杆塔接地电阻测量
- 格式:doc
- 大小:2.26 MB
- 文档页数:8
杆塔接地电阻测量原理
杆塔接地电阻测量是一种常见的电气测量方法,用于评估杆塔接地系统的质量。
杆塔接地电阻是指杆塔与地之间的电阻,它反映了杆塔接地系统的导电能力和接地效果。
杆塔接地电阻的测量原理是通过测量杆塔与地之间的电阻来评估接地系统的质量。
具体的测量步骤如下:
需要选择一种合适的测量方法。
常用的方法有电压法、电流法和综合法。
其中,电压法是最常用的方法,它通过施加一个已知的电压,然后测量电流来计算接地电阻。
需要选择合适的测量电压和电流。
测量电压应适中,既能保证测量精度,又能避免对接地系统造成损害。
测量电流应保持稳定,以确保测量结果的准确性。
然后,需要选择适当的测量点。
一般来说,应选择距离杆塔足够远的地点进行测量,以排除杆塔本身的影响。
同时,还应选择不同位置的测量点,以评估接地系统的一致性。
接下来,进行测量操作。
在测量过程中,应确保测量电流和电压的稳定性,并记录测量结果。
测量结果应包括电阻值以及测量时的环境条件,如温度、湿度等。
根据测量结果进行评估。
根据测量结果,可以判断接地系统的质量
是否符合要求。
如果接地电阻值较大,说明接地系统的导电能力较差,需要采取措施来改善接地效果。
总的来说,杆塔接地电阻测量是一种重要的电气测量方法,用于评估杆塔接地系统的质量。
通过选择合适的测量方法和参数,进行准确的测量操作,可以得到可靠的测量结果,并为接地系统的改进提供依据。
这项工作对于确保电力设施的安全运行具有重要意义。
输电线路杆塔接地电阻测量方法文章介绍了输电线路杆塔工频接地电阻的测量方法:三极法和钳表法。
分别介绍了这两种方法的工作原理及测量方法,并将测量结果进行比较,比较发现,三极法测量繁琐,工作量大,但测量准确;钳表法测量方法简单,仪器携带方便,但测量结果偏差较大。
最后得出结论:将三极法和钳表法配合使用的方法效率最高、测量结果最可靠。
标签:杆塔;接地电阻;测量方法;三极法;钳表法1 概述接地电阻就是电流由接地装置流入大地再经大地向远处扩散所遇到的电阻[1]。
输电线路杆塔接地电阻的大小,直接关系到线路的耐雷水平,影响输电线路遭受雷击时的安全运行。
线路的接地电阻越小,线路耐雷水平越高,线路雷击跳闸率越小[2]。
因此,输电线路杆塔工频接地电阻的测量非常重要,准确地测量可以及时对接地电阻较高的输电线路杆塔进行改造,降低线路雷电事故,保证高压输电线路安全稳定运行,防止输电线路雷击跳闸事故的发生,提高供电系统的可靠性[3]。
2 接地电阻测量方法输电线路杆塔接地电阻测量的方法主要有三种:伏安法、三极法和钳表法。
伏安法比较繁琐、工作量大,且受外界干扰极大,已经基本淘汰。
目前,常用的方法主要是三极法和钳表法,这两种方法各有优缺点,采用三极法测量接地电阻准确,而且测量方法简单,性能稳定,但测量时需要的人力物力较多,效率低;采用钳表法测量接地电阻比三极法方便、快捷省力,只要用钳表钳住接地线引下线就能测出接地电阻,效率高,但有时会有比较大的测量误差。
所以工作人员必须十分熟悉这两种测量方法的工作原理、测量方法及相关要求,结合被测杆塔的实际情况选择适当的测量方法。
2.1 三极法测量接地电阻三极法是由接地装置、电流极和电压极组成三个电极测量接地电阻的方法[4]。
在输电线路杆塔附近分别布置电流极和电压极,用电压表测量接地装置G 与电压极P之间的电位差Ug,电流表测量通过接地装置流入地中的电流Ig,得到了Ug和Ig,就可以求出接地装置的工频接地电阻Rg,即Rg=Ug/Ig,如图1所示。
目次1 范围2 规范性引用文件3 术语和定义4 分类5 测量杆塔工频接地电阻的一般性规定6 测量杆塔工频接地电阻的三极法7 测量杆塔工频接地电阻的钳表法附录A(资料性附录)架空输电线路杆塔的钳表法增量的估算附录B(资料性附录)架空输电线路杆塔的工频接地电阻前言本标准是根据原国家经济贸易委员会《关于下达2002年度电力行业标准制定和修订计划的通知》(电力[2002]973号)的安排制定的。
