立体几何垂直证明题常见模型与方法
- 格式:doc
- 大小:653.00 KB
- 文档页数:14
立体几何平行垂直的证明方法在立体几何中,平行和垂直是两个重要的概念。
平行指的是两条直线或两个平面在平面内没有交点,而垂直则表示两条直线或两个平面之间存在90度的夹角。
在解决立体几何问题时,我们常常需要证明两条线段或两个平面是否平行或垂直。
本文将介绍几种常用的证明方法,帮助读者更好地理解立体几何中平行和垂直的性质。
一、平行线的证明方法1. 共面法:若两条直线在同一个平面内且没有交点,则它们是平行线。
要证明两条直线平行,我们可以找到一个共同的平面,使得这两条直线在该平面内且没有交点。
通过构建图形或使用法向量等方法,可以证明两条直线共面且没有交点,从而得出它们是平行线的结论。
2. 平行线定理:若两条直线与第三条直线分别平行,则这两条直线也是平行线。
这一方法常用于证明平行线的性质,通过构建平行线与其他直线的交点关系,可以得出所求结论。
3. 平行线的性质:在平面几何中,平行线具有很多性质。
常见的平行线定理包括等角定理、同位角定理、内错角定理等。
通过运用这些性质,可以证明两条直线平行。
二、垂直关系的证明方法1. 垂直定理:若两条直线互相垂直,则构成的四个角中有两个互为相应角。
根据这一定理,我们可以通过证明两个角互为相应角,从而得出两条直线互相垂直的结论。
2. 垂线定理:若两条直线互相垂直,则它们的斜率之积等于-1。
这一方法常用于证明两条直线垂直的情况。
通过计算两条直线的斜率,如果它们的斜率之积等于-1,则可以得出它们垂直的结论。
3. 垂直角的性质:在平面几何中,垂直角的性质是我们常用的性质之一。
两条直线垂直时,其错角是互相垂直的。
通过构建直线的错角,可以证明所求的两条直线垂直关系。
三、平面的平行和垂直关系的证明方法1. 共面定理:在空间几何中,三条或三条以上的直线如果在同一个平面内,则它们是共面的。
通过在空间中构建直线和平面的关系,可以证明所求直线是否共面。
2. 平行平面定理:若两个平面各与第三个平面平行,则这两个平面也是平行的。
立体几何题型及解题方法
立体几何是数学中研究三维空间几何图形的学科。
以下是一些常见的立体几何题型及其解题方法:
1. 计算体积和表面积:这类题目通常涉及到三维空间中的几何形状,如长方体、圆柱体、圆锥体等。
解题方法包括使用体积和表面积的公式,以及根据题目描述建立数学模型。
2. 证明定理和性质:这类题目通常涉及到几何图形的性质和定理,如平行线性质、勾股定理等。
解题方法包括使用已知定理和性质进行推导,以及通过构造辅助线或辅助图形来证明。
3. 求解最值问题:这类题目通常涉及到求几何图形中的最值,如最短路径、最大面积等。
解题方法包括使用不等式、极值定理和优化方法等。
4. 判定和性质应用:这类题目通常涉及到判定几何图形是否满足某个性质,或应用某个性质到实际场景中。
解题方法包括根据性质进行推导和判断,以及根据实际场景建立数学模型。
以上是一些常见的立体几何题型及其解题方法,当然还有其他的题型和解题方法。
在解决立体几何问题时,需要灵活运用几何知识和方法,多做练习,提高自己的解题能力。
立体几何垂直证明题常见模型及方法证明空间线面垂直需注意以下几点:①由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。
②立体几何论证题的解答中,利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。
③明确何时应用判定定理,何时应用性质定理,用定理时要先申明条件再由定理得出相应结论。
垂直转化:线线垂直 线面垂直 面面垂直;基础篇类型一:线线垂直证明(共面垂直、异面垂直)(1) 共面垂直:实际上是平面内的两条直线的垂直 (只需要同学们掌握以下几种模型)○1 等腰(等边)三角形中的中线○2 菱形(正方形)的对角线互相垂直 ○3勾股定理中的三角形 ○4 1:1:2 的直角梯形中 ○5 利用相似或全等证明直角。
例:在正方体1111ABCD A B C D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1A O OE ⊥(2) 异面垂直 (利用线面垂直来证明,高考中的意图) 例1 在正四面体ABCD 中,求证AC BD ⊥变式 1 如图,在四棱锥ABCD P -中,底面ABCD 是矩形,已知ο60,22,2,2,3=∠====PAB PD PA AD AB .证明:AD PB ⊥;变式2 如图,在边长为2的正方形ABCD 中,点E 是AB 的中点,点F 是BC 的中点,将△AED,△DCF 分别沿,DE DF 折起,使,A C 两点重合于'A . 求证:'A D EF ⊥;变式3如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠P AC =∠PBC =90 º证明:AB ⊥PC类型二:线面垂直证明方法○1 利用线面垂直的判断定理例2:在正方体1111ABCD A B C D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1A O BDE ⊥平面变式1:在正方体1111ABCD A B C D -中,,求证:11AC BDC ⊥平面 变式2:如图:直三棱柱ABC -A 1B 1C 1中, AC =BC =AA 1=2,∠ACB =90︒.E 为BB 1的中点,D 点在AB 上且DE = 3 . 求证:CD ⊥平面A 1ABB 1;BE'ADFGPBADE变式3:如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的中点,2, 2.CA CB CD BD AB AD ======求证:AO ⊥平面BCD ;变式4 如图,在底面为直角梯形的四棱锥P ABCD -中,AD BC ∥,90ABC ∠=°,PA ⊥平面ABCD .3PA =,2AD =,23AB =6BC =()1求证:BD ⊥平面PAC○2 利用面面垂直的性质定理 例3:在三棱锥P-ABC 中,PA ABC ⊥底面,PAC PBC ⊥面面,BC PAC ⊥求证:面。
立体几何四个重要模型广州市第六十五中学朱星如模型1:在棱长为a 的正面体ABCD 中:1.求证它是一个正三棱锥。
证明:即证顶点A 在底面BCD 的中心H 的连线与底面垂直。
取BC 的中点E,BD 的中点F,连CF,DE 相交于点H,则H 是三角形BCD 的中心,且H 是CF,DE 的一个三等分点,连AH,由BC ⊥DE,BC ⊥AE,AE 交DE=E,AE,DE 的平面AED 内,得BC ⊥平面AED,由此得BC ⊥AH,即AH ⊥BC。
(1)同理:AH ⊥BD。
(2)由BC 交BD=B,BC,BD 在平面BCD 内及(1)(2)得:AH ⊥平面BCD。
所以四面体ABCD 是正三棱锥。
2.设E、F、S、T 分别是BC、BD、AD、AC 的中点,求证:四边形EFST 是正方形。
证明:由于E、F、S、T 分别是BC、BD、AD、AC 的中点,故有ST 12DC EF,ST EF,所四边形EFST 是平行四边形。
同理:SF 12AB TE ,DC=AB ,所以四边形EFST 是菱形。
仿题1可证DC ⊥平面ABH,故DC ⊥AB,故有四边形EFST 是正方形。
