上海交大杜秀华老师现代控制理论 控制系统状态空间表达式的解
- 格式:pptx
- 大小:431.37 KB
- 文档页数:22
三、 多输入多输出系统的标准形旺纳姆(Wonham )标准形和龙伯格(Luenberger )标准形。
1.多输入多输出系统的能控标准形考虑线性定常系统:Σx Ax Bu y Cx=+=x 为n 维状态向量,u 为p 输入向量,y 为q 维输出向量如果系统能控,则系统的能控性矩阵的秩为n ,即cQ 中有n 个线性无关列。
111121212[]c Q b b b Ab Ab Ab A b A b A b n n n p p p ---=对多输入系统,1p >,c Q 中有np 列,所以,在c Q 中可以找出很多种n 个线性无关列的情况。
这里介绍两种寻找n 个线性无关列的方法,以构成状态变换阵,将状态空间描述形式变换为旺纳姆能控标准形和龙伯格能控标准形。
定理 [旺纳姆能控标准形]对完全能控的线性定常系统,存在线性非奇异变换1x Px Q x -==使状态空间表达式转化为旺纳姆能控标准形:Σx A x B u y C xcW c c c =+=式中111211222A A A 0A A A Q AQ 00A m m c mm -⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦11(11(1)11010011,2,,0001A ,i i ii i mννννααα⨯-⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎣⎦)112()00,1,,00A i j ij ij ij ij j i m νννγγγ⨯⎡⎤⎢⎥⎢⎥==+⎢⎥⎢⎥⎢⎥⎣⎦1(1)11(1)001001B Q B m p c n m np ββββ+-+⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦C CQ c =(无特殊形式)证明:见书 例 求如下系统的旺纳姆能控标准形121100*********A B -⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦计算系统的能控性矩阵2101204010101001042BABA B c Q ⎡⎤⎢⎥⎡⎤==⎣⎦⎢⎥⎢⎥⎣⎦3c Q rank =,系统完全能控。
现代控制理论试题B 卷及答案一、1 系统[]210,01021x x u y x ⎡⎤⎡⎤=+=⎢⎥⎢⎥-⎣⎦⎣⎦能控的状态变量个数是,能观测的状态变量个数是cvcvx 。
2试从高阶微分方程385y y y u ++=求得系统的状态方程和输出方程(4分/个)解 1. 能控的状态变量个数是2,能观测的状态变量个数是1。
状态变量个数是2。
…..(4分)2.选取状态变量1x y =,2x y =,3x y =,可得 …..….…….(1分)12233131835x x x x x x x u y x ===--+= …..….…….(1分)写成010*********x x u ⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦…..….…….(1分)[]100y x = …..….…….(1分)二、1给出线性定常系统(1)()(),()()x k Ax k Bu k y k Cx k +=+=能控的定义。
(3分)2已知系统[]210 020,011003x x y x ⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦,判定该系统是否完全能观?(5分)解 1.答:若存在控制向量序列(),(1),,(1)u k u k u k N ++-,时系统从第k 步的状态()x k 开始,在第N 步达到零状态,即()0x N =,其中N 是大于0的有限数,那么就称此系统在第k 步上是能控的。
若对每一个k ,系统的所有状态都是能控的,就称系统是状态完全能控的,简称能控。