本标准的附录A、附录B为资料性附录。
本标准由中国电力企业联合会提出。
本标准由全国高压电气安全标准化技术委员会归口并解释。
本标准负责起草单位:武汉大学电气工程学院。
本标准参加起草单位:安徽省巢湖供电局、湖北省电力试验研究院。
本标准主要起草人:周文俊、王建国、刘泽生、傅军、梁国栋、林志伟、徐家奎。
杆塔工频接地电阻测量1 范围本标准规定了杆塔工频接地电阻的术语和定义、测量的一般性规定、测量杆塔工频接地电阻的三极法和钳表法。
本标准适用于采用三极法测量杆塔的工频接地电阻,也适用于采用钳表法测量有避雷线且多基杆塔避雷线直接接地的架空输电线路杆塔的工频接地电阻。
2 规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。
凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。
凡是不注日期的引用文件,其最新版本适用于本标准。
DL/T 620—1997 交流电气装置的过电压保护和绝缘配合DL/T 621—1997 交流电气装置的接地3 术语和定义下列术语和定义适用于本标准。
3.1接地grounded将电力系统或建筑物中电气装置、设施的某些导电部分,经过接地线连接至接地极。
[DL/T 621—1997中2.1]3.2接地极grounding electrode埋入地中并直接与大地接触的金属导体,称为接地极。
兼作接地极用的直接与大地接触的各种金属构件、金属井管、钢筋混凝土建(构)筑物的基础、金属管道和设备等称为自然接地极。
输电线路杆塔冲击接地电阻测量的研究摘要本文介绍一种测量输电线路中杆塔冲击接地电阻的方法,通过模拟雷击过程,现场直接测量杆塔的接地电阻,更加真实反映雷电流的冲击过程,求取准确的冲击杆塔接地电阻值。
关键词模拟雷电流;冲击接地电阻;防雷接地电阻;中图分类号tm753 文献标识码a 文章编号 1674-6708(2011)44-0173-021 雷电流形成过程雷鸣电闪是大气中巨大的静电放电现象,雷电以闪电的方式对地面建筑、设备进行放电并造成危害。
雷雨前天空中有一些带电的乌云(雷云),是产生雷电的根源。
由于静电感应的作用,雷云和临近的乌云及地面、地面上的物体之间就会产生静电场。
当电场强度足以击穿大气绝缘体时立即放电,放电产生耀眼的闪光,同时水气在电火花的作用下分解,产生气体爆炸,形成了自然界中的雷鸣电闪。
雷电的放电过程分为先驱放电和主放电。
先驱放电不能直达地面,通过若干次先驱放电形成先驱闪电路径后,开始主放电。
主放电沿先驱闪电路径把雷云中聚集的负电荷(或正电荷)与大地正电荷(或负电荷)迅速中和。
防雷装置一旦受到雷击,将会承受巨大的雷电流,造成设备人员伤亡。
因此,准确计算防雷接地电阻值,对于设计防雷系统,提高防雷装置的防雷效果是至关重要的。
2目前冲击接地电阻值求解方法对与冲击接地电阻的研究目前主要局限在理论分析和数值计算上,其中主要方法有4种:1)进行模拟实验,主要针对集中接地[1];2)根据经验公式进行计算;3)在理论分析的基础上对具体接地装置建立数学、物理模型,通过解偏微分方程或者差分方程,从而计算求出该接地装置的冲击接地电阻[2],但费尽心思建立起来的数学、物理模型通用性很差;4)利用测量得到的工频接地电阻乘以冲击系数[3],求出冲击接地电阻。
这4种方法除了第一种都不是实验直接测量的结果,都是通过间接手段求出冲击接地电阻,其结果的可靠性、准确性无法保证。
因此需要寻求一种计算与模拟相结合的测量方法,既可以模拟雷电流对防雷接地体产生作用的过程,更准确的反映冲击接电阻的真实值,又可以通过计算仪器,在现场直接得到冲击接地电阻的阻值。