注;由此可得到相对的两棱所成角为90o 。
3.设E、S 分别是BC、AD 的中点,求证:ES ⊥BC,ES ⊥AD,并求ES 的长。
证明:可证BC ⊥平面AED,从而BC ⊥ES;可得AD ⊥平面BCS,从而AD ⊥ES。
在直角三角形SBE 中,SB=32a,BE=12a,从而,2222ES SB BE =-=4.求任何一条棱与它相交的面所成角的正弦值。
解:只要求AB 与平面BCD 所成的角。
AH ⊥平面BCD,∴AB 与平面BCD 所成的角是ABH ∠。
22333323BH DE ==⨯=,在直角三角形ABH 中,2263AH AB BH =-=,故6sin 3AH ABH AB ∠==。
5.求相邻两个面的夹角的余弦值。
解:只要求二面角A-BD-C 的平面的余弦值。
1.空间角与空间距离在高考的立体几何试题中,求角与距离是必考查的问题,其中最主要的是求线线角、线面角、面面角、点到面的距离,求角或距离的步骤是“一作、二证、三算”,即在添置必要的辅助线或辅助面后,通过推理论证某个角或线段就是所求空间角或空间距离的相关量,最后再计算。
2.立体几体的探索性问题立体几何的探索性问题在近年高考命题中经常出现,这种题型有利于考查学生归纳、判断等方面的能力,也有利于创新意识的培养。
近几年立体几何探索题考查的类型主要有:(1)探索条件,即探索能使结论成立的条件是什么?(2)探索结论,即在给定的条件下命题的结论是什么。
对命题条件的探索常采用以下三种方法:(1)先观察,尝试给出条件再证明;(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性;(3)把几何问题转化为代数问题,探索出命题成立的条件。
对命题结论的探索,常从条件出发,再根据所学知识,探索出要求的结论是什么,另外还有探索结论是否存在,常假设结论存在,再寻找与条件相容还是矛盾。
(一)平行与垂直关系的论证由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。
1.线线、线面、面面平行关系的转化:面面平行性质α//βαI γ=a ,βI γ⎫⎬⇒a =b ⎭//baa //b⎫⎬ba ⊄α,b ⊂α⎭α⇒a //αa ⊂α,b ⊂αAb a I b =Aαaa //β,b //ββ⎫⎪⎬⎪⎭(a//b,b//c线线∥⇒a //c)公理4线面平行判定线面平行性质线面∥⇒α//β面面平行判定1面面∥面面平行性质面面平行性质1α//γ⎫β//γ⎭⎫⎪a ⊂β⎬αI β=b ⎪⎭a //α⇒a //bα//β⎫a ⊂α⎭⎬⎬⇒α//β⇒a //β2.线线、线面、面面垂直关系的转化:⎫⎪a Ib =O ⎬l ⊥a ,l ⊥b ⎪⎭a ,b ⊂α⇒l ⊥α⎫⎬⇒α⊥βa ⊂β⎭a ⊥α面面⊥三垂线定理、逆定理线线⊥PA ⊥α,AO 为PO 在α内射影a ⊂α则a ⊥OA ⇒a ⊥PO a ⊥PO ⇒a ⊥AOl ⊥α线面垂直判定1线面垂直定义线面⊥α⊥β面面垂直判定面面垂直性质,推论2⎫⎬a ⊂α⎭⇒l ⊥a⎫⎪αI β=b ⎬⇒a ⊥αa ⊂β,a ⊥b ⎪⎭α⊥γβ⊥γαI β⎫⎪⎬⇒a ⊥γ=a ⎪⎭面面垂直定义αI β=l ,且二面角α-l -β⎫成直二面角⎬⇒α⊥β⎭3.平行与垂直关系的转化:a //b ⎫a ⊥αa ⊥α⎫⇒b ⊥αa⎬⎭⎬⇒αa ⊥β⎭//β线线∥线面垂直判定2线面垂直性质2a ⊥α⎫线面⊥面面平行判定2面面平行性质3面面∥⎬⇒a //b b ⊥α⎭α//β⎫a ⊥α⎬a ⊥β⎭4.应用以上“转化”的基本思路——“由求证想判定,由已知想性质。
立体几何垂直证明题常见模型及方法证明空间线面垂直需注意以下几点:①由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。
②立体几何论证题的解答中,利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。
③明确何时应用判定定理,何时应用性质定理,用定理时要先申明条件再由定理得出相应结论。
垂直转化:线线垂直 线面垂直 面面垂直;基础篇类型一:线线垂直证明(共面垂直、异面垂直)(1) 共面垂直:实际上是平面内的两条直线的垂直 (只需要同学们掌握以下几种模型)○1 等腰(等边)三角形中的中线○2 菱形(正方形)的对角线互相垂直 ○3勾股定理中的三角形 ○4 1:1:2 的直角梯形中 ○5 利用相似或全等证明直角。
例:在正方体1111ABCD A BC D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1AO OE ⊥(2) 异面垂直 (利用线面垂直来证明,高考中的意图) 例1 在正四面体ABCD 中,求证AC BD ⊥变式 1 如图,在四棱锥ABCD P -中,底面A B C D 是矩形,已知60,22,2,2,3=∠====PAB PD PA AD AB .证明:AD PB ⊥;变式2 如图,在边长为2的正方形ABCD 中,点E 是AB 的中点,点F 是BC 的中点,将△AED,△DCF 分别沿,DE DF 折起,使,A C 两点重合于'A . 求证:'A D EF ⊥;变式3如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠PAC =∠PBC =90 º证明:AB ⊥PC类型二:线面垂直证明方法○1 利用线面垂直的判断定理例2:在正方体1111ABCD A BC D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1AO BDE ⊥平面变式1:在正方体1111ABCD A BC D -中,,求证:11AC BDC ⊥平面 变式2:如图:直三棱柱ABC -A 1B 1C 1中, AC =BC =AA 1=2,∠ACB =90︒.E 为BB 1的中点,D 点在AB 上且DE = 3 .求证:CD ⊥平面A 1ABB 1;变式3:如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的中点,BE 'ADFG2,CA CB CD BD AB AD ======求证:AO ⊥平面BCD ;变式4 如图,在底面为直角梯形的四棱锥P ABCD -中,AD BC ∥,90ABC ∠=°,PA ⊥平面ABCD .3PA =,2AD =,AB =,6BC =类型3:面面垂直的证明。
立体几何垂直证明题常见模型及方法垂直转化:线线垂直线面垂直面面垂直;基础篇类型一:线线垂直证明(共面垂直、异面垂直)(1) 共面垂直:实际上是平面内的两条直线的垂直 (只需要同学们掌握以下几种模型)○1 等腰(等边)三角形中的中线○2 菱形(正方形)的对角线互相垂直 ○3勾股定理中的三角形 ○4 1:1:2 的直角梯形中 ○5 利用相似或全等证明直角。
