3.2 图形的全等
- 格式:doc
- 大小:83.00 KB
- 文档页数:2
《图形的全等》教案【教学目标】知识与技能:理解全等图形的概念,认识全等图形在通过一系列变换之后两个图形能够完全重合.过程与方法:经历探究图形全等的过程,掌握全等图形(多边形、三角形)的特征.情感态度与价值观:以积极的态度进行合作学习,形成良好的几何认知,体会全等图形的实际应用价值.【重点、难点、关键】重点:认识图形的全等,领会其特征.难点:对全等图形的识别.关键:以观察、实践的思想意识来探索几何图形,认知图形特征.【教学准备】教师准备:投影片、直尺、图片.学生准备:寻找一些全等图形的生活图片.【教学过程】一、创设情境投影显示观察图(1~2)所示的两组图形:你能得到什么结论呢?(1)(2)教师活动:操作投影,引导学生认真进行观察.学生活动:观察投影片,在教师的引导下认识图形.在第一组实物图形中,四枚邮票是形状、大小都相等,图案大小相同;两面五星红旗也有此特征;铁栅栏中的大小“S”分别是大小、形状都相同.•第二组几何图形中的两个小圆,两个小“L”形,两个三角形形状、大小都一样,•也就是说通过翻折、平移和旋转变换,几个图形会完全叠合在一起.教师定义:能够完全重合的两个图形叫做全等图形.媒体使用:教师把收集来的全等图形以及学生收集来的全等图形通过投影仪(实物)让学生欣赏,识别,加深概念.(也可以直接拿给学生看)二、阅读与思考1.阅读课本P85第1~12行内容.评析:目的是让学生通过观察,对图形全等有感性认识.2.思考课本P85问题.观察课本图15.4.2中的两对多边形,其中的一个可以经过怎样的变换和另一个图形重合?教师活动:引导学生分析两对多边形,让学生明确它们都是全等图形,称为全等多边形,讲明对应顶点、对应边、对应角的概念.3.议一议:(1)你能说出生活中全等图形的例子吗?(2)观察下面两组图形,它们是不是全等图形?为什么?(3)如果两个图形全等,它们的形状和大小一定都相同吗?评析:使学生认识全等图形的特征,按照是否重合可以判断出这两组图形都不全等,进一步让学生发现图(a)中的两个图形形状相同,•但大小不同;••图(b)中的两个图形面积相同,但形状不同.三、继续探究1.引入全等图形的表示法:如课本图15.4.3这两个图形是全等的,记作五边形ABCDE≌五边形A′B′C′D′E′,符号“≌”表示全等,读作“全等于”,点A与A′,点B与B′,点C与C′,点D•与D′,点E与E′分别是对应提出.教师活动:介绍全等多边形,引入全等多边形性质:全等多边形的对应边、对应角分别相等.这一全等多边形特征.再进一步说明识别两个多边形全等的方法是,对应边、对应角分别相等的两个多边形全等.学生活动:观察,接受全等多边形的性质与判定,并进行理解.教师活动:操作投影仪显示课本图15.4.4,介绍特殊多边形──三角形,指出全等三角形的对应边、对应角分别相等,反之可做为判断两个三角形全等的条件.学生活动:观察从一般到特殊,突出三角形全等性质和判别.四、随堂练习课本P87练习.探研时空.1.做一做:沿着图中的虚线,分别把下面的图形划分为两个全等的图形(至少找出两种方法)参考答案:2.你能把右边的这个平行四边形分成两个全等的图形吗?•能分成四个全等的图形吗?参考答案:五、课堂总结1.什么叫做全等图形?2.你将采用什么方法识别两个图形是全等的?3.全等三角形具有哪些性质?你是怎样识别两个三角形全等的?4.这节课对你认知平移、旋转有何帮助?六、布置作业1.课本P87习题15.4第1,2题.2.选用课时作业设计.七、课后反思(略)课时作业设计1.如图所示,做四个全等的小“L”型纸片,将它们拼成与大“L”型全等的图案.2.如图(a~l)所示,下面图形中有哪些是全等的?3.如图所示,观察下面图案,你能发现其中的全等图形吗?4.在图(a~b)中找出两对全等的三角形,并指出其中的对应角和对应边.5.找出七巧板拼成的图案中的全等三角形.6.如图所示,△ABC≌△AEC,∠B=30°,∠ACB=85°,求出△AEC•各内角的度数.7.如图所示,是一个等边三角形,你能把它分成两个全等的三角形吗?•你能把它分成三个、四个全等的三角形吗?8.如图所示,△AOD≌△BOC,写出其中相等的角.9.如图所示,△ABC≌△A′B′C′,∠C=25°,BC=6cm,AC=4cm,你能得出△A′B′C′中哪些角的大小,哪些边的长度?10.如图所示,一栅栏顶部是由全等的三角形组成的,其中,AC=0.2m,BC=2AC,求BD的长.参考答案1.2.a与h,b与l,d与i,e与k 3~5.略6.∠AEC=30°∠EAC=65°∠ECA=85°7.8.∠D=∠C ∠A=∠B ∠DOA=∠COB9.∠C′=25° B′C′=6cm •A′C′=4cm 10.BD=7BC=14AC=2.8m。