…..….…….(3分) 2.[][]320300020012 110-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=CA ………..……….(1分) [][]940300020012 3202=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=CA ……..……….(1分) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=940320110 2CA CA C U O ………………..……….(1分) rank 2O U n =<,所以该系统不完全能观……..….…….(2分)三、已知系统1、2的传递函数分别为2122211(),()3232s s g s g s s s s s -+==++-+求两系统串联后系统的最小实现。
第六章稳定性与李雅普诺夫(Lyapunov)方法6.1 概述研究平衡状态及其稳定性介绍两类解决稳定性问题的方法,即Lyapunov第一法和Lyapunov第二法。
第一法通过求解微分方程的解来分析运动稳定性,即通过分析非线性系统线性化方程特征值分布来判别原非线性系统的稳定性;第二法则是一种定性方法,它无需求解的非线性微分方程,通过构造一个Lyapunov函数,研究它的正定性及其对时间的沿系统方程解的全导数的负定或半负定,来得到稳定性的结论。
一般我们所说的Lyapunov方法就是指Lyapunov第二法。
虽然在非线性系统的稳定性分析中,Lyapunov稳定性理论具有基础性的地位,但在具体确定许多非线性系统的稳定性时,需要技巧和经验。
6.2 Lyapunov 意义下的稳定性问题一、 平衡状态、给定运动与扰动方程之原点考虑如下非线性系统),(t x f x = (6.1)式中x 为n 维状态向量,),(t x f 是变量1x ,2x ,…,n x 和t 的n 维向量函数。
假设在给定初始条件下,式(6.1)有唯一解),;(00t x t Φ,且当0t t =时,0x x =。
于是0000),;(x t x t =Φ在式(6.1)的系统中,总存在0),(≡t x f e , 对所有t (6.2) 则称e x 为系统的平衡状态或平衡点。
如果系统是线性定常的,也就是说Ax t x f =),(,则当A 为非奇异矩阵时,系统存在一个唯一的平衡状态0=e x ;当A 为奇异矩阵时,系统将存在无穷多个平衡状态。
对于非线性系统,则有一个或多个平衡状态,这些状态对应于系统的常值解(对所有t ,总存在e x x =)。
平衡状态的确定不包括式(6.1)的系统微分方程的解,只涉及式(6.2)的解。
任意一个孤立的平衡状态(即彼此孤立的平衡状态)或给定运动)(t x φ=都可通过坐标变换,统一化为扰动方程),~(~~t x f x = 之坐标原点,即0),0(~=t f 或0~=e x 。
《现代控制理论》课程教学大纲一、课程基本信息1、课程代码:AU3022、课程名称(中/英文):现代控制理论(Modern Control System)3、学时/学分:54学时/3学分4、先修课程:自动控制理论5、面向对象:自动化专业本科生,相邻专业研究生6、开课院(系)、教研室:自动化系7、教材、教学参考书:教材:现代控制理论刘豹机械工业出版社2000教学参考书:Linear System Theory and Design Chi-Tsong Chen Oxford university press 1999二、本课程的性质和任务现代控制理论是自动化专业的高年级本科生的必修课程,课程包括了现代控制理论中的基础理论部分,主要内容为线性系统理论基础内容。
课程首先介绍了控制理论的发展概况和应用概况,说明了线性系统的特性,然后深入讲解系统的状态空间描述,状态空间表达式的求解,线性控制系统的能控性和能观性、系统的稳定性和李雅普诺夫方法、线性定常系统的综合,最优控制问题的概述和线性定常二次型最优控制问题。
通过本课程的学习,学生可以掌握线性系统的基本分析和设计方法,为学生学习后继课程、从事工程技术工作、科学研究及开拓性技术工作打下坚实的基础。
三、本课程教学内容和基本要求《现代控制理论》现代控制理论的教学内容分为七部分,对不同的内容提出不同的教学要求。
(数字表示供参考的相应的学时数)第一章概论(1)控制理论的发展、现代控制理论的特点及举例、线性系统的特点(1)要求:掌握现代控制理论与经典控制理论的不同点和线性系统的特点。
第二章控制系统的状态空间表达式(7)1.状态变量及状态空间表达式、状态空间表达式的模拟结构图(2)2.状态空间表达式的建立(一)(1)3.状态空间表达式的建立(二)(1)4.状态向量的线性变换(1)5.由状态空间表达式求传递函数阵、时变系统和非线性系统的状态空间表达式(2)要求:熟练掌握系统状态空间表达方法的概念、形式,掌握系统状态空间表达式的各种建立方法、掌握系统的线性变换方法、掌握模型转换方法。