现代控制工程绪论-试讲1
- 格式:ppt
- 大小:2.83 MB
- 文档页数:27
《现代控制工程》目录第1章绪论1.1现代控制工程的发展1.2 本书的内容与安排第2章状态空间数学模型2.1 状态与状态空间的概念2.2 系统的状态空间模型2.2.1 建立状态空间模型的方法2.2.2 由状态空间模型求微分方程2.3 线性系统的状态空间模型与线性变换2.3.1 SISO线性系统的状态空间模型2.3.2 MIMO线性系统的状态空间模型2.3.3 状态方程的线性变换2.4 控制系统的实现2.4.1 系统的实现问题2.4.2 不含有输入导数项的微分方程的实现2.4.3 含有输入导数项的微分方程的实现2.5 多变量系统的传递矩阵2.5.1 多变量系统传递矩阵的概念2.5.2 从状态空间模型求传递矩阵2.5.3 多变量控制系统的结构图简化2.6 控制系统的状态空间模型2.7 MATLAB在状态空间模型建立中的应用2.7.1传递函数转换到状态空间模型2.7.2状态方程的线性变换2.8 本章小结习题第3章控制系统稳定性分析3.1 控制系统稳定性定义3.1.1 范数的概念3.1.2 平衡状态3.1.3 李雅普诺夫稳定性定义3.2 控制系统稳定的条件3.2.1 单变量线性定常连续系统的稳定条件3.2.2 多变量线性定常连续系统的稳定条件3.2.3 单变量线性定常离散系统的稳定条件3.2.4 多变量线性定常离散系统的稳定条件3.3 李雅普诺夫稳定判据3.3.1 函数的正定性3.3.2 非线性系统的李雅普诺夫稳定判据3.4 线性系统的李雅普诺夫稳定判据3.4.1 线性连续系统的李雅普诺夫稳定判据3.4.2 线性离散系统的李雅普诺夫稳定判据3.5 非线性系统的克拉索夫斯基稳定判据3.6 非线性系统的小偏差线性化方法3.6.1 小偏差线性化的基本思想3.6.2小偏差线性化方法3.6.3李雅普诺夫第一法3.7 MATLAB在系统稳定性分析中的应用3.8 本章小结习题第4章线性系统动态性能分析4.1 线性连续定常系统状态方程的求解4.1.1 齐次状态方程的求解4.1.2 非齐次状态方程的求解4.2 线性连续时变系统状态方程的求解4.2.1 齐次状态方程的解4.2.2 状态转移矩阵的性质4.2.3 状态转移矩阵的计算4.2.4 非齐次状态方程的解4.3 线性离散系统状态方程的求解4.3.1 齐次状态方程的解4.3.2 状态转移矩阵的性质4.3.3 状态转移矩阵的计算4.3.4线性定常离散系统非齐次状态方程的求解4.3.5线性时变离散系统状态方程的求解4.4 MATLAB在系统动态性能分析中的应用4.5 本章小结习题第5章线性系统的能控性和能观性分析5.1 能控性和能观性问题5.2 线性定常系统的能控性5.2.1 能控性的定义5.2.2 能控性判别准则5.2.3 能控性第二判别准则5.2.4 输出能控性及其判别准则5.3 线性定常系统的能观性5.3.1 能观性的定义5.3.2 能观性判别准则5.3.3 能观性第二判别准则5.4 状态空间模型的对角线标准型5.4.1 系统的特征值和特征向量5.4.2 化矩阵A为对角阵5.4.3 化矩阵A为约当阵5.4.4 特征值为复数的对角线标准型5.5 状态空间模型的能控标准型与能观标准型5.5.1 第一能控标准型5.5.2 第二能控标准型5.5.3 第一能观标准型5.5.4 第二能观标准型5.6 传递函数的几种标准型实现5.6.1 能控标准型实现5.6.2 能观标准型实现5.6.3 对角线标准型实现5.6.4 约当标准型实现5.7 对偶原理5.8 线性定常系统的规范分解5.8.1 能控性结构分解5.8.2 能观性结构分解5.8.3 系统结构的规范分解5.9 MATLAB在系统能控性和能观性分析中的应用5.9 本章小结习题第6章状态反馈控制与状态观测器设计6.1 