苏科版初三数学课时设计活页纸总 课 题 第一章 图形与证明(二) 总 课 时 课 题 §1.2直角三角形的全等判定(2)课型新授教学目标 1.进一步掌握证明的基本步骤和书写格式。
2.能用“基本事实”和“已经证明的定理”为依据,来解决问题。
3.进一步培养学生推理论证能力。
教学重点 直角三角形全等判定的应用。
教学难点 反证法思想的渗透。
教具准备 投影仪 教学过程 教 学 内 容教师活动内容、方式 学生活动方式设计意图一、创设情境问题,导入新课。
如图,在三条公路围成的三角形区域中,建一加油站,要使加油站到三条公路的距离都相等,则加油站应建在何处?你设计的理由是什么,你能告诉同学们吗? 二、探索新知 1、 定理证明(1)角平分线上的点到这个角的两边的距离相等。
已知:如图,OC 是AOB ∠的平分线,点P 在OC 上,OB PE OA PD ⊥⊥,,垂足分别为D 、E 。
求证:PD=PE 。
思考与表达 怎么想 怎么写要证PD=PE ,只需证PEO PDO ∆≅∆已知OP OP POE POD =∠=∠ 只需证.PEO PDO ∠=∠ 证明过程由学生板演完成(略) 回顾:引导学生评价黑板上证明过程。
学生思考解决问题的方法学生动手画图,并尝试根据图形写出已知和求证。
学生根据前面的分析,书写证明过程。
创设情境,帮助学生回顾旧知,激发学生的求知欲。
通过画图、写出已知、求证,让学生了解定理证明的一般步骤。
引导学生如何寻找证明思路。
教师活动内容、方式学生活动方式 设计意图PEDOCBA反思:上述定理的条件、结论各什么?如将其条件、结论互换一下,还正确吗?说说你的看法。
(2)在一个角的内部,且到角的两边相等的点,在这个角的平分线上。
a.你能仿照上例,依据本题的条件与结论,画出图形,写出已知和求证吗?请大家试一试。
b.根据学生的叙述板书已知和求证,并画出图形。
c.学生板演证明过程。
三、应用与拓展1、如图,ABC∆的角平线AD、BE相交于点O。
第三章 三角形3.1 认识三角形(1)【预习作业】 1、填空:(1)当0°<α<90°时,α是 角; (2)当α= °时,α是直角;(3)当90°<α<180°时,α是 角; (4)当α= °时,α是平角。
2、如图,∵AB ∥CE ,(已知) ∴∠A = ,( ) ∴∠B = ,( ) 【合作探究1】1.一副三角板中,三角形的三个内角和等于 °那么是否对其他的三角形也有这样的结论呢?2.用自己剪好的一个三角形,把三个角撕下来,拼在一块。
你发现了什么?小组交流。
【探究归纳1】结论:三角形三个内角的和等于180° 几何表示: .【例题讲解1】证明三角形内角和定理:请设计一种证明三角形内角和是180°的方法,并写出推理过程。
【巩固练习1】 1、判断:(1)一个三角形的三个内角可以都小于60°; ( ) (2)一个三角形最多只能有一个内角是钝角或直角; ( ) 2、在△ABC 中,(1)∠C=70°,∠A=50°,则∠B= 度; (2)∠B=100°,∠A=∠C ,则∠C= 度; (3)2∠A=∠B+∠C ,则∠A= 度。
3、如图,在△ABC 中,∠A =x 3°∠=x 2°∠=x °求三个内角的度数。
解:∵∠A+∠B+∠C=180°,( ) ∴=++x x x 23 ∴x 6=A B C D E 123x 2x 3x A BC∴x =从而,∠A= ,∠B= ,∠C= 【合作探究2】一个三角形中三个内角可以是什么角?(提醒:一个三角形中能否有两个直角?钝角呢?)小组讨论。
按三角形内角的大小把三角形分为三类: . 【探究归纳2】直角三角形表示为Rt △思考:直角三角形中的两个锐角有什么关系?结论:____________________ 【巩固练习2】1、 观察下列的直角三角形,分别写出它们符号表示、直角边和斜边。
三角形在数学竞赛中的题型与解题策略三角形是数学竞赛中一个重要的题目类型,涉及了几何学和三角函数等相关概念。
对于这类题目,理解三角形的性质和掌握解题策略是至关重要的。