编号:SM-ZD-60455 杆塔接地电阻的测量方法Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly.编制:____________________审核:____________________批准:____________________本文档下载后可任意修改杆塔接地电阻的测量方法简介:该规程资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。
文档可直接下载或修改,使用时请详细阅读内容。
送电线路杆塔必须可靠接地,以确保雷电流泄入大地,保护线路绝缘。
为提高耐雷水平,保护设备绝缘和避免跨步电压产生的人身伤害,就一定要降低杆塔的接地电阻。
1接地装置简介接地装置。
它是指接地体和接地引下线的总称。
接地体指埋入地中并直接与大地接触的金属导体,对杆塔接地体来说是指埋入地下的圆钢、角钢等金属构件。
接地引下线是指使引雷设备(避雷线、避雷针等)与接地体相连的部分,对杆塔来说主要有独立接地引下线、钢筋混凝土杆(非预应力)的钢筋、铁塔钢材等。
接地电阻。
传统的测量接地电阻(用ZC-8型电阻测量仪)测出的仅是接地体的接地电阻。
而经分析可知雷电流是从杆塔顶部经过接地引下线泄入大地的,从导泄雷电流的角度讲应考虑整个泄流通道的电阻,而不仅是接地体的接地电阻,而且接地体和接地引下线及避雷线要靠螺栓、连板和焊接等方法连接,他们之间又存在接触电阻,所以接地电阻应是接地体电阻、接地引下线电阻和接触电阻的总和。
2改进前的测量方法使用ZC-8型接地电阻测量仪的测量方法简单,优点是对接地体的接地电阻测量准确,性能稳定。
输电线路杆塔接地电阻测量方法1杆塔接地的标准和要求线路杆塔的接地电阻主要根据防雷接地的要求来决定。
高压输电线路中,一般每基杆塔下都设有接地装置,并通过引线与杆塔相连接。
根据实际运行经验,从技术经济角度出发,对于不同土壤电阻率地区,对架空线路杆塔的接地电阻和接地装置的布置型式在电力行业标准DL/T620一1997《交流电气装置的过电压保护和绝缘配合》、DL/T621一1997《交流电气装置的接地》中都提出了具体的要求。
是设计、安装和改造架空线路杆塔接地的依据。
1.1杆塔的接地电阻标准(1)有避雷线线路杆塔的接地电阻。
有避雷线的线路,每基杆塔不连避雷线时的工频接地电阻,在雷季干燥时,不宜超过表2.1所列数值。
雷电活动强烈的地方和经常发生雷击故障的杆塔和线段,应改善接地装置,适当提高绝缘水平或架设耦合地线。
表2.1 有避雷线的线路杆塔接地电阻Ω•,接地电阻很难降低到30Ω时,可采用6一8根总注:如土壤电阻率超过2000m长不超过50O m的放射形接地体,或采用连续伸长接地体。
其接地电阻不受限制。
(2)无避雷线线路杆塔的接地电阻。
对于中雷区及多雷区35kV及66kV无避雷线线路,宜采取措施,减少雷击引起的多相短路和两相异地接地引起的断线事故,钢筋混凝土杆和铁塔宜接地,其接地电阻不受限制,但多雷区不宜超过30Ω。
钢筋混凝土杆和铁塔应充分利Ω•或有运行经验的地区,可不另设人工接用其自然接地作用,在土壤电阻率不超过100m地装置。
需要说明的是,作为通用行业标准,对杆塔接地电阻的要求是比较宽松的。
在多雷区,如是联络线路或重要线路,杆塔接地电阻最好能处理到10Ω以下,因为只有这样才能提高线路的耐雷水平,有效地限制雷击跳闸率,从而保证电网的安全稳定运行。
1.2杆塔接地型式DL/T621一1997《交流电气装置的接地》的6.3条还对高压架空线路杆塔接地装置的型式做了具体的要求如下:(1)在土壤电阻率100m ρ≤Ω•的潮湿地区,可利用杆塔和钢筋混凝土杆自然接地。
目次1范围2规范性引用文件3术语和定义4分类5测量杆塔工频接地电阻的一般性规定6测量杆塔工频接地电阻的三极法7测量杆塔工频接地电阻的钳表法附录A(资料性附录)架空输电线路杆塔的钳表法增量的估算附录B(资料性附录)架空输电线路杆塔的工频接地电阻前言本标准是根据原国家经济贸易委员会《关于下达2002年度电力行业标准制定和修订计划的通知》(电力[2002]973号)的安排制定的。
