机电工程控制基础01绪论
- 格式:ppt
- 大小:2.26 MB
- 文档页数:41
Chp.1绪论基本要求(1)了解机械工程控制论的基本含义和研究对象,学习本课程的目的和任务;掌握广义系统动力学方程的含义。
(2)了解系统、广义系统的概念,了解系统的基本特性;了解系统动态模型和静态模型之间的关系。
(3)掌握反馈的含义,学会分析动态系统内信息流动的过程,掌握系统或过程中存在的反馈。
(4)了解广义系统的几种分类方法;掌握闭环控制系统的工作原理、组成;学会绘制控制系统的方框图。
(5)了解控制系统中基本名词和基本变量。
(6)了解正反馈、负反馈、内反馈、外反馈的概念。
(7)了解对控制系统的基本要求。
重点与难点本章重点(1)学会用系统论、信息论的观点分析广义系统的动态特性、信息流,理解信息反馈的含义及其作用。
(2)掌握控制系统的基本概念、基本变量、基本组成和工作原理;绘制控制系统方框图。
本章难点广义系统的信息反馈及控制系统方框图的绘制。
一、课程简介性质:机械设计制造及其自动化专业的一门技术基础课。
学时:32h先修课程:复变函数、机械动力学、交流电路理论后续课程:为专业基础和专业课打下一定基础。
如:机械工程测试技术、机电传动控制、数控机床等。
主要内容:本课程是数理基础课与专业课程之间的桥梁。
主要内容包括:控制理论的研究对象与任务、物理系统数学模型建立、时间响应分析、频率特性分析、系统的稳定性、系统的性能分析与校正、系统辩识、控制系统的计算机辅助分析.教材:杨叔子主编,《机械工程控制基础》,华中科技大学出版社,2004参考书目:(1)Katsuhiko Ogata.卢伯英等译,现代控制工程(第四版).北京:电子工业出版社,2003(2)李友善主编:《自动控制原理》,国防工业出版社,2003教材结构:1)对研究对象(机械工程)问题建立数学模型chp.22) 在一定输入下分析系统的输出:时间响应(时域分析)chp.3频率响应(频率分析)chp.43)系统性能分析:稳定性判据chp.54)系统校正:使系统全面满足性能指标要求chp.6二、对象与任务控制论+工程技术→工程控制论控制论+机械工程→机械工程控制研究对象:研究广义系统在一定外界条件下,从系统初始条件出发的整个动态过程,以及在这个历程中和历程结束后所表现出来的动态特性和静态特性。
第1章绪论1.1 概述在科学技术飞速发展的今天,自动控制技术和理论已经成为现代化社会的不可缺少的组成部分。
自动控制技术及理论已经广泛地应用于机械、冶金、石油、化工、电子、电力、航空、航海、航天、核反应堆等各个学科领域。
近年来,控制学科的应用范围还扩展到交通管理、生物医学、生态环境、经济管理、社会科学和其它许多社会生活领域,并为各学科之间的相互渗透起了促进作用。
自动控制技术的应用不仅使生产过程实现自动化,从而提高了劳动生产率和产品质量,降低生产成本,提高经济效益,改善劳动条件,使人们从繁重的体力劳动和单调重复的脑力劳动中解放出来,而且在人类征服大自然、探索新能源、发展空间技术和创造人类社会文明等方面都具有十分重要的意义。
自动控制理论是研究关于自动控制系统组成、分析和设计的一般性理论,是研究自动控制共同规律的技术科学。
学习和研究自动控制理论是为了探索自动控制系统中变量的运动规律和改变这种运动规律的可能性和途径,为建立高性能的自动控制系统提供必要的理论根据。
作为现代的工程技术人员和科学工作者,都必须具备一定的自动控制理论基础知识。
在机械工程问题上,机械、电气、液压和计算机被广泛采用,而且常常互相渗透、相互配合,这就需要结合机电液系统阐述工程上共同遵循的基本控制规律,即“机械工程控制基础”。
例如,电梯可以不受乘员多少的影响按照人的要求准确地停在任一楼层,机床的数字控制可以实现工件的自动加工,导弹能够击中正在运动的目标,这些都离不开自动控制。
1.2 自动控制系统的基本概念所谓自动控制,是指在无人直接参与的情况下,利用控制装置使被控对象(如机器、设备或生产过程等)的某些物理量(或工作状态)(如温度、压力、位置、速度等)准确地按照预期规律变化(或运行)。
如空调能保持恒温;数控机床能加工出预期的几何形状;火炮控制系统能准确击中目标等。
一般地说,如何使被控制量按照给定量的变化规律而变化,这就是控制系统所要完成的基本任务。
机械工程控制基础教案第一章:绪论1.1 课程介绍1.2 控制理论的基本概念1.3 控制系统的基本类型1.4 控制系统的性能指标第二章:线性系统的时域分析法2.1 系统的数学模型2.2 系统的时域响应2.3 系统的稳定性分析2.4 系统的稳态误差分析2.5 系统的动态性能分析第三章:线性系统的频域分析法3.1 频率响应的基本概念3.2 频率响应的性质3.3 系统的频率响应分析3.4 系统的稳定性分析3.5 系统的稳态误差分析第四章:线性系统的校正方法4.1 系统的校正概述4.2 串联校正设计方法4.3 并联校正设计方法4.4 反馈校正设计方法4.5 系统的动态性能改善第五章:非线性控制系统分析5.1 非线性控制系统的基本概念5.2 非线性系统的数学模型5.3 非线性系统的稳定性分析5.4 非线性系统的稳态误差分析5.5 