状态反馈与输出反馈6.1.1 状态反馈6.1.2 输出反馈6.1.3状态反馈系统的能控性与能观性6.1.4 状态反馈对传递函数的影响6.2 状态反馈设计方法6.2.1 极点配置问题6.2.2 单输入系统的极点配置方法6.2.3 多输入系统的极点配置方法6.3 状态观测器设计方法6.3.1 全维状态观测器设计6.3.2 降维状态观测器设计6.4 带状态观测器的状态反馈系统的设计方法6.5 MATLAB在状态反馈与状态观测器设计中的应用6.6 本章小结习题第7章最优控制7.1 最优控制的概念7.2 变分法与泛函的极值条件7.3 变分法求解无约束最优控制问题7.4 极小值原理7.4.1 连续系统的极小值原理7.4.2 离散系统的极小值原理7.5 线性二次型最优控制7.5.1 线性二次型最优控制问题7.5.2 连续系统有限时间状态调节器7.5.3 连续系统无限时间定常状态调节器7.5.4 线性离散系统状态调节器7.5.5 线性连续系统输出调节器7.5.6 线性连续系统输出跟随器7.6 本章小结习题第8章系统辨识8.1 系统辨识的概念8.1.1 系统辩识的定义8.1.2系统辩识的基本内容8.2 线性静态模型的最小二乘参数估计8.2.1 参数估计问题8.2.2 最小二乘法的基本算法8.2.3 最小二乘法的性质8.2.4 应用举例8.3 线性动态模型的最小二乘参数估计8.4 最小二乘参数估计的递推算法8.4.1 基本递推算法8.4.2 带有遗忘因子的递推算法8.5 线性系统的结构辨识8.5.1 模型阶次的确定8.5.2 系统纯时滞的辨识8.6 闭环系统的可辨识性8.7 MATLAB在系统辨识中的应用8.8 本章小结习题第9章自适应控制9.1 自适应控制的概念9.1 自校正控制的结构9.2 最小方差控制9.3 自校正调节器9.4 自校正调节器应用实例9.5 本章小结习题第10章预测控制10.1 预测控制的基本原理10.2 动态矩阵控制10.3 炼油厂加氢裂化装置的动态矩阵控制10.4 模型算法控制10.5 催化裂化分馏塔的模型算法控制10.6 广义预测控制10.7 本章小结习题第11章模糊控制11.1 模糊控制的发展11.2 模糊集合11.2.1 模糊集合的定义11.2.2模糊集合的表示方法11.2.3 模糊集合的运算11.3 模糊控制系统的组成11.3.1模糊控制系统的结构11.3.2 模糊控制器的输入输出变量11.3.3 模糊控制器的输入输出变量的模糊化11.4 模糊控制规则11.5 模糊关系与合成11.5.1 模糊关系11.5.2 模糊关系的合成11.6 模糊推理与模糊决策11.6.1 模糊推理11.6.2模糊决策11.7 模糊控制算法的工程实现11.8 模糊PID复合控制11.9 酚醛树脂聚合反应温度模糊控制11.9.1 酚醛树脂聚合反应过程特性分析11.9.2 模糊控制器设计11.10 全自动洗衣机的模糊控制11.10.1 模糊控制洗衣机的检测11.10.2 洗衣机的模糊控制11.11 本章小结习题第12章专家系统与专家控制12.1 专家系统12.1.1 专家系统的概念12.1.2专家系统的一般结构12.1.3 实时专家系统12.2 专家控制系统12.2.1 专家控制系统的概念12.2.2 间接专家控制12.2.3 直接专家控制12.3 专家控制系统的知识表示12.3.1 知识表示12.3.2 产生式知识表示12.3.3 产生式系统12.3.4 动物识别专家系统12.4 专家控制系统的推理机12.5 专家控制系统的搜索技术12.6 电脑充绒机专家控制系统12.6.1电脑充绒机的工作原理12.6.2高性能称重传感器设计12.6.3电脑充绒机的程序控制12.6.4充绒机羽绒重量专家控制12.7 本章小结习题第13章神经网络控制13.1 神经网络控制概述13.2 