本标准的附录A、附录B为资料性附录。
本标准由中国电力企业联合会提出。
本标准由全国高压电气安全标准化技术委员会归口并解释。
本标准负责起草单位:武汉大学电气工程学院。
本标准参加起草单位:安徽省巢湖供电局、湖北省电力试验研究院。
本标准主要起草人:周文俊、王建国、刘泽生、傅军、梁国栋、林志伟、徐家奎。
杆塔工频接地电阻测量1范围本标准规定了杆塔工频接地电阻的术语和定义、测量的一般性规定、测量杆塔工频接地电阻的三极法和钳表法。
本标准适用于采用三极法测量杆塔的工频接地电阻,也适用于采用钳表法测量有避雷线且多基杆塔避雷线直接接地的架空输电线路杆塔的工频接地电阻。
2规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。
凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。
凡是不注日期的引用文件,其最新版本适用于本标准。
DL/T 620—1997交流电气装置的过电压保护和绝缘配合DL/T 621—1997交流电气装置的接地3术语和定义下列术语和定义适用于本标准。
3.1接地grounded将电力系统或建筑物中电气装置、设施的某些导电部分,经过接地线连接至接地极。
[DL/T 621—1997中2.1]3.2接地极grounding electrode埋入地中并直接与大地接触的金属导体,称为接地极。
兼作接地极用的直接与大地接触的各种金属构件、金属井管、钢筋混凝土建(构)筑物的基础、金属管道和设备等称为自然接地极。
如何正确测量杆塔接地电阻摘要:接地网是输电线路的组成部分,在新线路施工、旧线路运行中、接地改造后均需对杆塔接地电阻进行测量。
接地电阻值是否满足线路运行要求,直接影响该线路的防雷水平。
测量是否准确,影响对线路健康水平的判断。
而测量方法是否正确,又影响测量结果的准确性。
本文对如何正确测量输电线路杆塔接地电阻进行探讨。
关键词:输电线路;接地电阻;测量方法一、常用接地电阻测量仪表常用的接地电阻测量仪表有ZC-8型接地电阻表(也叫接地摇表),电子接地电阻测量表、钳形接地电阻测试仪。
ZC-8型接地电阻表有使用较早、使用广泛的特点,适合单基测量时使用。
ZC-8型接地电阻表又分三接线柱(E、P、C )型及四接线柱(C1、P1、P2、C2)型,四接线柱在测量接地电阻时将P2、C2柱短接,相当于三接线柱的E柱。
ZC-8型接地摇表有两种量程,一种是0-1-10-100Ω;另一种是0-10-100-1000Ω。
下面主要介绍ZC-8(四接线柱)型接地电阻表的使用原理及布置方法。
1.ZC-8型接地电阻表的工作大原理ZC-8型接地电阻表是根据电位差计原理制成的一种接地电阻测量仪器,它由手摇发电机、电流互感器、电位器、检流计等部件组成,全部构件装于铝合金铸成的可携式机盒内。
其原现图及外部接线(见图1)。
图1所示电路中,被测接地体接E端,P端接辅助电压极,C端接领辅助电流极,当以120转/分钟的速度转动发电机时,可产生约98赫兹的交流电,与50赫兹不同,可有效避免工频交流在地中杂散电流的干扰。
发电机发出的电流I1经电流互感器一次绕组、所测试的接地体(D),大地和辅助接地极(B)回到发电机,由电流互感器二次绕组产生的电流I2流经电位器R5,当检流计指针偏转时,调节电痊器R5的Q(倍率旋钮)使检基本稳定,此时在E和P之间的压降值与电位器R5的OQ两点之间的电位差是相近的,与此并联的机械整流器两端所接的检流计回路中还接有细调电阻R5-R8(电阻值旋钮),经细调使检中流过额定工作电流而使指针严格指零,根据倍率旋钮和电阻值旋钮指示,即可测得接地体的接地电阻值。
