的地方,因为放射性示踪剂的有效期很短,如果迟到,你就只能放弃检查了。
准备工作你的预约信里会提到在你准备扫描前的一切注意事项。
六小时前禁食,可食用流质,但最好只是饮水。
预约后24小时尽量避免剧烈运动。
扫描的时候最好穿着宽松舒适的衣服,有的时候医院会要求你更换成病员服再进行扫描。
尽量避免穿戴首饰和含有金属的衣物(比如:拉链),如果穿戴上诉衣物在PET扫描的时候应先脱去。
放射性示踪剂的注射在扫描前,放射性示踪剂会从你手臂或手的静脉内注入,大约一个小时后,它将会被你身体内的细胞所吸收。
PET-CTPET全称为正电子发射计算机断层显像(positron emission tomography PET),是反映病变的基因、分子、代谢及功能状态的显像设备。
它是利用正电子核素标记葡萄糖等人体代谢物作为显像剂,通过病灶对显像剂的摄取来反映其代谢变化,从而为临床提供疾病的生物代谢信息。
PET采用正电子核素作为示踪剂,通过病灶部位对示踪剂的摄取了解病灶功能代谢状态,可以宏观的显示全身各脏器功能,代谢等病理生理特征,更容易发现病灶。
CT可以精确定位病灶及显示病灶细微结构变化;PET/CT融合图像可以全面发现病灶,精确定位及判断病灶良恶性,故能早期,快速,准确,全面发现病灶。
作用PET的独特作用是以代谢显像和定量分析为基础,应用组成人体主要元素的短命核素如11C、13N、15O、18F等正电子核素为示踪剂,不仅可快速获得多层面断层影象、三维定量结果以及三维全身扫描,而且还可以从分子水平动态观察到代谢物或药物在人体内的生理生化变化,用以研究人体生理、生化、化学递质、受体乃至基因改变。
近年来,PET在诊断和指导治疗肿瘤、冠心病和脑部疾病等方面均已显示出独特的优越性。
原理一、PET显像的基本原理PET是英文Positron Emission Tomography的缩写。
其临床显像过程为:将发射正电子的放射性核素(如F-18等)标记到能够参与人体组织血流或代谢过程的化合物上,将标有带正电子化合物的放射性核素注射到受检者体内。
让受检者在PET的有效视野范围内进行PET显像。
放射核素发射出的正电子在体内移动大约1mm后与组织中的负电子结合发生湮灭辐射。
产生两个能量相等(511 KeV)、方向相反的γ光子。
由于两个光子在体内的路径不同,到达两个探测器的时间也有一定差别,如果在规定的时间窗内(一般为0-15 us),探头系统探测到两个互成180度(士0.25度)的光子时。
即为一个符合事件,探测器便分别送出一个时间脉冲,脉冲处理器将脉冲变为方波,符合电路对其进行数据分类后,送人工作站进行图像重建。
正电子发射计算机断层仪(PET)性能测试(本文译自Performance Measurements of Positron EmissionTomographs[NEMA])李小华译1.定义,符号和参考文献∙ 1.1 定义)平行于PET长轴的最大长轴向FOV(轴向视野,Axial filed-of-view,FOVaxial度,在此范围内真实符合事件可以被探测。
测试模型是一个由纯聚甲基丙烯酸甲酯(PMMA)构成的正圆柱体,外部直径为203± 3mm,壁厚3± 1mm,内长190± 1mm。
两端盖板用PMMA材料,可注入水和放置内插件(见图1-1)。
测试模型柱体插件为三个正圆柱体模型,每个内长190mm+10/-5mm。
一个为直径50±3mm的实心体,由比重在2.13-2.19之间的材料(Polytrafluoroethylene)组成。
另外两个为外部直径50± 3mm的可灌注的空心体,壁厚3± 1mm,内长至少185mm。
在测试模型内,这三个直径50mm的插件放置在一起,它们位于距测试模型中心轴60± 3mm的半径处,相互间隔120︒± 10︒,并与测试模型中心轴平行。
对于不用测试模型的测试,有两种简单的测试源:可灌注点源是所有尺寸不大于2mm的液体源。
∙∙∙可灌注线源由不锈钢制作,长度至少等于轴向FOV,其它尺寸不超过 2mm。
测试模型线源插件为可灌注的空心体,内长至少185mm,其它尺寸不超过 2mm。
它可以放置在测试模型内的0、45、90mm(± 3mm)的半径位置,平行于断层长轴。
)是垂直于PET的物体横断FOV(横断视野,Transvers filed-of-view,FOVtrans成像长轴的最大圆形区域直径,∙ 1.2 标准符号量的描述符号被用于标准中。
符号通过它的下标字符xxx表示其在标准中所表示的基本量。
pet的显像原理PET(正电子发射断层显像)是一种常用的核医学影像技术,通过测量放射性同位素的分布来观察人体内部器官和组织的代谢活动。
PET 显像原理基于正电子湮没效应和正电子与电子湮没效应的相对性。
在PET显像中,首先需要给患者注射一种放射性同位素,通常是氟-18。
这种同位素具有短半衰期,能够在体内迅速发生衰变。
氟-18放射性同位素与正电子发生衰变,产生一个正电子和一个中性中子。
这个正电子会迅速与周围的电子相遇,发生湮没效应。
当正电子与电子相遇时,它们会发生湮没,产生两个光子。
这两个光子的能量相等,方向相反。
这种湮没效应是PET显像原理的核心。