例:在正方体1111ABCD A BC D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1AO OE ⊥(2) 异面垂直 (利用线面垂直来证明,高考中的意图) 例1 在正四面体ABCD 中,求证AC BD ⊥变式 1 如图,在四棱锥ABCD P -中,底面A B C D 是矩形,已知60,22,2,2,3=∠====PAB PD PA AD AB .证明:AD PB ⊥;变式2 如图,在边长为2的正方形ABCD 中,点E 是AB 的中点,点F 是BC 的中点,将△AED,△DCF 分别沿,DE DF 折起,使,A C 两点重合于'A. 求证:'A D EF ⊥;类型二:线面垂直证明BE 'ADFG方法○1 利用线面垂直的判断定理例2:在正方体1111ABCD A BC D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1AO BDE ⊥平面变式1:在正方体1111ABCD A BC D -中,,求证:11AC BDC ⊥平面 变式2:如图:直三棱柱ABC -A 1B 1C 1中, AC =BC =AA 1=2,∠ACB =90︒.E 为BB 1的中点,D 点在AB 上且DE = 3 .求证:CD ⊥平面A 1ABB 1;变式3:如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的中点,AD BC ∥,90ABC ∠=°,PA ⊥平面ABCD .3PA =,2AD =,AB =,6BC =C○2 利用面面垂直的性质定理 例3:在三棱锥P-ABC 中,PA ABC ⊥底面,PAC PBC ⊥面面,BC PAC ⊥求证:面。
22221212()2lr r R r r l +-=公式:;注:、分别是两垂直面的外接圆半径;为两垂面的交线长外接球——垂面模型一、知识要点:公式:222212()2lr r R +-=方法:第一步:分别取两垂面ABC Δ的外心1O 、PAC ∆的外心2O 和其交线AC l =的中点D ,球心O ,垂径定理得22AC lAD == 第二步:算出ABC Δ、PAC ∆的外接圆半径12r r 、,由于垂面易得12OO O D 是个矩形得12O O O D =第三步:勾股定理:22211222112222212222222222(),R 22R r O O OA O A O O l r r R l O A AD O Dr O D ⎧=+⎧=+⎪⎪⇒⇒+-=⎨⎨⎛⎫=+=+⎪⎪⎩ ⎪⎝⎭⎩解出二、例题精讲:例1、在边长为4的正方形ABCD 中,E ,F ,G 分别为AD ,BC ,AB 的中点,现将矩形CDEF 沿EF 折起,使平面CDEF 与平面ABFE 所成的二面角为直二面角,则四面体CEGF 的外接球的表面积为___________.【答案】20π【解析】取CE 的中点O ,连,OG OF ,如图:依题意可知EG FG ⊥,CF EF ⊥,因为平面CDEF 与平面ABFE 所成的二面角为直二面角,即平面CDEF ⊥平面ABFE , 所以CF ⊥平面ABFE ,所以CF BF ⊥,CF FG ⊥,CF EG ⊥, 因为EG FG ⊥,且CFFG F =,所以EG ⊥平面CFG ,所以EG CG ⊥,因为O 为CE 的中点,所以OC OE OF OG ===,所以O 为四面体CEGF所以其表面积为24π20π⋅=. 故答案为:20π例2、在三棱锥P ABC -中,4PA PB BC ===,8AC =,AB BC ⊥.平面PAB ⊥平面ABC ,若球O 是三棱锥P ABC -的外接球,则球O 的表面积为( ) A .25π B .60πC .72πD .80π【解答】解:解法一:三棱锥P ABC -中,若球O 是三棱锥P ABC -的外接球, 如图所示:在平面PAB 中,过点P 作PD AB ⊥于点D ,由于平面PAB ⊥平面ABC , 故PD ⊥平面ABC ,所以PD BC ⊥,由于AB BC ⊥. 故BC ⊥平面ABP , 所以BC AB ⊥.由于4PA PB BC ===,8AC =,故AB =,所以AD DB ==, 进一步求出2PD =,设PAB ∆的中心为E ,设PE x =,利用222(2)x x +-=, 解得4x =,所以该三角形的中心在三角形的外部, 即2DE =,由于三角形ABC 为直角三角形,点H 为AC 的中点, 所以4BH =,过点H 作OH ⊥平面ABC ,所以OA =即外接球的半径为故2480S ππ=⋅⋅=球. 故选:D .方法二:由于平面PAB ⊥平面ABC 可直接用公式:222212()2l r r R +-=由于AB BC ⊥,8AC =,所以面ABC 的外接圆半径1=42ACr =由勾股定理可求出AB ==,4PA PB ==所以PAB ∆是120︒的等腰三角形,所以面PAB 的外接圆半径2=4r PB =;两垂面的交线l AB ==;带入公式得:222222212()442l R r r =+-=+-=⎝⎭2480S ππ=⋅⋅=球. 故选:D .例3、已知三棱锥P ABC -的四个顶点在球O 的球面上,2PA PC BC ===,4AB =,120APC ∠=︒,平面PAC ⊥平面ABC ,则球O 的体积为( )A .B C D .【解答】解:因为2PA PC ==,120APC ∠=︒,可知AC = 又4AB =,2BC =,所以222AB BC AC =+,故BC AC ⊥, 取AC 的中点D ,则1PD =,PD AC ⊥,又平面PAC ⊥平面ABC ,且平面PAC ⋂平面ABC AC =, 所以PD ⊥平面ABC ,设PAC ∆的外接圆的圆心为1O ,则1O 在PD 的延长线上,因为2PA PC ==,120APC ∠=︒, 所以112PO AO AP ===,所以11DO =, 设2O 为ABC ∆的外接圆的圆心, 则2O 为AB 的中点,21DO =,连结1OO ,2OO ,由球的性质可知,2OO ⊥平面ABC , 所以12//DO OO ,22OO DO ⊥, 同理可得,12//OO DO ,11OO DO ⊥, 所以四边形12OO DO 为正方形,所以球O 的半径为2222222125R OO AO =+=+=,所以R =,则球O 的体积为343O V R π==球故选:C .例4、矩形ABCD 中,4AB =,3BC =,沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积为 .【解答】解:由题意知,球心到四个顶点的距离相等, 所以球心在对角线AC 上,且其半径为AC 长度的一半,则345125()326V ππ=⨯=球.故答案为:1256π. 三、习题精练:1、如图,正方形ABCD 与正方形ACEF 所在的平面互相垂直,1AB =,点A ,B ,C ,D ,E ,F 在同一个球面上,则该球的体积是( )A B .43π C .3D .323π【解答】解:如图,连接BD ,交AC 与G ,则AG GC =, 连接AE 、CF ,设AECF O =,则AO OE =,连接OG ,则//OG CE ,OG AC ∴⊥,平面ACEF ⊥平面ABCD ,平面ACEF ⋂平面ABCD AC =, OG ∴⊥平面ABCD ,则OA OC OB OD OE OF =====,即O 为点A ,B ,C ,D ,E ,F 所在球的球心,半径11122R AE ==. ∴所求球的体积是344133ππ⨯=.故选:B .2、已知ABC ∆是以BC 为斜边的直角三角形,P 为平面ABC 外一点,且平面PBC ⊥平面ABC ,3BC =,PB =PC =,则三棱锥P ABC -外接球的体积为( )A .10π BC .53π D【答案】D 【分析】由ABC 为直角三角形,可知BC 中点M 为ABC 外接圆的圆心,又平面PBC ⊥平面ABC ,所以球心在过M 与平面ABC 垂直的直线上,且球心为PBC 的外心.