真实应力-应变曲线2014.
- 格式:ppt
- 大小:1.70 MB
- 文档页数:57
实验六 真实应力—应变曲线的测定一、实验目的1. 学习掌握测定与绘制真实应力—应变曲线的方法。
2. 掌握简化形式的真实应力—应变曲线的绘制方法。
3. 比较实测曲线与简化曲线,认识简化曲线的误差分布特点。
二、实验条件1. 实验设备:60T 万能材料试验机;2. 量具:外径千分尺,游标卡尺,半径规;3. 材料:20钢和45钢退火状态拉伸试件各一件。
三、实验步骤及方法1. 测定和绘制真实应力—应变曲线。
真实应力—应变曲线)(εf S =A F S /=()A A /ln 0=ε其中,F ——瞬时载荷(kg 或N ); A ——瞬时断面积(mm 2); A 0——试件原始断面积(mm 2)。
由此可见,在均匀变形阶段,只需测定瞬时载荷和相应的瞬时断面积,就可作出真实应力—应变曲线。
但是,在产生缩颈以后,由于应力状态发生变化,出现了三向拉应力,因而产生了所谓“形状硬化”,使实测曲线失真,为此,需进行修正。
按齐别尔修正公式:)81/(ρdS S +'= 式中,S ——取出形状硬化后的真实应力; S'——包含形状硬化在内的真实应力; d ——缩颈处的瞬时断面直径;ρ——缩颈处试件外形瞬时曲率半径。
因此,在产生缩颈之后,除以测定瞬时载荷F 、缩颈处瞬时直径d 以外,还需要测定相应瞬时试件外形的曲率半径ρ,才能绘制出实测的真实应力—应变曲线。
2. 绘制简化真实应力—应变曲线 (1)n B S ε=简化真实应力—应变曲线 式中,B ——材料常数; n ——加工硬化指数。
因为b n ε=,b b b S B εε/=于是上式可写为:bb b S S εεε⎪⎪⎭⎫⎝⎛=式中,S b ——刚产生缩颈时即失稳点的真实应力; b ε——失稳点的真实应力。
由此可见,只要准确测定失稳点的真实应力和真实应变,就能作出该种简化应力应变曲线。
(2)简化真实应力—应变曲线,即真实应力—应变曲线在塑性失稳点上所作的切线。
真实应力-真实应变曲线的测定一、实验目的1、学会真实应力-真实应变曲线的实验测定和绘制2、加深对真实应力-真实应变曲线的物理意义的认识二、实验内容真实应力-真实应变曲线反映了试样随塑性变形程度增加而流动应力不断上升,因而它又称为硬化曲线。
主要与材料的化学成份、组织结构、变形温度、变形速度等因素有关。
现在我们把一些影响因素固定下来,既定室温条件下拉伸退火的中碳钢材料标准试样,由拉力传感器行程仪及有关仪器记录下拉力-行程曲线。
实测瞬间时载荷下试验的瞬间直径。
特别注意缩颈开始的载荷及形成,缩颈后断面瞬时直径的测量,然后计算真实应力-真实应变曲线。
σ真=f(ε)=B·εn三、试样器材及设备1、60吨万能材料试验机2、拉力传感器3、位移传感器4、Y6D-2动态应变仪5、X-Y函数记录仪6、游标卡尺、千分卡尺7、中碳钢试样四、推荐的原始数据记录表格五、实验报告内容除了通常的要求(目的,过程……)外,还要求以下内容:1、硬化曲线的绘制(1)从实测的P瞬、d瞬作出第一类硬化曲线(σ-ε)(2)由工程应力应变曲线换算出真实应力-真实应变曲线(3)求出材料常数B值和n值,根据B值作出真实应力-真实应变近似理论硬化曲线。
2、把真实应力-真实应变曲线与近似理论曲线比较,求出最大误差值。
3、实验体会六、实验预习思考题1、 什么是硬化曲线?硬化曲线有何用途?2、 真实应力-真实应变曲线和工程应力应变曲线的相互换算。
3、 怎样测定硬化曲线?测量中的主要误差是什么?怎样尽量减少误差?附:真实应力-真实应变曲线的计算机数据处理一、 目的初步掌握实验数据的线性回归方法,进一步熟悉计算机的操作和应用。
二、 内容一般材料的真实应力-真实应变都是呈指数型,即σ=B εn 。
如把方程的二边取对数:ln σ=lnB+nln ε,令 y =ln σ;a =lnB ;x =ln ε 则上式可写成y =a+bx成为一线性方程。
在真实应力-真实应变曲线试验过程中,一般可得到许多σ和ε的数据,经换算后,既有许多的y 和x 值,在众多的数值中如何合理的确定a 和b 值使大多数实验数据都在线上,这可用最小二乘法来处理。
真实应力—应变曲线拉伸实验精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-实验一 真实应力—应变曲线拉伸实验一、实验目的1、理解真实应力—应变曲线的意义,并修正真实应力—应变曲线。
2、计算硬化常数B 和硬化指数n ,列出指数函数关系式n S Be =。