非线性系统的动态性能分析第六章:机电控制系统的设计与实现6.1 机电控制系统的基本组成6.2 控制系统的设计步骤6.3 控制器的设计方法6.4 控制系统的仿真与实验6.5 控制系统的设计案例分析第七章:PLC控制系统设计7.1 PLC控制系统的基本原理7.2 PLC的硬件组成与功能7.3 PLC控制程序的设计方法7.4 PLC控制系统的设计实例7.5 PLC控制系统的调试与维护第八章:控制系统8.1 控制系统的基本概念8.2 的运动学与动力学8.3 控制系统的组成与原理8.4 控制算法与应用8.5 控制系统的案例分析第九章:现代控制理论简介9.1 现代控制理论的发展概况9.2 状态空间分析法9.3 系统的能控性与能观性9.4 系统镇定与最优控制9.5 现代控制理论在工程中的应用第十章:控制系统在机械工程中的应用10.1 控制系统在机械工程中的重要性10.2 控制系统在自动化设备中的应用10.3 控制系统在中的应用10.4 控制系统在数控机床中的应用10.5 控制系统在其他机械工程领域的应用重点和难点解析一、系统的数学模型难点解析:对复杂机械系统的动态方程建立及求解,状态变量的选取原则,以及如何将实际系统抽象为数学模型。
机械工程控制基础学习辅导与题解(修订版)第1章绪论内容提要1.1 机械工程控制论的研究对象与任务1.1.1 系统及广义系统系统是由相互联系、相互作用的若干部分构成,且具有一定运动规律的一个有机整体。
系统各元素之间存在着非常紧密的联系,而且,系统与外界也存在一定的联系。
系统及其与外界的关系如图1.1-1所示,其中.输入是指外界对系统的作用,输出是指系统对外界的作用。
系统可大可小可繁可简,甚至可“实”可“虚”,完全由研究的需要而定,因而将它们统称为为广义系统。
图1.l-l 系统及其与外界的联系1.1.2 机械工程控制论的研究对象机械工程控制论实质上足研究机械工程技术中广义系统的动力学问题。
具体地说,它研究机械工程广义系统在一定的外界条件(即输入或激励、干扰)作用下,从系统的一定的初始状态出发,所经历的由其内部的固有特性(即由系统的结构与参数所决定的特性)所决定的整个动态历程,研究这一系统与其输入、输出三者之间的动态关系。
1.1.3 机械工程控制论的研究任务从系统、输入、输出三者之间的关系出发,根据已知条件与求解问题的不同,机械工程控制论的任务可以分为以下五方面:(1)已知系统和输入,求系统的输出,即系统分析问题;(2)已知系统和系统的理想输出,设计输入,即最优控制问题;(3)已知输入和理想输出,设计系统,即最优设计问题;(4)已知输出,确定系统,以识别输入或输入中的有关信息.此即滤波与预测问题;(5)已知系统的输^和输出,求系统的结构与参数即系统辨识问题。
1.2 系统及其模型1.2.1 系统的特性(1)系统的性能不仅与构成系统的元素有关,而且还与系统的结构有关;(2)系统具有层次性;(3)系统的内容比组成系统各元素的内容要丰富得多;(4)系统是运动的,具有~定的动态特性。
1.2.2 机械系统以实现一定的机械运动、输出一定的机械能,以及承受一定的机械载荷为目的的系统称为机械系统。
对于机械系统,其输入和输出分别称为“激励”和“响应”。
机电工程控制基础–01绪论1. 引言机电工程控制是现代工程技术的重要组成部分,它涉及到机械、电子、自动控制、计算机等多学科的知识,广泛应用于各个领域,如制造业、交通运输、能源等。
掌握机电工程控制的基础知识对于工程技术人员来说至关重要。
本文将介绍机电工程控制的基础概念、原理和应用,并对其重要性进行分析和总结。
2. 机电工程控制的定义机电工程控制是指通过控制系统,对机械、电气和电子设备进行调控和管理,以实现指定的功能和性能要求。
它通过传感器获取实时数据,并通过执行器作出相应反馈控制,从而控制和调节系统的运动、速度、力和位置等参数。
机电工程控制可以实现自动化生产、提高生产效率、节约能源和减少人力劳动等目标。
3. 机电工程控制的基础概念3.1 控制系统控制系统是机电工程控制的核心组成部分,它由输入、输出、控制器和执行器等组成。
输入是指传感器获取的实时数据,输出是指执行器根据控制器的指令进行的动作。
控制器是控制系统的决策中心,它根据输入数据进行计算和判断,然后产生输出信号。
执行器是控制系统的执行部分,根据控制器的指令执行相应的动作,从而实现对机械和电子设备的控制。
3.2 反馈控制反馈控制是机电工程控制的一种重要方法,它通过不断检测输出信号,并将其与期望值进行比较,从而调节控制器的输出信号。
反馈控制可以有效地抑制外界干扰和系统误差,提高系统的稳定性和精度。
3.3 闭环控制和开环控制闭环控制和开环控制是机电工程控制中常用的控制策略。
闭环控制是指控制系统通过反馈信号进行控制,可以根据系统的实际状态进行动态调节。
开环控制是指控制系统没有反馈信号,只根据输入信号进行控制。
闭环控制具有抗干扰能力强、自适应性好等优点,但对系统的稳定性和响应速度要求高,开环控制则适用于简单的、稳定的系统。
4. 机电工程控制的原理机电工程控制的原理主要包括系统建模、控制器设计和控制算法等。
系统建模是指将机电系统抽象为数学模型,描述系统的结构和动态特性。