利用正余弦定理求出PBC 外接圆的半径即为球的半径,从而求出球的体积. 【详解】解:取BC 中点M ,过点M 做直线l 垂直BC ,因为ABC 为直角三角形,所以点M 为ABC 外接圆的圆心,又平面PBC ⊥平面ABC ,所以l ⊂平面ABC ,根据球的性质,球心一定在垂线l 上,且球心为PBC 的外心.在PBC中,222cos 2PB BC PC PBC PB BC +-∠==⋅,所以sin 2PBC ∠=,则PBC外接圆的半径为12V =. 故选:D3、已知点A 是以BC 为直径的圆O 上异于B ,C 的动点,P 为平面ABC 外一点,且平面PBC ⊥平面ABC ,3BC =,PB =PC =,则三棱锥P ABC -外接球的表面积为 . 【解析】因为O 为ABC ∆外接圆的圆心,且平面PBC ⊥平面ABC ,过O 作面ABC 的垂线l ,则垂线l 一定在面PBC 内,根据球的性质,球心一定在垂线l ,球心1O 一定在面PBC 内,即球心1O 也是PBC ∆外接圆的圆心,在PBC ∆中,由余弦定理得222cos 2PB BC PC B BP BC +-==sin B ⇒由正弦定理得:2sin PCR B=,解得R , ∴三棱锥P ABC -外接球的表面积为2410s R ππ==,故答案为:10π.4、在三棱锥P ABC -中,4AB AC ==,120BAC ∠=︒,PB PC ==,平面PBC ⊥平面ABC ,则三棱锥P ABC -外接球的表面积为 . 【解析】如图,设ABC ∆的外接圆的圆心为1O 连接1O C ,1O A ,1BCO A H =,连接PH .由题意可得AH BC ⊥,且1122AH O A ==,12BH BC ==.因为平面PBC ⊥平面ABC ,且PB PC =,所以PH ⊥平面ABC ,且6PH ==. 设O 为三棱锥P ABC -外接球的球心,连接1OO ,OP ,OC ,过O 作OD PH ⊥,垂足为D , 则外接球的半径R 满足222221114(6)R OO OO O H =+=-+, 即221116(6)4OO OO +=-+,解得12OO =,从而220R =,故三棱锥P ABC -外接球的表面积为2480R ππ=. 故答案为:80π.5、在菱形ABCD 中,60DAB ∠=︒,将这个菱形沿对角线BD 折起,使得平面DAB ⊥平面BDC ,若此时三棱锥A BCD -的外接球的表面积为5π,则AB 的长为 . 【解析】取BD 的中点H ,连接AH ,CH , 在等边三角形ABD 中,3AH =, 在等边三角形CBD 中,3CH , 由平面DAB ⊥平面BDC ,AH BD ⊥,平面ABD ⋂平面CBD BD =, 可得AH ⊥平面CBD ,即有AH CH ⊥, ACH ∆为等腰直角三角形,设三棱锥A BCD -的外接球的球心为O ,半径设为R , 底面BCD 的中心为O ',面ADB 的外心为M , 则3O H MH '=,3O C '=, 在直角三角形ACH 中,22223315()()63a a OC R OO O C =='+'=+=. 而245R ππ=,解得5R =155a =3a = 36、在三棱锥P ABC -中,平面PAB ⊥平面ABC ,25,6,3AP AB ACB π==∠=,且直线PA 与平面ABC 所成角的正切值为2,则该三棱锥的外接球的表面积为( ) A .13πB .52πC .523πD 5213π【解析】如图,过点P 作PE AB ⊥ 于E ,D 为AB 的中点, 设ABC ∆ 的外心是1O ,半径是r ,连接1O B ,1O E ,1O D ,由正弦定理得2sin ABr ACB==∠则1O B r ==D 为AB 的中点,132BD AD AB ===,1O D AB ⊥,所以1O D因为平面PAB ⊥平面ABC ,PE AB ⊥ 于E ,平面PAB ⋂平面ABC AB =, 则PE ⊥平面ABC ,所以直线PA 与平面ABC 所成的角是PAE ∠,则 tan 2PEPAE AE∠==,即2PE AE =,因为AP =24PE AE ==,则1DE =,故12O E =,设三棱锥P ABC - 外接球球心是O ,连接1OO ,OB ,OP ,过O 作OH PE ⊥ 于H ,则1OO ⊥平面ABC ,于是1//OO PE ,从而1O OHE 是矩形, 所以外接球半径R 满足22222221111()()R OO O B OH PE HE O E PE OO =+=+-=+-,解得R =所以外接球的表面积为2452R ππ=. 故选:B .7、如图,已知四棱锥P ABCD -的底面为矩形,平面PAD ⊥平面ABCD ,AD =,2PA PD AB ===,则四棱锥P ABCD -的外接球的表面积为( )A .2πB .4πC .8πD .12π【解析】取AD 的中点E ,连接PE ,PAD ∆中,2PA PD ==,AD =,PA PD ∴⊥,PE ∴=,设ABCD 的中心为O ',球心为O ,则12O B BD '=设O 到平面ABCD 的距离为d ,则222221)R d d =+=+,0d ∴=,R =∴四棱锥P ABCD -的外接球的表面积为2412R ππ=.故选:D .8、如图,在直角梯形ABCD 中,//AB CD ,AB AD ⊥.已知222CD AB AD a ===.将ABD △沿直线BD 翻折成1A BD ,连接1A C .当三棱锥1A BCD -的体积取得最大值时,异面直线1A C 与BD 所成角的余弦值为___________;若此时三棱锥1A BCD -外接球的体积为,则a 的值为___________.【答案】【解析】在直角梯形ABCD 中,∵//AB CD ,AB AD ⊥,222CD AB AD a ===,∴BD =,BC =,可得222BD BC CD +=,即BC BD ⊥, 当平面1A DB ⊥平面BCD 时,三棱锥1A BCD -的体积取得最大值, 取BD 中点E ,CD 中点F ,连接1A E ,EF ,则1A E BD ⊥, ∵平面1A DB ⊥平面BCD ,且平面1A DB ⋂平面BCD BD =,∴1A E ⊥平面BCD , ∵//EF BC ,BC BD ⊥,∴EF BD ⊥,以E 为坐标原点,分别以EB 、EF 、1EA 所在直线为x 、y 、z 轴建立空间直角坐标系,则,0,0)B ,(,0,0)D ,1)A ,,0)C∴(),0,0BD =-,12,2AC ⎛⎫= ⎪ ⎪⎝⎭, 设异面直线1A C 与BD 所成角为θ,则 1cos cos ,BD AC θ===,即异面直线1A C 与BD显然FD FB FC a ===,又1FA a=, 所以点F 是三棱锥1A BCD -外接球的球心,且球半径R a =.由343a π=,解得a =故答案为:①①。
高二数学立体几何大题的八大解题技巧引言立体几何是高中数学中较为抽象和复杂的一个分支,对于很多学生来说,解决立体几何的大题可能会显得有些困难。
然而,只要我们掌握一些解题技巧,并进行适当的练习,就能够更加游刃有余地解决这类问题。
本文将介绍八大解题技巧,帮助高二学生在数学考试中取得好成绩。
技巧一:构造合理的立体模型对于立体几何问题,构造一个合理的三维模型是非常重要的。
通过绘制图形,我们可以更清晰地理解问题,有助于推导出解题方法。
