机电工程控制基础01绪论
- 格式:ppt
- 大小:2.26 MB
- 文档页数:41
Chp.1绪论基本要求(1)了解机械工程控制论的基本含义和研究对象,学习本课程的目的和任务;掌握广义系统动力学方程的含义。
(2)了解系统、广义系统的概念,了解系统的基本特性;了解系统动态模型和静态模型之间的关系。
(3)掌握反馈的含义,学会分析动态系统内信息流动的过程,掌握系统或过程中存在的反馈。
(4)了解广义系统的几种分类方法;掌握闭环控制系统的工作原理、组成;学会绘制控制系统的方框图。
(5)了解控制系统中基本名词和基本变量。
(6)了解正反馈、负反馈、内反馈、外反馈的概念。
(7)了解对控制系统的基本要求。
重点与难点本章重点(1)学会用系统论、信息论的观点分析广义系统的动态特性、信息流,理解信息反馈的含义及其作用。
(2)掌握控制系统的基本概念、基本变量、基本组成和工作原理;绘制控制系统方框图。
本章难点广义系统的信息反馈及控制系统方框图的绘制。
一、课程简介性质:机械设计制造及其自动化专业的一门技术基础课。
学时:32h先修课程:复变函数、机械动力学、交流电路理论后续课程:为专业基础和专业课打下一定基础。
如:机械工程测试技术、机电传动控制、数控机床等。
主要内容:本课程是数理基础课与专业课程之间的桥梁。
主要内容包括:控制理论的研究对象与任务、物理系统数学模型建立、时间响应分析、频率特性分析、系统的稳定性、系统的性能分析与校正、系统辩识、控制系统的计算机辅助分析.教材:杨叔子主编,《机械工程控制基础》,华中科技大学出版社,2004参考书目:(1)Katsuhiko Ogata.卢伯英等译,现代控制工程(第四版).北京:电子工业出版社,2003(2)李友善主编:《自动控制原理》,国防工业出版社,2003教材结构:1)对研究对象(机械工程)问题建立数学模型chp.22) 在一定输入下分析系统的输出:时间响应(时域分析)chp.3频率响应(频率分析)chp.43)系统性能分析:稳定性判据chp.54)系统校正:使系统全面满足性能指标要求chp.6二、对象与任务控制论+工程技术→工程控制论控制论+机械工程→机械工程控制研究对象:研究广义系统在一定外界条件下,从系统初始条件出发的整个动态过程,以及在这个历程中和历程结束后所表现出来的动态特性和静态特性。
第1章绪论1.1 概述在科学技术飞速发展的今天,自动控制技术和理论已经成为现代化社会的不可缺少的组成部分。
自动控制技术及理论已经广泛地应用于机械、冶金、石油、化工、电子、电力、航空、航海、航天、核反应堆等各个学科领域。
近年来,控制学科的应用范围还扩展到交通管理、生物医学、生态环境、经济管理、社会科学和其它许多社会生活领域,并为各学科之间的相互渗透起了促进作用。
自动控制技术的应用不仅使生产过程实现自动化,从而提高了劳动生产率和产品质量,降低生产成本,提高经济效益,改善劳动条件,使人们从繁重的体力劳动和单调重复的脑力劳动中解放出来,而且在人类征服大自然、探索新能源、发展空间技术和创造人类社会文明等方面都具有十分重要的意义。
自动控制理论是研究关于自动控制系统组成、分析和设计的一般性理论,是研究自动控制共同规律的技术科学。
学习和研究自动控制理论是为了探索自动控制系统中变量的运动规律和改变这种运动规律的可能性和途径,为建立高性能的自动控制系统提供必要的理论根据。
作为现代的工程技术人员和科学工作者,都必须具备一定的自动控制理论基础知识。
在机械工程问题上,机械、电气、液压和计算机被广泛采用,而且常常互相渗透、相互配合,这就需要结合机电液系统阐述工程上共同遵循的基本控制规律,即“机械工程控制基础”。
例如,电梯可以不受乘员多少的影响按照人的要求准确地停在任一楼层,机床的数字控制可以实现工件的自动加工,导弹能够击中正在运动的目标,这些都离不开自动控制。
1.2 自动控制系统的基本概念所谓自动控制,是指在无人直接参与的情况下,利用控制装置使被控对象(如机器、设备或生产过程等)的某些物理量(或工作状态)(如温度、压力、位置、速度等)准确地按照预期规律变化(或运行)。
如空调能保持恒温;数控机床能加工出预期的几何形状;火炮控制系统能准确击中目标等。
一般地说,如何使被控制量按照给定量的变化规律而变化,这就是控制系统所要完成的基本任务。
机械工程控制基础教案第一章:绪论1.1 课程介绍1.2 控制理论的基本概念1.3 控制系统的基本类型1.4 控制系统的性能指标第二章:线性系统的时域分析法2.1 系统的数学模型2.2 系统的时域响应2.3 系统的稳定性分析2.4 系统的稳态误差分析2.5 系统的动态性能分析第三章:线性系统的频域分析法3.1 频率响应的基本概念3.2 频率响应的性质3.3 系统的频率响应分析3.4 系统的稳定性分析3.5 系统的稳态误差分析第四章:线性系统的校正方法4.1 系统的校正概述4.2 串联校正设计方法4.3 并联校正设计方法4.4 反馈校正设计方法4.5 系统的动态性能改善第五章:非线性控制系统分析5.1 非线性控制系统的基本概念5.2 非线性系统的数学模型5.3 非线性系统的稳定性分析5.4 非线性系统的稳态误差分析5.5 非线性系统的动态性能分析第六章:机电控制系统的设计与实现6.1 机电控制系统的基本组成6.2 控制系统的设计步骤6.3 控制器的设计方法6.4 控制系统的仿真与实验6.5 控制系统的设计案例分析第七章:PLC控制系统设计7.1 PLC控制系统的基本原理7.2 PLC的硬件组成与功能7.3 PLC控制程序的设计方法7.4 PLC控制系统的设计实例7.5 PLC控制系统的调试与维护第八章:控制系统8.1 控制系统的基本概念8.2 的运动学与动力学8.3 控制系统的组成与原理8.4 控制算法与应用8.5 控制系统的案例分析第九章:现代控制理论简介9.1 现代控制理论的发展概况9.2 状态空间分析法9.3 系统的能控性与能观性9.4 系统镇定与最优控制9.5 现代控制理论在工程中的应用第十章:控制系统在机械工程中的应用10.1 控制系统在机械工程中的重要性10.2 控制系统在自动化设备中的应用10.3 控制系统在中的应用10.4 控制系统在数控机床中的应用10.5 控制系统在其他机械工程领域的应用重点和难点解析一、系统的数学模型难点解析:对复杂机械系统的动态方程建立及求解,状态变量的选取原则,以及如何将实际系统抽象为数学模型。