第一章 一元线性回归分析基础 (2)[53页]
- 格式:ppt
- 大小:836.50 KB
- 文档页数:20
12.9 一元线性回归以前我们所研究的函数关系是完全确定的,但在实际问题中,常常会遇到两个变量之间具有密切关系却又不能用一个确定的数学式子表达,这种非确定性的关系称为相关关系。
通过大量的试验和观察,用统计的方法找到试验结果的统计规律,这种方法称为回归分析。
一元回归分析是研究两个变量之间的相关关系的方法。
如果两个变量之间的关系是线性的,这就是一元线性回归问题。
一元线性回归问题主要分以下三个方面:(1)通过对大量试验数据的分析、处理,得到两个变量之间的经验公式即一元线性回归方程。
(2)对经验公式的可信程度进行检验,判断经验公式是否可信。
(3)利用已建立的经验公式,进行预测和控制。
12.9.1 一元线性回归方程 1.散点图与回归直线在一元线性回归分析里,主要是考察随机变量y 与普通变量x 之间的关系。
通过试验,可得到x 、y 的若干对实测数据,将这些数据在坐标系中描绘出来,所得到的图叫做散点图。
例1 在硝酸钠(NaNO 3)的溶解度试验中,测得在不同温度x (℃)下,溶解于100解 将每对观察值(x i ,y i )在直角坐标系中描出,得散点图如图12.11所示。
从图12.11可看出,这些点虽不在一条直线上,但都在一条直线附近。
于是,很自然会想到用一条直线来近似地表示x 与y 之间的关系,这条直线的方程就叫做y 对x 的一元线性回归方程。
设这条直线的方程为yˆ=a+bx 其中a 、b 叫做回归系数(y ˆ表示直线上y 的值与实际值y i 不同)。
图12.11下面是怎样确定a 和b ,使直线总的看来最靠近这几个点。
2.最小二乘法与回归方程在一次试验中,取得n 对数据(x i ,y i ),其中y i 是随机变量y 对应于x i 的观察值。
我们所要求的直线应该是使所有︱y i -yˆ︱之和最小的一条直线,其中i y ˆ=a+bx i 。
由于绝对值在处理上比较麻烦,所以用平方和来代替,即要求a 、b 的值使Q=21)ˆ(i ni iyy-∑=最小。
一元线性回归分析(1)基本概念回归分析:通过大量的观测发现变量之间存在的统计规律性,并用一定的数学模型表示变量相关关系的方法只有一个自变量并且统计量成大体一次函数的线性关系的回归分析叫一元线性回归分析。
在一元线性回归中,我们用 Ya bX =+作为回归方程,代表X 与Y 的线性关系其中:a 表示该直线在Y 轴的截距b 表示该直线的斜率也就是 Y的变化率 X 为自变量,通常是研究者事先选定的数值Y为对应于X 对变量Y 的估计值(2)最小二乘法所谓最小二乘法,就是如果散点图中每一点沿Y 轴方向到直线的距离的平方和最小,则认为这条直线的代表性最好,即使用其作为回归方程。
这样我们使得 ()2Y Y =-∑总误差最小。
Ya bX =+ 其中()()()2X X Y Y b X X --=-∑∑;a Y bX =- 2.一元线性回归方程的检验(1)方差分析法R EMS F MS = 其中()()222T Y SS Y Y Y n =-=-∑∑∑而其1T df n =- ()()2222R X SS Y Y b X n ⎡⎤⎢⎥=-=-⎢⎥⎣⎦∑∑∑其1R df = E T R SS SS SS =-其2E df n =-(2)回归系数检验bb t SE =其中b SE = 而XY s = Y为中心Y值上下波动的标准差(在知道相关系数时XY Y s s =)一元线性回归方程的应用回归分析的目的,就是在测定自变量X 与因变量Y 的关系为显著相关后,借助于你和的较优回归模型来预测在自变量X 为一定值时因变量Y 的发展变化。
当我们根据给出的X 值而预测得到点估计Y 时,Y 只代表了预测值的中点,而计算在特定置信区间内的区间估计则依靠以下公式:2p XY Y t s α±⋅n 很大时近似为1其中t 的自由度取 n-2,p Y 为对应该P X 的方程解出的点估计Y 值文章来源:博仁教育。
一元线性回归分析摘要:一元线性回归分析是一种常用的预测和建模技术,广泛应用于各个领域,如经济学、统计学、金融学等。
本文将详细介绍一元线性回归分析的基本概念、模型建立、参数估计和模型检验等方面内容,并通过一个具体的案例来说明如何应用一元线性回归分析进行数据分析和预测。
1. 引言1.1 背景一元线性回归分析是通过建立一个线性模型,来描述自变量和因变量之间的关系。
通过分析模型的拟合程度和参数估计值,我们可以了解自变量对因变量的影响,并进行预测和决策。
1.2 目的本文的目的是介绍一元线性回归分析的基本原理、建模过程和应用方法,帮助读者了解和应用这一常用的数据分析技术。
2. 一元线性回归模型2.1 模型表达式一元线性回归模型的基本形式为:Y = β0 + β1X + ε其中,Y是因变量,X是自变量,β0和β1是回归系数,ε是误差项。
2.2 模型假设一元线性回归模型的基本假设包括:- 线性关系假设:自变量X与因变量Y之间存在线性关系。
- 独立性假设:每个观测值之间相互独立。
- 正态性假设:误差项ε服从正态分布。
- 同方差性假设:每个自变量取值下的误差项具有相同的方差。
3. 一元线性回归分析步骤3.1 数据收集和整理在进行一元线性回归分析之前,需要收集相关的自变量和因变量数据,并对数据进行整理和清洗,以保证数据的准确性和可用性。
3.2 模型建立通过将数据代入一元线性回归模型的表达式,可以得到回归方程的具体形式。
根据实际需求和数据特点,选择适当的变量和函数形式,建立最优的回归模型。
3.3 参数估计利用最小二乘法或最大似然法等统计方法,估计回归模型中的参数。
通过最小化观测值与回归模型预测值之间的差异,找到最优的参数估计值。
3.4 模型检验通过对回归模型的拟合程度进行检验,评估模型的准确性和可靠性。
常用的检验方法包括:残差分析、显著性检验、回归系数的显著性检验等。
4. 一元线性回归分析实例为了更好地理解一元线性回归分析的应用,我们以房价和房屋面积之间的关系为例进行分析。