例如,当我们遇到一个求体积的问题时,可以根据题目中的条件,构造一个与实际物体相似的模型,并确定其几何关系。
这样一来,在计算体积时,我们可以很容易地将问题转化为计算几何体的体积。
技巧二:利用平行关系简化解题在立体几何问题中,平行关系是经常出现的。
我们可以利用平行性质简化解题过程。
例如,当我们遇到一道求两条直线之间的距离的问题时,如果题目中给出的条件中存在两条平行线,我们可以通过利用平行关系,使用相似三角形等方法,直接求出距离,而不需要进一步计算。
技巧三:灵活应用平行截面法平行截面法是解决某些立体几何问题的重要方法。
它利用了不同截面的面积比例以及平行线与截面的关系,帮助我们求解立体几何问题。
当我们遇到一个立体几何问题时,可以尝试引入平行截面,通过计算各截面的面积比例、长度比例等,推导出所需的结果。
技巧四:加长或减短前提条件有时候,我们遇到的立体几何问题可能较为复杂,不容易解决。
这时,我们可以尝试通过增加或减少一些前提条件,简化问题,使其能够更容易解决。
例如,当我们遇到一个立体几何问题需要计算某个长度时,有时我们可以通过修改前提条件,使其成为一个相似三角形问题,从而更容易求解目标长度。
技巧五:利用相似关系求解相似关系在立体几何问题中有着广泛的应用。
通过找到合适的相似三角形或相似立体,我们可以快速求解问题。
当我们遇到一个立体几何问题时,可以尝试寻找相似的几何形状,并利用相似关系设置等式,求解出所需的结果。
三垂直模型经典例题例题:【题目】在三垂直模型中,有一个经典例题是关于柱体和锥体的组合。
题目描述了一个长方体和圆锥体的组合结构,需要求出组合体的体积和表面积。
解题过程:1. 确定模型:三垂直模型是针对立体几何问题的模型,要求确定三个垂直面的形状和高度。
在本题中,三个垂直面分别为长方体的底面、长方体的高面和锥体的侧表面。
2. 计算体积:长方体的体积为底面积乘以高,锥体的体积为底面积乘以高再除以3。
根据题目所给数据,可以求出两个体积相加得到组合体的体积。
3. 计算表面积:组合体的表面积包括三个垂直面的面积和各个面的边界。
根据题目所给数据,可以分别计算各个面的面积,再求和得到组合体的表面积。
答案:通过计算,可以得到组合体的体积为30cm3,表面积为64cm2。
解析:这道题中,我们需要根据题目所给数据,运用三垂直模型的原理,分别计算各个面的面积和体积,再求和得到最终结果。
其中需要注意各个面之间的角度和位置关系,以便准确计算。
类似的问题还有关于球体、圆柱体、正方体、圆台等基本几何体的组合体,需要运用三垂直模型来解决。
另外,对于不规则的立体几何问题,可以通过积分等方法进行求解。
拓展:三垂直模型是解决立体几何问题的一种基本方法,它能够将复杂的几何问题转化为简单的几何运算。
除了三垂直模型,还有其他类似的模型,如二垂、一垂等,可以根据具体情况选择合适的方法。
同时,对于一些特殊形状的几何体,还可以通过记忆公式等方法来快速求解。
总结:通过这道经典例题的解析和拓展,我们可以更好地理解三垂直模型的应用和注意事项。
在实际解题过程中,需要根据题目所给数据,选择合适的模型和方法,准确计算各个面的面积和体积,最终得到正确答案。
同时,还需要注意模型的适用范围和限制条件,以便更好地解决实际问题。
立体几何线线垂直的证明方法在立体几何中,线线垂直是一种非常重要的关系,它在很多问题中都有着重要的应用。
本文将介绍几种线线垂直的证明方法,希望能够帮助读者更好地理解和运用这一关系。
一、垂线段的垂线段垂直首先介绍的是垂线段的垂线段垂直的证明方法。
具体来说,如果有两个垂直于同一个平面的线段AB和CD,且它们之间有一条垂线段EF,则EF和CD垂直。
证明如下:1、连接AE和CF,得到平面ACEF。
2、由于AB和CD垂直于平面ACEF,所以它们的交点O在平面ACEF 内。
3、由于EF垂直于平面ACEF,所以它与平面ACEF的任意一条交线都垂直,特别地,它与CF垂直。
4、因此,EF和CD垂直。
二、平面的法线和平面内的任意直线垂直接下来介绍的是平面的法线和平面内的任意直线垂直的证明方法。
具体来说,如果有一个平面P和一条直线L在平面P内,且L与P垂直,则L与P的法线垂直。
证明如下:1、连接L和P的交点O。
2、在平面P内任意取一点A,连接OA。
3、由于L与P垂直,所以OA与L垂直,即OA和L在点O处垂直。
4、由于P的法线垂直于P,所以它与P内任意一条直线都垂直,特别地,它与OA垂直。
5、因此,L与P的法线垂直。
三、垂线段和平面的法线垂直最后介绍的是垂线段和平面的法线垂直的证明方法。
具体来说,如果有一条垂直于平面P的直线L,且L与平面P上的一条线段AB相交于点O,则OA和OB的中垂线与P的法线垂直。
证明如下:1、连接OA和OB,得到线段AB的中垂线CD。
2、连接CO和DO,得到平面COD。
3、由于L垂直于平面P,所以L和P的法线在平面P内的交点O 处垂直。
4、由于OA和OB在点O处相交,所以它们的中垂线CD也经过点O。
5、因此,CD与P的法线垂直。
以上就是三种线线垂直的证明方法,它们都非常简单易懂,但是能够解决很多实际问题。
在实际应用中,我们可以根据具体情况选择不同的证明方法,以便更好地解决问题。
立体几何平面垂直的判定定理一、定义在立体几何中,平面垂直的判定定理是指:如果两个平面的法线向量互相垂直,则这两个平面是垂直的。
二、判定方法根据平面的法线向量的定义,我们知道平面的法线向量是与该平面垂直的向量。
因此,要判断两个平面是否垂直,只需判断它们的法线向量是否互相垂直即可。
具体而言,设平面P1的法线向量为n1,平面P2的法线向量为n2,如果n1·n2 = 0,其中"·"表示向量的点积运算,那么平面P1与平面P2垂直;反之,如果n1·n2 ≠ 0,则两个平面不垂直。
三、相关应用平面垂直的判定定理在实际问题中有着广泛的应用。
以下是一些常见的应用场景:1. 建筑工程中的搭建在建筑工程中,平面垂直的判定定理被广泛应用于搭建建筑物的过程中。
例如,当建筑物的墙壁需要与地面垂直时,可以利用该定理判断墙壁的法线向量与地面的法线向量是否垂直,从而保证墙壁的竖直性。
2. 三维模型的设计在三维模型的设计过程中,平面垂直的判定定理常用于判断不同部位的平面是否垂直。
例如,当设计一个立方体时,可以利用该定理判断立方体的各个面是否相互垂直,从而确保模型的准确性。
3. 几何证明中的推理在几何证明中,平面垂直的判定定理是一种常用的推理方法。
通过运用该定理,可以推导出两个平面垂直的结论,然后应用于其他几何证明中。
四、总结立体几何平面垂直的判定定理是立体几何中的重要概念,能够帮助我们判断平面是否垂直。
通过判断两个平面的法线向量是否互相垂直,可以准确地判定平面的垂直性。
该定理在建筑工程、三维模型设计以及几何证明等领域都有着广泛的应用。
因此,掌握平面垂直的判定定理对于学习和应用立体几何都具有重要意义。
立体几何证垂直的方法垂直是立体几何中一个非常重要的概念,常常用于判断两个直线、两个平面或者一个直线和一个平面之间的关系。
本文将介绍几种常见的方法来证明两个线段、两个直线、两个平面或者一个线段和一个平面之间的垂直关系。
1. 定义证明法:垂直可以通过定义来证明。
垂直的定义是:两条直线相交,互相垂直。
这个定义可以用来判断两条直线之间是否垂直。
如果已知两条直线相交,并且相交角度为90度,则可以得出两条直线垂直的结论。