首先,我们来看一些与三角形相关的常见题型。
1. 三角形的性质:1.1 三边关系:根据三条边的长度关系,可以判断三角形的形状,如等边三角形、等腰三角形和一般三角形。
1.2 角关系:根据三个角的大小关系,可以判断三角形的形状,如锐角三角形、直角三角形和钝角三角形。
1.3 高度、中线和角平分线:这些线段可以把三角形分成几个等腰三角形,从而利用等边、等腰三角形的性质推导出结果。
2. 三角形的面积:2.1 海伦公式:对于已知三边长度的三角形,可以使用海伦公式计算其面积。
2.2 边长和高度:已知底边和高度,可以计算三角形的面积。
2.3 角度和边长:已知两条边和夹角,可以计算三角形的面积。
3. 三角形的相似和全等:3.1 相似三角形:利用三角形的相似性质,可以求解未知边长和角度。
3.2 全等三角形:利用三角形的全等性质,可以求解未知边长和角度。
在解题过程中,可以采用以下策略:1. 分析和利用已知条件:仔细阅读题目,了解已知条件和寻找解题线索。
根据已知条件,可以找到合适的定理和公式来解题。
2. 利用几何图形:画出准确且清晰的几何图形,有助于观察和推导出一些结论。
使用图形的性质和构造,可以解决一些几何问题。
3. 运用数学公式和定理:熟练掌握三角函数、海伦公式、相似三角形和全等三角形等的公式和定理。
根据需要,将问题转化为可以利用这些公式和定理求解的形式。
4. 利用等边、等腰三角形等性质:假设三角形具有一些特殊性质,如等边三角形、等腰三角形等,并根据这些性质进行推导和计算。
这些特殊性质往往可以简化问题,加快解题进程。
5. 运用三角形的内角和外角性质:根据三角形内角和外角的关系,可以推导出一些重要的结论。
利用这些结论,可以解决一些需要求角度的问题。
6. 利用垂线、中线和角平分线:根据垂线、中线和角平分线的性质,可以将三角形分成几个相等的小三角形,从而简化问题的解决过程。
3.2 图形的全等
一、学习目标:
1.了解全等图形、全等多边形、全等三角形.
2.平移、旋转、翻折等图形基本运动对全等图形的影响.
3.掌握全等多边形性质与识别方法,全等三角形的性质.
4.简单应用全等多边形性质、全等三角形的性质解决实际问题.
二、学习重点:
全等多边形的性质与识别方法;全等三角形的性质应用.
三、学习难点:
平移、旋转、翻折等图形基本运动对全等图形的影响.
四、学习设计:
(一)引入
观察教材 P73 图 3-21几组图形。
(二)学习过程
阅读课本P73-75填空:_________________两个图形就是全等图形。
全等图形的________和______都相同。
下面,我们看看图形的运动对全等图形有何影响?
活动请同学们在方格纸中任意画一个多边形,先将这个多边形沿某一方向平移一定距离(与原图形无重叠);再将原多边形绕形外一点顺时针(或逆时针)旋转一定角度(与原图形无重叠);然后将原图形沿形外某格线对称;最后将这些图形剪下来,将其叠合.你能发现什么?通过这个活动过程,说明了什么问题?
说明图形经过平移、旋转、翻折的图形运动,位置发生了变化,但形状和大小却没有改变,图形运动前后的两个图形是全等的;反过来,也就是说,两个全等的图形经过图形运动一定能重合.
请你说说什么是全等多边形?什么是全等多边形的对应顶点、对应角、对应边?你认为全等多边形有何特征?
全等多边形对应边、对应角分
别相等.
如图1,四边形ABCD与四边形
EFGH全等,可记为四边形ABCD≌四
边形 EFGH,请指出对应顶点、对
应角、对应边.
全等多边形的识别方法:如果两
个多边形对应边、对应角分别相等,那么这两
个多边形全等.
三角形是特殊的多边形,所以,全等三角
形的对应边、对应角分别相等;如果两个三角
形的___________、__________分别相等,那
么这两个多边形全等.
例1 如图2,已知将△ABC绕其顶点A顺
时针方向旋转
20°后得到△ADE.
(1)△ABC与△ADE的关系如何?
(2)求∠BAD的度数.
分析:将△ABC绕其顶点A旋转得到△ADE,故△ADE是由△ABC旋转得到的,若将△ADE 逆时针方向旋转20°,则能与△ABC重合,所以△ABC与△ADE是全等的. 由学生自主思考、分析解答.
探索:请同学们将两张纸叠起来,剪下两个全等三角形,然后将叠合的两个三角形纸片放在桌面上,从平移、旋转、对称几个方面进行摆放,看看两个三角形有一些怎样的特殊位置关系?并画出这些位置关系的代表性图形.。