k 3= 3
b a 1 1 x 1 a 1 2 x 2 ... a 1 n x n a 11 x 1 a 12 x 2 ... a 1 n x n b1 1 a 2 1 x 1 a 2 2 x 2 ... a 2 n x n b 2 a 21 x 1 a 22 x 2 ... a 2 n x n b 2 (3.1) a m 1 x 1 a m 2 x 2 ... a m n x n b m a m 1 x 1 a m 2 x 2 ... a mn x n b m
( a 1 , 0 , 0 , ..., 0 ) ( 0 , a 2 , 0 , ..., 0 ) ( 0 , 0 , a 3 , ..., 0 ) ... ( 0 , 0 , 0 , ..., a n ) a 1 (1, 0 , 0 , ..., 0 ) a 2 ( 0 , 1, 0 , ..., 0 ) a 3 ( 0 , 0 , 1, ..., 0 ) ... a n ( 0 , 0 , 0 , ..., 1 )
1
kn ... a 1 n x n b1
... a 2 n k n b 2 (3.1) x
n
线性方程组(3.1)有解 存在一组数 x1=k1, x2=k2,…, xn=kn 使(3.1)式成立 存在一组数 x1=k1,x2=k2,…,xn=kn 使(3.10)式成立 可以由向量组 1 ,2 , …,n 线性表示.
2
kn ... a mn x n b m
b1 a 11 a 12 a1n b2 a 21 a 22 a2n 即 x x ... xn k 1 k 1 k22 n bm am1 am 2 a mn