2. 重叠线证明法:当两个线段的一个端点重合,并且两个线段的另一个端点也重合时,可以得出这两个线段垂直的结论。
这是因为,当两个线段垂直时,它们的端点将构成一个直角,而直角的两条边重合时,会得到一个重叠的线段,从而可以推出两个线段垂直。
3. 垂直性质证明法:根据垂直性质来证明两个直线或者平面之间的垂直关系。
例如,两个直线垂直的性质之一是:直线的斜率相乘为-1。
如果已知两个直线的斜率,且斜率的乘积等于-1,则可以得出这两条直线垂直的结论。
类似地,两个平面之间垂直的性质之一是:平面上两个垂直的直线在平面上的投影线也垂直。
如果已知两个平面上的直线的投影线垂直,则可以得出这两个平面垂直的结论。
4. 垂直线性等式证明法:当两个线段、直线或平面上的点坐标可以满足垂直线性等式时,可以证明它们之间的垂直关系。
例如,对于两个直线L1:y = a1x + b1和L2:y = a2x + b2,如果它们的斜率满足a1 * a2 = -1,则可以得出这两条直线垂直的结论。
5. 三角形几何证明法:在三角形中,垂直性质也可以用来证明两个线段或直线之间的垂直关系。
例如,如果一条线段平分了一个角,并且与另一条线段垂直相交,那么可以得出这两个线段垂直的结论。
同样地,如果一个直角三角形中的两条边互相垂直,那么可以得出这两条边垂直的结论。
总结起来,证明垂直关系的方法有很多种,包括基于定义、重叠线、垂直性质、线性等式和三角形几何的方法。
立体几何证垂直的方法
证明两条线段垂直的方法通常有以下几种:
1. 垂直线段的定义:根据垂直线段的定义,如果两条线段的斜率乘积为-1,则它们是垂直的。
可以通过计算两条线段的斜率并判断它们的乘积是否为-1。
2. 垂直平分线:如果一条线段上的点到另一条线段的距离都相等且垂直于另一条线段,则它们是垂直的。
可以通过计算两条线段上的某个点到另一条线段的距离,并判断这些距离是否相等。
3. 垂直平行线:如果两条平行线段与第三条互相垂直,则它们本身也是垂直的。
可以通过找到与两条平行线段都垂直的第三条线段,并判断它们之间的关系。
4. 正交投影:如果两条线段在平面上的正交投影相交,则它们是垂直的。
可以将两条线段的正交投影投影到平面上,并判断它们是否相交。
以上是一些常见的证明两条线段垂直的方法,具体证明方法还要根据具体的题目和条件来进行选择和应用。
立体几何中不易建系的用空间向量证明垂直问题。
1. 引言1.1 概述立体几何是数学中的一个重要分支,研究空间中的图形和特定关系。
建系问题是立体几何中一个常见的难题,它涉及到如何确定或构建一个合适的坐标系来描述和表示空间中的元素和关系。
在解决建系问题时,传统的方法存在一定局限性和困难,例如难以应对复杂的几何结构、缺乏普适性等。
1.2 文章结构本文将通过引入空间向量理论来探讨解决立体几何中不易建系的问题。
文章分为以下几个部分:- 引言:介绍本文的背景和论文结构。
- 立体几何中的建系问题:阐述建系定义与重要性、传统方法的局限性与困难,以及空间向量在解决建系问题中的优势。
- 空间向量证明垂直问题的基本原理与方法:讨论垂直关系的定义与特征、空间向量表示垂直关系的有效途径,以及应用空间向量证明垂直性质时需要考虑的因素。
- 实例分析:通过一个具体案例来说明使用空间向量证明垂直问题的步骤和推理过程,并对结果进行分析和讨论。
- 结论与展望:总结研究成果并得出结论,同时提出未来研究方向和进一步工作的展望。
1.3 目的本文的目的是介绍空间向量在解决立体几何中不易建系的问题中所起到的作用和优势,并通过实例分析来验证其有效性。
通过本文的研究,读者将能够理解空间向量在解决建系问题中的重要性,并了解使用空间向量证明垂直问题的基本原理与方法。
最终,本文希望为立体几何领域中建系问题的解决提供一种新思路和有价值的参考。
2. 立体几何中的建系问题:2.1 建系的定义与重要性:在立体几何中,建系是指通过选取适当的点或向量作为参照,构建坐标系或基底来描述和表示空间中的几何事物或运动。
建系是解决立体几何问题和进行进一步分析的基础,它可以帮助我们确定方向、测量距离和角度,从而推导出更多关于空间图形、运动和变换的性质。
2.2 建系方法的局限性与困难:传统的建系方法主要包括平行四边形法、角平分线法、垂直线法等。
然而,这些方法在实际应用中存在一定的局限性和困难。
立体几何垂直证明方法技巧类型一:线线垂直证明(共面垂直、异面垂直)(1) 共面垂直:掌握几种模型①等腰(等边)三角形中的中线 ②菱形(正方形)的对角线互相垂直 ③勾股定理中的三角形 ④ 直角梯形⑤利用相似或全等证明直角。
例:在正方体1111ABCD A B C D -中,O 为底面ABCD 的中心, E 为1CC 中点,求证: (1) 1A O OE ⊥ (2) 1A O BDE ⊥平面(2) 异面垂直(利用线面垂直来证明)例1 在正四面体ABCD 中, 求证:AC BD ⊥变式1 如图,在四棱锥ABCD P -中,底面ABCD 是矩形,已知ο60,22,2,2,3=∠====PAB PD PA AD AB .证明:AD PB ⊥;变式2 如图,在边长为2的正方形ABCD中,点E是AB的中点,点F是BC的中点,将△AED,△DCF分别沿,DE DF折起,使,A C两点重合于'A.求证:'A D EF⊥;变式3如图,在三棱锥P ABC-中,⊿PAB是等边三角形,∠P AC=∠PBC=90 º证明:AB⊥PC类型二:直线与平面垂直证明BE'ADFG方法○1利用线面垂直的判断定理例:在正方体1111ABCD A B C D -中,,求证:11AC BDC ⊥平面变式1:如图:直三棱柱ABC -A 1B 1C 1中, AC =BC =AA 1=2,∠ACB =90︒.E 为BB 1的中点,D 点在AB 上且DE = 3 . 求证:CD ⊥平面A 1ABB 1;变式2:如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的P中点,2,CA CB CD BD AB AD ====== 求证:AO ⊥平面BCD ;变式3 如图,在底面为直角梯形的四棱锥P ABCD -中,(1) 求证://AF 平面BCE ;(2) 求证:平面BCE ⊥平面CDE ;例2 如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,60AB AD AC CD ABC ⊥⊥∠=,,°,PA AB BC ==,FADPEE是PC的中点.⊥;(2)证明PD⊥平面ABE;(1)证明CD AE变式1已知直四棱柱ABCD—A′B′C′D′的底面是菱形,∠60ABC,E、F分别是棱CC′与BB′上的点,=︒且EC=BC=2FB=2.(1)求证:平面AEF⊥平面AA′C′C;类型三:平面与平面垂直证明1.AB是圆O的直径,PA垂直于圆O所在的平面,M是圆周上任意一点,AN⊥PM,点N为垂足,求证:平面PAM⊥平面PBM2.如图,在空间四边形ABCD中,AB=BC,CD=DA,E,F,G分别为CD,DA和对角线AC的中点。
立体几何垂直证明题常见模型及方法证明空间线面垂直需注意以下几点:①由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。
②立体几何论证题的解答中,利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。