目次1范围2规范性引用文件3术语和定义4分类5测量杆塔工频接地电阻的一般性规定6测量杆塔工频接地电阻的三极法7测量杆塔工频接地电阻的钳表法附录A(资料性附录)架空输电线路杆塔的钳表法增量的估算附录B(资料性附录)架空输电线路杆塔的工频接地电阻前言本标准是根据原国家经济贸易委员会《关于下达2002年度电力行业标准制定和修订计划的通知》(电力[2002]973号)的安排制定的。
本标准的附录A、附录B为资料性附录。
本标准由中国电力企业联合会提出。
本标准由全国高压电气安全标准化技术委员会归口并解释。
本标准负责起草单位:武汉大学电气工程学院。
本标准参加起草单位:安徽省巢湖供电局、湖北省电力试验研究院。
本标准主要起草人:周文俊、王建国、刘泽生、傅军、梁国栋、林志伟、徐家奎。
杆塔工频接地电阻测量1范围本标准规定了杆塔工频接地电阻的术语和定义、测量的一般性规定、测量杆塔工频接地电阻的三极法和钳表法。
本标准适用于采用三极法测量杆塔的工频接地电阻,也适用于采用钳表法测量有避雷线且多基杆塔避雷线直接接地的架空输电线路杆塔的工频接地电阻。
2规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。
凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。
凡是不注日期的引用文件,其最新版本适用于本标准。
DL/T 620—1997交流电气装置的过电压保护和绝缘配合DL/T 621—1997交流电气装置的接地3术语和定义下列术语和定义适用于本标准。
3.1接地grounded将电力系统或建筑物中电气装置、设施的某些导电部分,经过接地线连接至接地极。
[DL/T 621—1997中2.1]3.2接地极grounding electrode埋入地中并直接与大地接触的金属导体,称为接地极。
兼作接地极用的直接与大地接触的各种金属构件、金属井管、钢筋混凝土建(构)筑物的基础、金属管道和设备等称为自然接地极。
杆塔接地电阻测量
1 适用范围
1.1 本作业指导书适用于10kV-35kV架空送电线路测量杆塔接地电阻标准化作业。
1.2 本作业指导书规定了测量接地电阻所需的人员配置、工器具要求、天气及作业现场的要求、检修作业工序、工艺质量记录卡等内容。
1.3 本作业指导书适用于四川省电力公司所属的各供电企业(公司)。
2 引用文件
2.1 DL/T 887-2004《杆塔工频接地电阻测量》
2.2GBJ 233 《110~500kV架空电力线路施工及验收规范》
2.3 《国家电网公司电力安全工作规程》(电力线路部分)(试行)
2.4 DL/T 5092—1999 《110kV-500kV架空送电线路设计技术规程》
2.5 DL/T 741—2001 《架空送电线路运行规程》
2.7 《电力建设安全工作规程》(架空电力线路部分)
2.9 国电发[2002]659号《输电网安全性评价(试行)》
2.10 国电发[2002]777号《电力安全工器具预防性试验规程》(试行)
2.11 国电发[2003]481号《架空输电线路管理规范》
6.2.1一般性规定
a)采用三极法测量前,应将杆塔塔身与接地极之间的电气连接全部断开。
b)测量前应核对被测杆塔的接地极布置型式和最大射线长度,记录杆塔编号、接地极编号、接地极型式、土壤状况和当地气温。
c)布置电流极和电压极时,宜避免将电流极和电压极布置在接地装置的射线方面上。
d)在工业区或居民区,地下可能具有部件或完全埋地的金属物件时,电极应布置在与金属物体垂直的方向上,并且要求最近的测量电极与地下管道之间距离不小于电极之间的距离。
e)电压极和电流极的辅助接地电阻不应超过测量仪表规定的范围。
在测量时,测量电极插入土壤深度不低于0.6米,并与土壤接触良好。
f)测量时应注意保持接地电阻测试仪各接线端子、电极和接地装置等电气连接的接触良好。
g)测量接线时,应尽量缩短接地电阻测试仪的接地端子与接地装置之间的引线长度。
h)当杆塔是单点接地时,只测试一个电阻值,当杆塔是两点或四点接地时,必须每个接地点都应进行测量,且每个电阻值都应进行记录。