神经元与神经网络13.2.1生物神经元结构13.2.2 神经元数学模型13.2.3 神经网络的结构与工作方式13.2.4 神经网络的学习13.3 BP神经网络及其学习算法13.3.1 BP神经网络的结构13.3.2 BP学习算法13.3.3 BP学习算法的实现13.4 基于神经网络的系统辨识方法13.4.1前向模型辨识13.4.2反向模型辨识13.5 基于神经网络的软测量方法13.5.1 软测量技术13.5.2 污水处理过程神经网络软测量模型13.6 基于神经网络的控制方法13.6.1 神经网络控制器13.6.2 神经网络预测控制13.6.3 神经网络模型参考控制13.6.4 神经网络内模控制13.7 单神经元控制器13.8 本章小结习题习题解答参考文献。
《现代控制理论》教案大纲第一章:绪论1.1 课程背景与意义1.2 控制系统的基本概念1.3 控制理论的发展历程1.4 教学内容与目标第二章:线性控制系统的基本理论2.1 数学基础2.1.1 向量与矩阵2.1.2 复数与复矩阵2.1.3 拉普拉斯变换与Z变换2.2 线性微分方程2.3 线性差分方程2.4 线性系统的状态空间描述2.5 线性系统的传递函数2.6 小结第三章:线性控制系统的稳定性分析3.1 系统稳定性的概念3.2 劳斯-赫尔维茨稳定性判据3.3 奈奎斯特稳定性判据3.4 李雅普诺夫稳定性理论3.5 小结第四章:线性控制系统的性能分析与设计4.1 性能指标4.1.1 稳态性能4.1.2 动态性能4.2 控制器设计方法4.2.1 比例积分微分(PID)控制器4.2.2 状态反馈控制器4.2.3 观测器设计4.3 小结第五章:非线性控制系统理论5.1 非线性系统的基本概念5.2 非线性方程与非线性微分方程5.3 非线性系统的状态空间描述5.4 非线性系统的稳定性分析5.5 小结第六章:非线性控制系统的性能分析与设计6.1 非线性性能指标6.2 非线性控制器设计方法6.2.1 反馈线性化方法6.2.2 滑模控制方法6.2.3 神经网络控制方法6.3 小结第七章:鲁棒控制理论7.1 鲁棒控制的概念与意义7.2 鲁棒控制的设计方法7.2.1 定义1-范数方法7.2.2 H∞控制方法7.2.3 μ-综合方法7.3 小结第八章:自适应控制理论8.1 自适应控制的概念与意义8.2 自适应控制的设计方法8.2.1 模型参考自适应控制8.2.2 适应律与自适应律8.2.3 自适应控制器的设计步骤8.3 小结第九章:现代控制理论在工程应用中的案例分析9.1 工业过程控制中的应用9.2 控制中的应用9.3 航空航天领域的应用9.4 小结第十章:总结与展望10.1 现代控制理论的主要成果与贡献10.2 现代控制理论的发展趋势10.3 面向未来的控制挑战与机遇10.4 小结重点和难点解析重点环节一:第二章中向量与矩阵、复数与复矩阵、拉普拉斯变换与Z变换的数学基础。
《现代控制理论》教案大纲第一章:绪论1.1 课程背景与意义1.2 控制系统的基本概念1.3 控制理论的发展历程1.4 控制理论的应用领域第二章:控制系统数学模型2.1 连续控制系统数学模型2.2 离散控制系统数学模型2.3 状态空间描述2.4 系统矩阵的性质与运算第三章:线性系统的时域分析3.1 系统的稳定性3.2 系统的瞬时性3.3 系统的稳态性能3.4 系统的动态性能第四章:线性系统的频域分析4.1 频率响应的概念4.2 频率响应的性质4.3 系统频率响应的求取方法4.4 系统频域性能指标第五章:线性系统的校正与设计5.1 系统校正的基本概念5.2 常用校正器及其特性5.3 系统校正的方法5.4 系统校正实例分析第六章:非线性控制系统分析6.1 非线性系统的基本概念6.2 非线性系统的数学模型6.3 非线性系统的稳定性分析6.4 