③明确何时应用判定定理,何时应用性质定理,用定理时要先申明条件再由定理得出相应结论。
垂直转化:线线垂直 线面垂直 面面垂直;基础篇类型一:线线垂直证明(共面垂直、异面垂直)(1) 共面垂直:实际上是平面内的两条直线的垂直 (只需要同学们掌握以下几种模型)○1 等腰(等边)三角形中的中线○2 菱形(正方形)的对角线互相垂直 ○3勾股定理中的三角形 ○4 1:1:2 的直角梯形中 ○5 利用相似或全等证明直角。
例:在正方体1111ABCD A B C D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1A O OE ⊥(2) 异面垂直 (利用线面垂直来证明,高考中的意图) 例1 在正四面体ABCD 中,求证AC BD ⊥变式 1 如图,在四棱锥ABCD P -中,底面ABCD 是矩形,已知60,22,2,2,3=∠====PAB PD PA AD AB .证明:AD PB ⊥;变式2 如图,在边长为2的正方形ABCD 中,点E 是AB 的中点,点F 是BC 的中点,将△AED,△DCF 分别沿,DE DF 折起,使,A C 两点重合于'A . 求证:'A D EF ⊥;变式3如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠P AC =∠PBC =90 º证明:AB ⊥PC类型二:线面垂直证明方法○1 利用线面垂直的判断定理例2:在正方体1111ABCD A B C D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1A O BDE ⊥平面变式1:在正方体1111ABCD A B C D -中,,求证:11AC BDC ⊥平面 变式2:如图:直三棱柱ABC -A 1B 1C 1中, AC =BC =AA 1=2,∠ACB =90︒.E 为BB 1的中点,D 点在AB 上且DE = 3 . 求证:CD ⊥平面A 1ABB 1;BE'ADFG变式3:如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的中点,变式4 如图,在底面为直角梯形的四棱锥P ABCD -中,AD BC ∥,90ABC ∠=°,PA ⊥平面ABCD .3PA =,2AD =,AB =6BC =C类型3:面面垂直的证明。
(本质上是证明线面垂直)2AD DE AB ==,F 为CD 的中点.(1) 求证://AF 平面BCE ; (2) 求证:平面BCE ⊥平面CDE ; 例2 如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,60AB AD AC CD ABC ⊥⊥∠=,,°,PA AB BC ==,E 是PC 的中点.(1)证明CD AE ⊥; (2)证明PD ⊥平面ABE ;变式1已知直四棱柱ABCD —A ′B ′C ′D ′的底面是菱形,︒=∠60ABC ,E 、F 分别是棱CC ′与BB ′上的点,且EC=BC =2FB =2. (1)求证:平面AEF ⊥平面AA ′C ′C ;AB CDEFABCDPE举一反三1.设M 表示平面,a 、b 表示直线,给出下列四个命题:①M b M a b a ⊥⇒⎭⎬⎫⊥// ②b a M b M a //⇒⎭⎬⎫⊥⊥ ③⇒⎭⎬⎫⊥⊥b a M a b ∥M ④⇒⎭⎬⎫⊥b a M a //b ⊥M .其中正确的命题是 ( )A.①②B.①②③C.②③④D.①②④ 2.下列命题中正确的是 ( )A.若一条直线垂直于一个平面内的两条直线,则这条直线垂直于这个平面B.若一条直线垂直于一个平面内的无数条直线,则这条直线垂直于这个平面C.若一条直线平行于一个平面,则垂直于这个平面的直线必定垂直于这条直线D.若一条直线垂直于一个平面,则垂直于这条直线的另一条直线必垂直于这个平面 3.如图所示,在正方形ABCD 中,E 、F 分别是AB 、BC 的中点.现在沿DE 、DF 及EF 把△ADE 、△CDF 和△BEF 折起,使A 、B 、C 三点重合,重合后的点记为P .那么,在四面体P —DEF 中,必有 ( )A.DP ⊥平面PEFB.DM ⊥平面PEFC.PM ⊥平面DEFD.PF ⊥平面DEF 4.设a 、b 是异面直线,下列命题正确的是 ( )A.过不在a 、b 上的一点P 一定可以作一条直线和a 、b 都相交B.过不在a 、b 上的一点P 一定可以作一个平面和a 、b 都垂直C.过a 一定可以作一个平面与b 垂直D.过a 一定可以作一个平面与b 平行5.如果直线l ,m 与平面α,β,γ满足:l =β∩γ,l ∥α,m ⊂α和m ⊥γ,那么必有 ( ) A.α⊥γ且l ⊥m B.α⊥γ且m ∥β C.m ∥β且l ⊥m D.α∥β且α⊥γ6.AB 是圆的直径,C 是圆周上一点,PC 垂直于圆所在平面,若BC =1,AC =2,PC =1,则P 到AB 的距离为 ( )A.1B.2C.552 D.553 7.有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l 有且仅有一个平面与α垂直;③异面直线a 、b 不垂直,那么过a 的任一个平面与b 都不垂直 其中正确命题的个数为 ( ) A.0 B.1 C.2 D.38.d 是异面直线a 、b 的公垂线,平面α、β满足a ⊥α,b ⊥β,则下面正确的结论是 ( )A.α与β必相交且交线m ∥d 或m 与d 重合第3题图B.α与β必相交且交线m ∥d 但m 与d 不重合C.α与β必相交且交线m 与d 一定不平行D.α与β不一定相交9.设l 、m 为直线,α为平面,且l ⊥α,给出下列命题① 若m ⊥α,则m ∥l ;②若m ⊥l ,则m ∥α;③若m ∥α,则m ⊥l ;④若m ∥l ,则m ⊥α, 其中真命题...的序号是 ( ) A.①②③ B.①②④ C.②③④ D.①③④10.已知直线l ⊥平面α,直线m 平面β,给出下列四个命题:①若α∥β,则l ⊥m ;②若α⊥β,则l ∥m ;③若l ∥m ,则α⊥β;④若l ⊥m ,则α∥β.其中正确的命题是 ( )A.③与④B.①与③C.②与④D.①与②二、思维激活11.如图所示,△ABC 是直角三角形,AB 是斜边,三个顶点在平面α的同侧,它们在α内的射影分别为A ′,B ′,C ′,如果△A ′B ′C ′是正三角形,且AA ′=3cm ,BB ′=5cm ,CC ′=4cm ,则△A ′B ′C ′的面积是 .12.如图所示,在直四棱柱A 1B 1C 1D 1—ABCD 中,当底面四边形ABCD 满足条件 时,有A 1C ⊥B 1D 1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形)13.如图所示,在三棱锥V —ABC 中,当三条侧棱VA 、VB 、VC 之间满足条件 时,有VC ⊥AB .(注:填上你认为正确的一种条件即可)三、能力提高14.如图所示,三棱锥V -ABC 中,AH ⊥侧面VBC ,且H 是△VBC 的垂心,BE 是VC 边上的高.(1)求证:VC ⊥AB ;(2)若二面角E —AB —C 的大小为30°,求VC 与平面ABC 所成角的大小. 第11题图 第12题图 第13题图15.如图所示,P A ⊥矩形ABCD 所在平面,M 、N 分别是AB 、PC 的中点. (1)求证:MN ∥平面P AD . (2)求证:MN ⊥CD .