i)所测得的接地电阻值应根据土壤干燥及潮湿情况乘以季节系数后才是最终的接地电阻值。
杆塔防雷接地装置的季节系数为:
埋深(m)水平接地体 2 -3m 垂直接地体
0.5 1.4-1.8 1.2-1.4
0.8-1.0 1.25-1.45 1.15-1.3
2.5-
3.0 1.0-1.1 1.0-1.1
序号名称规格单位数量确认√备注
1 接地摇
表台 1
2 接地棒φ10×800 根 2
3 塑料铜线0.5mm 2 m 80
4 小铁锤1kg 把 1
5 工具袋个 1
6 个人工具套 1
6.2.3 三极法电极布置图
说明:三极法测量杆塔工频接地电阻的电极布置图如上,电压极P和电流极C公别布置在离杆塔基础边缘dGC=4L 处和
dGP=2.5L处,L为杆塔接地装置放射形接地极的最大长度。
dGP 为接地装置G和电压极P之间的直线距离,dGC为接地装置G 和电压极C之间的直线距离。
6.2.4 三极法测量接地电阻接线图
6.3 钳表法测量接地电阻
6.3.1 钳表法的使用条件
架空输电线路的杆塔在满足以下条件时可以使用钳表法测量工频接地电阻
a)杆塔所在的输电线路具有避雷线,且多基杆塔的避雷线直接接地。
b)测量所在线路区段中直接接地的避雷线上并联的杆塔数量满足下表的规定。
杆塔接电阻Ω0<R j
≤1
1<R j
≤2
2<R j
≤4
4<R j
≤5
5<R j
≤7
7<R j
≤
10
10<R j
≤15
15<R j
≤17
17<R j
≤24
24<R j
≤30
30<R j
≤40
40<R j
≤50
并联
杆塔
数
基
≥4 ≥5≥6≥7≥8≥9≥10≥11≥12≥13≥15≥16
6.3.2 钳表法测量的一般规定
a)首先检查被测线路杆塔是否符合上表规定,记录杆塔编号、接地极编号、接地极型式、土壤状况和当地气温。
b)测量前,测量人员应使用精密环路电阻对钳形接地电阻测试仪进行自检。
c)检查被测杆塔接地线的电气连接状况。
测量时应只保留一根接地线与杆塔身相连,其余接地线均应与杆塔塔身断开,并用金属导线将断开的其他接地线与被保留的接地线并联,将杆塔接地装置作为整体测量。
d)测量时打开测试仪钳口,使用钳形接地电阻测试仪钳住被保留的那根接地线,使接地线居中,尽可能垂直于测试仪钳口所在平面,并保持钳口接触良好,使测试仪工作,读取并记录稳定的读数。
f)测量时应注意保持钳口清洁,防止夹入野草、泥土等影响测量精度,测试仪工作时不允许人直接接触接地装置或杆塔的金属裸露部分。
6.3.3钳表法测量所需的主要工器具
序号名称规格单位
数
量
确认√备注
1 钳形接地
电阻测试
仪
台 1
2 工具袋个 1
3 个人工具套 1 7 作业程序、质量标准及安全注意事项
工作阶
段
检修项目工作步骤质量标准危险点控制措施
准备阶段1资料调查
按工作内容查阅相应接地装置
的型式和以往接地电阻测量值
所查结果应与现场相符
2检查各种工器具
根据不同的测量方法,选用
合格的工器具
“摇表”需经试验合格、各
种工器具准备充分
工器具准备敷
衍
个人工具、仪表是否合
格,并正确配带安全用
具
作业阶段1拆开接地线连接
点
根据测量方法,拆开接地引
下线
三极法,所有接地引下线
均需解开;钳表法,除保留
的那根外,其余均需解开
感应电
戴绝缘手套,拆开后不
应用手直接接触与地
断开的接地引下线
2测试仪的检查及
连接
三极法需将电压极、电流极和
接地极与测试仪可靠连接;钳
表法需用精密环路电阻对其进
行检测
三极法按 6.2.3 、6.2.4
进行连接和布线;钳表法应
测试仪自检合格。
3测量接地电阻
三极法,应首先将指针归零,
先用大倍率档位后用小倍率档
位,匀速120r/min测量
读数时,应待测量值稳定在
某个数值时,记录电阻值
摇动摇表后禁
止有人接触铜
线及连接线
禁止在测量过程中,接
触电压极、电流极和接
地极
结束阶段1拆除摇表及连接
线
2恢复杆塔接地装
置
连接可靠。