光子的能量是511千电子伏特,因此PET显像仅能探测到具有这个能量的光子。
PET显像设备由环状的探测器组成,每个探测器包含一个探测晶体和一个光电倍增管。
当光子进入探测器时,它会与晶体相互作用,产生一系列的光子。
这些光子被光电倍增管接受并放大,然后被转换成电信号。
PET显像设备同时具有多个探测器,形成一个环形结构。
当正电子发生湮没,产生两个光子时,这两个光子会沿着相反的方向运动。
PET设备可以检测到这两个光子,并根据光子击中不同探测器的时间差和能量差来确定光子的来源位置。
通过测量大量的光子击中不同探测器的时间和能量信息,PET设备可以重建出正电子的分布图像。
这个图像代表了人体内部器官和组织的代谢活动。
正常组织和异常组织的代谢活动有所不同,因此PET显像可以用于检测和诊断各种疾病,如肿瘤、心血管疾病和神经系统疾病。
PET显像具有很高的灵敏度和空间分辨率,能够提供关于组织代谢的定量信息。
它还可以与其他影像技术,如CT和MRI相结合,提供更全面的诊断结果。
然而,PET显像也存在一些限制,包括辐射暴露和成本高昂等问题。
PET显像原理基于正电子湮没效应和正电子与电子湮没效应的相对性。
通过测量正电子湮没产生的光子能量和时间信息,PET设备可以重建出人体内部器官和组织的代谢活动图像。
正电子发射断层扫描的原理与应用正电子发射断层扫描(PET)是一种高度敏感的成像技术,可以在人体内的器官或组织中检测到代谢变化,并生成三维图像。
PET技术在医学领域中被广泛应用,包括癌症诊断和治疗、心血管疾病、神经学和心理学等方面。
1. PET扫描的原理PET扫描使用放射性同位素标记的生物分子(如葡萄糖)注射到体内,这些标记分子会在人体内发射正电子(带正电荷的基本粒子)。
正电子与负电子(称为电子)相遇时,它们会发生湮灭,产生伽玛射线。
PET扫描使用环绕在人体周围的一组探测器来测量伽玛射线的产生和传递。
这些探测器可以检测流经人体的伽玛射线,并确定它们的位置。
计算机可以使用探测器得到的信息来重建人体内的三维图像。
2. PET扫描的应用PET扫描被广泛应用于医学领域,因为它可以提供关于器官和组织的详细信息,以及它们的代谢活动。
PET扫描可以检查许多不同类型的疾病,例如详细探查某些种类的癌症、识别心脏疾病,以及检测神经退行性疾病等。
以下是PET扫描的一些典型应用:2.1 癌症诊断与治疗PET扫描可以帮助诊断和治疗癌症,以及评估治疗效果。
PET扫描可以检测身体中的异常细胞,如何扩展到近邻组织,是否转移至其他部位。
这些信息可以用于指导治疗计划和确定疗效。
2.2 心血管疾病PET扫描可以检测心肌缺血(血液不充分到达心脏),从而帮助诊断和治疗心血管疾病。
2.3 神经学和心理学PET扫描可以用于诊断和治疗神经退行性疾病,如阿尔茨海默病和帕金森病。
PET扫描也可以用于诊断和治疗精神障碍,如抑郁症和焦虑症。
3. PET扫描的优点和限制3.1 优点PET扫描是一项非侵入性的成像技术,对人体没有任何伤害。
PET扫描可以检测到疾病早期变化,并可以提供详细的代谢信息。
PET扫描还可以用于评估治疗效果。
3.2 限制PET扫描的主要限制是成本较高、设备体积较大,需要较长的扫描时间和较高的辐射剂量。
此外,PET扫描需要注射放射性同位素。
全称为:正电子发射型计算机断层显像(Positron Emission Computed Tomography),是核医学领域比较先进的临床检查影像技术。
其大致方法是,将某种物质,一般是生物生命代谢中必须的物质,如:葡萄糖、蛋白质、核酸、脂肪酸,标记上短寿命的放射性核素(如F18,碳11等),注入人体后,通过对于该物质在代谢中的聚集,来反映生命代谢活动的情况,从而达到诊断的目的。
最近各医院主要使用的物质是氟代脱氧葡萄糖,简称FDG。
其机制是,人体不同组织的代谢状态不同,在高代谢的恶性肿瘤组织中葡萄糖代谢旺盛,聚集较多,这些特点能通过图像反映出来,从而可对病变进行诊断和分析。
编辑本段2.1 PET检查仪的原理一些短寿命的物质,在衰变过程中释放出正电子,一个正电子在行进十分之几毫米到几毫米后遇到一个电子后发生湮灭,从而产生方向相反(180度)的一对能量为511KeV的光子(based on pair production)。
这对光子,通过高度灵敏的照相机捕捉,并经计算机进行散射和随机信息的校正。
经过对不同的正电子进行相同的分析处理,我们可以得到在生物体内聚集情况的三维图像。
编辑本段2.2 PET检查的优点PET是目前惟一可在活体上显示生物分子代谢、受体及神经介质活动的新型影像技术,现已广泛用于多种疾病的诊断与鉴别诊断、病情判断、疗效评价、脏器功能研究和新药开发等方面。
(1)灵敏度高。
PET是一种反映分子代谢的显像,当疾病早期处于分子水平变化阶段,病变区的形态结构尚未呈现异常,MRI、CT检查还不能明确诊断时,PET检查即可发现病灶所在,并可获得三维影像,还能进行定量分析,达到早期诊断,这是目前其它影像检查所无法比拟的。
(2)特异性高。
MRI、CT检查发现脏器有肿瘤时,是良性还是恶性很难做出判断,但PET检查可以根据恶性肿瘤高代谢的特点而做出诊断。
(3)全身显像。
PET一次性全身显像检查便可获得全身各个区域的图像。