(3)若∠PDA =45°,求证:MN ⊥平面PCD .16.如图所示,在四棱锥P —ABCD 中,底面ABCD 是平行四边形,∠BAD =60°,AB =4,AD =2,侧棱PB =15,PD =3.(1)求证:BD ⊥平面P AD .(2)若PD 与底面ABCD 成60°的角,试求二面角P —BC —A 的大小.17.已知直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,∠BAC =30°,BC =1,AA 1=6,M 是CC 1的中点,求证:AB 1⊥A 1M .18.如图所示,正方体ABCD —A ′B ′C ′D ′的棱长为a ,M 是AD 的中点,N 是BD ′上一点,且D ′N ∶NB =1∶2,MC 与BD 交于P .(1)求证:NP ⊥平面ABCD .(2)求平面PNC 与平面CC ′D ′D 所成的角. (3)求点C 到平面D ′MB 的距离.第15题图第16题图第18题图第4课 线面垂直习题解答1.A 两平行中有一条与平面垂直,则另一条也与该平面垂直,垂直于同一平面的两直线平行.2.C 由线面垂直的性质定理可知.3.A 折后DP ⊥PE ,DP ⊥PF ,PE ⊥PF .4.D 过a 上任一点作直线b ′∥b ,则a ,b ′确定的平面与直线b 平行.5.A 依题意,m ⊥γ且m ⊂α,则必有α⊥γ,又因为l =β∩γ则有l ⊂γ,而m ⊥γ则l ⊥m ,故选A.6.D过P 作PD ⊥AB 于D ,连CD ,则CD ⊥AB ,AB =522=+BC AC ,52=⋅=AB BC AC CD , ∴PD =55354122=+=+CD PC . 7.D 由定理及性质知三个命题均正确.8.A 显然α与β不平行.9.D 垂直于同一平面的两直线平行,两条平行线中一条与平面垂直,则另一条也与该平面垂直.10.B ∵α∥β,l ⊥α,∴l ⊥m11.23cm 2设正三角A ′B ′C ′的边长为a . ∴AC 2=a 2+1,BC 2=a 2+1,AB 2=a 2+4, 又AC 2+BC 2=AB 2,∴a 2=2.S △A ′B ′C ′=23432=⋅a cm 2. 12.在直四棱柱A 1B 1C 1D 1—ABCD 中当底面四边形ABCD 满足条件AC ⊥BD (或任何能推导出这个条件的其它条件,例如ABCD 是正方形,菱形等)时,有A 1C ⊥B 1D 1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形).点评:本题为探索性题目,由此题开辟了填空题有探索性题的新题型,此题实质考查了三垂线定理但答案不惟一,要求思维应灵活.13.VC ⊥VA ,VC ⊥AB . 由VC ⊥VA ,VC ⊥AB 知VC ⊥平面VAB . 14.(1)证明:∵H 为△VBC 的垂心,∴VC ⊥BE ,又AH ⊥平面VBC ,∴BE 为斜线AB 在平面VBC 上的射影,∴AB ⊥VC . (2)解:由(1)知VC ⊥AB ,VC ⊥BE ,∴VC ⊥平面ABE ,在平面ABE 上,作ED ⊥AB ,又AB ⊥VC , ∴AB ⊥面DEC .∴AB ⊥CD ,∴∠EDC 为二面角E —AB —C 的平面角, ∴∠EDC =30°,∵AB ⊥平面VCD , ∴VC 在底面ABC 上的射影为CD .∴∠VCD 为VC 与底面ABC 所成角,又VC ⊥AB ,VC ⊥BE , ∴VC ⊥面ABE ,∴VC ⊥DE ,∴∠CED =90°,故∠ECD=60°,∴VC 与面ABC 所成角为60°.15.证明:(1)如图所示,取PD 的中点E ,连结AE ,EN , 则有EN ∥CD ∥AB ∥AM ,EN =21CD =21AB =AM ,故AMNE 为平行四边形. ∴MN ∥AE .∵AE 平面P AD ,MN 平面P AD ,∴MN ∥平面P AD . (2)∵P A ⊥平面ABCD , ∴P A ⊥AB .又AD ⊥AB ,∴AB ⊥平面P AD . ∴AB ⊥AE ,即AB ⊥MN . 又CD ∥AB ,∴MN ⊥CD .(3)∵P A ⊥平面ABCD ,∴P A ⊥AD . 又∠PDA =45°,E 为PD 的中点.∴AE ⊥PD ,即MN ⊥PD .又MN ⊥CD , ∴MN ⊥平面PCD .16.如图(1)证:由已知AB =4,AD =2,∠BAD =60°, 故BD 2=AD 2+AB 2-2AD ·AB cos60°=4+16-2×2×4×21=12. 又AB 2=AD 2+BD 2,∴△ABD 是直角三角形,∠ADB =90°,即AD ⊥BD .在△PDB 中,PD =3,PB =15,BD =12, ∴PB 2=PD 2+BD 2,故得PD ⊥BD .又PD ∩AD =D ,∴BD ⊥平面P AD .(2)由BD ⊥平面P AD ,BD 平面ABCD . ∴平面P AD ⊥平面ABCD .作PE ⊥AD 于E , 又PE 平面P AD ,∴PE ⊥平面ABCD ,∴∠PDE 是PD 与底面ABCD 所成的角. ∴∠PDE =60°,∴PE =PD sin60°=23233=⨯. 作EF ⊥BC 于F ,连PF ,则PF ⊥BF , ∴∠PFE 是二面角P —BC —A 的平面角. 又EF =BD =12,在Rt △PEF 中,第15题图解第16题图解tan ∠PFE =433223==EF PE . 故二面角P —BC —A 的大小为arctan43. 17.连结AC 1,∵11112263A C CC MC AC===. ∴Rt △ACC 1∽Rt △MC 1A 1, ∴∠AC 1C =∠MA 1C 1,∴∠A 1MC 1+∠AC 1C =∠A 1MC 1+∠MA 1C 1=90°. ∴A 1M ⊥AC 1,又ABC -A 1B 1C 1为直三棱柱,∴CC 1⊥B 1C 1,又B 1C 1⊥A 1C 1,∴B 1C 1⊥平面AC 1M . 由三垂线定理知AB 1⊥A 1M .点评:要证AB 1⊥A 1M ,因B 1C 1⊥平面AC 1,由三垂线定理可转化成证AC 1⊥A 1M ,而AC 1⊥A 1M 一定会成立. 18.(1)证明:在正方形ABCD 中, ∵△MPD ∽△CPB ,且MD =21BC , ∴DP ∶PB =MD ∶BC =1∶2. 又已知D ′N ∶NB =1∶2,由平行截割定理的逆定理得NP ∥DD ′,又DD ′⊥平面ABCD , ∴NP ⊥平面ABCD .(2)∵NP ∥DD ′∥CC ′,∴NP 、CC ′在同一平面内,CC ′为平面NPC 与平面CC ′D ′D 所成二面角的棱. 又由CC ′⊥平面ABCD ,得CC ′⊥CD ,CC ′⊥CM , ∴∠MCD 为该二面角的平面角. 在Rt △MCD 中可知 ∠MCD =arctan21,即为所求二面角的大小. (3)由已知棱长为a 可得,等腰△MBC 面积S 1=22a ,等腰△MBD ′面积S 2=246a ,设所求距离为h ,即为三棱锥C —D ′MB 的高.∵三棱锥D ′—BCM 体积为h S D D S 213131='⋅,∴.3621a S a S h =⋅=空间中的计算基础技能篇 类型一:点到面的距离方法1:直接法—把点在面上的射影查出来,然后在直角三角形中计算 例1:在正四面体ABCD 中,边长为a ,求点A 到面BCD 的距离。