非线性系统的控制策略第七章:状态反馈与观测器设计7.1 状态反馈控制的基本原理7.2 状态反馈控制器的设计方法7.3 观测器的设计与分析7.4 状态反馈控制系统应用实例第八章:先进控制策略8.1 鲁棒控制8.2 自适应控制8.3 最优控制8.4 智能控制第九章:最优控制理论9.1 最优控制的基本概念9.2 线性二次调节器(LQR)9.3 离散时间最优控制9.4 最优控制的应用第十章:现代控制理论在工程应用10.1 现代控制理论在自动化领域的应用10.2 现代控制理论在控制中的应用10.3 现代控制理论在航空航天领域的应用10.4 现代控制理论在其他领域的应用第十一章:鲁棒控制理论11.1 鲁棒控制的基本概念11.2 鲁棒控制的设计方法11.3 鲁棒控制的应用实例11.4 鲁棒控制在实际系统中的性能评估第十二章:自适应控制理论12.1 自适应控制的基本概念12.2 自适应控制的设计方法12.3 自适应控制的应用实例12.4 自适应控制在复杂系统中的应用与挑战第十三章:数字控制系统设计13.1 数字控制系统的概述13.2 数字控制器的设计方法13.3 数字控制系统的仿真与实验13.4 数字控制系统在实际应用中的案例分析第十四章:控制系统中的计算机辅助设计14.1 计算机辅助设计的基本概念14.2 控制系统CAD工具与方法14.3 基于软件的控制系统设计与仿真14.4 控制系统CAD在现代工程中的应用案例第十五章:现代控制理论的前沿与发展15.1 现代控制理论的最新研究动态15.2 控制理论与其他领域的交叉融合15.3 未来控制理论的发展趋势15.4 控制理论在解决现实世界问题中的潜力与挑战重点和难点解析本《现代控制理论》教案大纲涵盖了现代控制理论的基本概念、方法与应用,分为十五个章节。
《现代控制理论》课程教案第一章:绪论1.1 课程简介介绍《现代控制理论》的课程背景、意义和目的。
解释控制理论在工程、科学和工业领域中的应用。
1.2 控制系统的基本概念定义控制系统的基本术语,如系统、输入、输出、反馈等。
解释开环系统和闭环系统的区别。
1.3 控制理论的发展历程概述控制理论的发展历程,包括经典控制理论和现代控制理论。
介绍一些重要的控制理论家和他们的贡献。
第二章:数学基础2.1 线性代数基础复习向量、矩阵和行列式的基本运算。
介绍矩阵的特殊类型,如单位矩阵、对角矩阵和反对称矩阵。
2.2 微积分基础复习微积分的基本概念,如极限、导数和积分。
介绍微分方程和微分方程的解法。
2.3 复数基础介绍复数的基本概念,如复数代数表示、几何表示和复数运算。
解释复数的极坐标表示和欧拉公式。
第三章:控制系统的基本性质3.1 系统的稳定性定义系统的稳定性,并介绍判断稳定性的方法。
解释李雅普诺夫理论在判断系统稳定性中的应用。
3.2 系统的可控性定义系统的可控性,并介绍判断可控性的方法。
解释可达集和可观集的概念。
3.3 系统的可观性定义系统的可观性,并介绍判断可观性的方法。
解释观测器和状态估计的概念。
第四章:线性系统的控制设计4.1 状态反馈控制介绍状态反馈控制的基本概念和设计方法。
解释状态观测器和状态估计在控制中的应用。
4.2 输出反馈控制介绍输出反馈控制的基本概念和设计方法。
解释输出反馈控制对系统稳定性和性能的影响。
4.3 比例积分微分控制介绍比例积分微分控制的基本概念和设计方法。
解释PID控制在工业控制系统中的应用。
第五章:非线性控制理论简介5.1 非线性系统的特点解释非线性系统的定义和特点。
介绍非线性系统的常见类型和特点。
5.2 非线性控制理论的方法介绍非线性控制理论的基本方法,如反馈线性化和滑模控制。
解释非线性控制理论在实际应用中的挑战和限制。
5.3 案例研究:倒立摆控制介绍倒立摆控制系统的特点和挑战。
解释如何应用非线性控制理论设计倒立摆控制策略。