3、验证缩颈开始条件。
二、基本原理1、绘制真实应力—应变曲线对低碳钢试样进行拉伸实验得到的拉伸图,纵坐标表示试样载荷,横坐标表示试样标距的伸长。
经过转化,可得到拉伸时的条件应力—应变曲线。
在条件应力—应变曲线中得到的应力是用载荷除以试样拉伸前的横截面积,而在拉伸变形过程中,试样的截面尺寸不断变化,因此条件应力—应变曲线不能真实的反映瞬时应力和应变关系。
需要绘制真实应力—应变曲线。
在拉伸实验中,条件应力用σ表示,条件应变(工程应变)用ε表示,分别用式(1)和(2)计算。
A F=σ (1)式中,σ为条件应力;F 为施加在试样上的载荷;0A 为试样拉伸前的横截面积。
000l l ll l ε-∆== (2)式中,ε为工程应变;l 为试样拉伸后的长度;0l 为试样拉伸前的长度。
真实应力用S 表示,真实应变用∈表示,分别用式(3)和(4)计算。
)1()1(0εσε+=+==A F A F S(3)式中,S 为真实应力;F 为施加在试样上的载荷;0A 为试样拉伸前的横截面积;σ为条件应力; ε为工程应变。
)1(ε+=n l e(4)式中,e 为真实应变;ε为工程应变。
由式(1)和(2)可知,只要测出施加在试样上的载荷以及拉伸前的横截面积,可以计算出条件应力和工程应变;根据式(3)和(4),就可以计算出真实应力和真实应变。
测出几组不同的数据,就可以绘制真实应力应变曲线。
2、修正真实应力—应变曲线在拉伸实验中,当产生缩颈后,颈部应力状态由单向变为三向拉应力状态,产生形状硬化,使应力发生变化。
为此,必须修正真实应力—应变曲线。
在应力-应变曲线中,应力是F除以试样的原始横截面积,应变是△L除以试样的标距L。
然而在拉伸过程中,试样原始截面逐渐变小,所以实际的应力应该是瞬时试验力F除以瞬时截面面积S。
而实际的真应变,则是瞬时伸长与瞬时长度之比的积分。
由此我们可以得到真应力-应变曲线。
真应力-应变曲线,横坐标为e,表示真实应变值,de=dl/l。
纵坐标为s,表示真应力,s=F/A。
其中F、A、l均表示瞬时值。
OP段仍为弹性变形部分。
PB段为产生颈缩前的均匀变形阶段,斜率D=ds/de为材料的形变强化模数,这个阶段的D随变形增加而减少。
BK段为局部变形阶段,试样开始发生颈缩。
BK前段部分,D为一常数,代表形变强化趋于稳定。
曲线最后发生翘曲,由于颈缩发展到一定程度之后,三向应力不利于变形造成的。
从真实应力-应变曲线可以看出,材料抵抗塑性变形的能力随应变增加而上升的,也就是发生加工硬化。
所以真实应力-应变曲线又称为硬化曲线。
真实应力应变曲线材料的屈服强度引言:实际工程环境中,常常需要了解材料在受力下的响应及其屈服强度,这对于材料的设计和选择非常关键。
在工程中,材料的性能可通过应力应变曲线来表征。
本文将会介绍真实应力应变曲线的概念,以及引入屈服强度的概念及其的计算方法。
在介绍真实应力应变曲线之前,我们需要先了解一般应力应变曲线的情况。
一般情况下,所谓的应力(stress)是指物理学上的单个应力:拉伸应力(tension)或压缩应力(compression),而弹性改性不需要考虑在剪切平面上的应力。
然而,在弹性阶段之后,在材料开始出现变形的阶段,Hooke定律不再适用。
通常,在这些情况下,我们依靠真实应力应变曲线来描述材料的应力-应变响应。
而真实应力应变曲线,则是每个剪切平面上的应力的总和。
它通常通过接触表面的应力计算得出。
这意味着,如果材料在剪切加工期间受到了拉伸或压缩的应力,那么这部分力也将包括在内。
因此,真实应力应变曲线比一般应力应变曲线要更真实和准确。
屈服强度:材料在弹性阶段和塑性阶段的状态都被考虑进入真实应力应变曲线中。
但是,当材料到达塑性阶段时,材料可能会出现一些不规则变形,这象征着材料的力量为达到屈服强度。
事实上,屈服强度是实验中最被广泛应用的材料力学应力变形属性之一。
简单来说,屈服强度是指材料在塑性阶段内,在应力逐渐增加中开始出现塑性变形的应力水平。
当材料达到这个应力水平时,它的应变将不再是弹性的,而是主要由塑性变形组成。
根据ASTM标准,屈服强度是指单调的应力应变曲线中材料从弹性阶段跃变到不可恢复塑性区间的应力水平。
材料在应力-应变曲线中的屈服强度可通过图像可视化来计算。
标准方法是选择一条直线使其与应力-应变曲线上的高应变部分相交,该交点即为屈服强度。
对于金属、塑料和其他材料来说,屈服强度是材料的机械特性之一。
它在材料的分析和选材时具有重要意义。
总结:本文介绍了真实应力应变曲线的概念,以及引入屈服强度的概念及其的计算方法。