1.1 不等关系
- 格式:pdf
- 大小:164.45 KB
- 文档页数:4
§1.1 不等关系学习目标:1.理解不等式的意义.2.能根据条件列出不等式.3.通过列不等式,训练学生的分析判断能力和逻辑推理能力.4.通过用不等式解决实际问题,使学生认识数学与人类生活的密切联系以及对人类历史发展的作用.并以此激发学生学习数学的信心和兴趣.学习重点:用不等关系解决实际问题.学习难点:正确理解题意列出不等式.预习作业:请同学们预习作业教材P2-4的内容,在学习的过程中请弄清以下几个问题:1.不等式的概念:一般地,用符号“<”(或≤),“>”(或≥)连接的式子叫做______________ 2.长度是L的绳子围成一个面积不小于100的圆,绳长L应满足的关系式为_________________例1、用不等式表示(1)a是正数;(2)a是负数;(3)a与6的和小于5;(4)x与2的差小于-1;(5)x的4倍大于7;(6)y的一半小于3.变式训练:1、用适当的符号表示下列关系:(1) a是非负数;(2)直角三角形斜边c比它的两直角边a、b都长;(3) X与17的和比它的5倍小。
2.(1)当x=2时,不等式x+3>4成立吗?(2)当x=1.5时,成立吗?(3)当x=-1呢?活动与探究:a,b两个实数在数轴上的对应点如图1-2所示:图1-2用“<”或“>”号填空:(1)a__________b;(2)|a|__________|b|;(3)a+b__________0;(4)a-b__________0;(5)a+b__________a-b;(6)ab__________a拓展训练:1.某校两名教师带若干名学生去旅游,联系了两家标价相同的旅游公司,经洽谈后,甲公司优惠条件是1名教师全额收费,其余7.5折收费; 乙公司的优惠条件是全部师生8折收费.试问当学生人数超过多少人时,其余7.5折收费; 甲旅游公司比乙旅游公司更优惠? (只列关系式即可)。
课题:§1.1 不等关系【学习目标】1.理解实数范围内代数式的不等关系,并会用不等式进行表示.2. 能根据条件列出不等关系式.【学习重难点】重点:理解不等式的意义,能正确列出不等式.难点:准确应用不等号.【自学探究】用两根长度均为l cm的绳子,分别围成一个正方形和圆.(1)如果要使正方形的面积不大于25㎝²,那么绳长l应该满足怎样的关系式?(2)如果要使圆的面积大于100㎝²,那么绳长l应满足怎样的关系式?(3)当l=8时,正方形和圆的面积哪个大?l=12呢?(4)由(3)你能发现什么?改变l的取值再试一试.观察上述问题的关系式,他们有什么共同特点?【师生合作】1不等式的概念一般地,用符号“<”(或“≤”),“>”(“或≥”)及“≠”连接的式子叫不等式.2常见不等号的读法和写法3典型例题:例1 .下列式子中,不等式的有哪些?(5) m -2=1 (6) 5121≥+b a (7)︒>∠30A (8) 532≥+m m例2.请用适当的符号表示下列关系:(1)x 的一半小于-1; (2)y 与4的和大于0.5;(3)x 与17的和比它的5倍小;(4)直角三角形斜边c 比它的两直角边a ,b 都长;(5)y 的3倍与8的和比x 的5倍大;(6)a 是负数; (7)x 2是非负数。
(8)老师的年龄比你年龄的2倍还大;(9)地球上海洋面积大于陆地面积;(10)铅球的质量比篮球的质量大;例3.小王4月份计划生产零件182个,前9天每天平均生产5个零件。
后来改进技术,提前2天并且超额完成任务,若小王9天后平均每天至少生产零件x 个,试写出x 所满足的关系式。
例4.通过测量一棵树的树围(树干的周长)可以计算出它的树龄。
通常规定以树干离地面1.5m 的地方作为测量部位。
某棵树栽种时的树围为5cm ,以后树围每年增加约3cm ,这棵树至少生长多少年其树围才能超过2.4m ?(只列关系式)【随堂练习】 1. 课本P5知识技能1、2.(做在书上)2.用适当的符号表示下列关系.(注意关键词)(1)a 是非负数,b 是非正数.(2)a 的21与3的和小于1.(3)a与b两数和的平方不小于3.(4)a与b两数的平方和不大于5.3.下列由题意列出的不等关系中, 错误的是( )A.a不是是负数可表示为a>0B. x不大于3可表示为x≤3C. m与4的差是非负数,可表示为x-4≥0D.代数式 x2+3必大于3x-7,可表示为x2+3>3x-74.用不等式表示“a的5倍与b的和不大于8”为 _______.5.a是个非负数可表示为_______.6.某校规定期中考试成绩的40%和期末考试成绩的60%的和作为学生成绩总成绩.该校骆红同学期中数学靠了85分,她希望自己学期总成绩不低于90分,她在期末考试中数学至少应得多少分? (只列关系式)7.某次数学测验,共有16道选择题,评分方法是:答对一题得6分,不大或答错一题扣2分,某同学要想得分为60分以上,他至少应答对多少道题?(只列关系式)8.一列火车有x节座车厢,每节车厢有116个座位,在春运期间,这列火车上有m人,其中有一些没有座位,请用不等式表示上述关系.9.某校两名教师带若干名学生去旅游,联系了两家标价相同的旅游公司,经洽谈后,甲公司优惠条件是1名教师全额收费,其余7.5折收费; 乙公司的优惠条件是全部师生8折收费.试问当学生人数超过多少人时, 甲旅游公司比乙旅游公司更优惠? (只列关系式即可)【小结】【中考链接】1. (2006.哈尔滨)已知一个等腰三角形的底边长为5,这个等腰三角形的腰长为x,则x的取值范围是( )A. 205x << B.25≥x C.25>x D.100<<x2.(2006.济南)亮亮准备用自己节省的零花钱买一台英语复读机,现在他已存有45元,计划从现在起以后每月节省30元,直到他至少有300元.设x 个月后, 他至少有300元,则可以用于计算所需要的月数x 的不等式是( )A.3004530≥-xB. 3004530≥+xC. 3004530≤-xD. 3004530≤+x【延伸拓展】某市移动通讯公司开设了两种通讯业务,A 类用户:先缴50元月租费,然后每通话1分钟话费0.4元;B 类用户:使用者不缴月租费,每通话1分钟话费0.6元(这里均指市内通话)。
不等关系说课稿引言概述:不等关系是数学中的一个重要概念,它描述了两个数之间的大小关系。
在数学的学习过程中,深入理解不等关系对于解决问题和推理判断都具有重要意义。
本文将从不等关系的定义、性质、应用等方面进行详细阐述。
一、不等关系的定义1.1 不等关系的基本概念不等关系是指两个数之间的大小关系,可以分为大于、小于、大于等于、小于等于四种情况。
用符号表示时,大于用 ">",小于用 "<",大于等于用"≥",小于等于用"≤"。
1.2 不等关系的传递性不等关系具有传递性,即如果a>b,b>c,则有a>c。
这个性质在解决问题时非常实用,可以简化推理过程。
1.3 不等关系的对称性不等关系不具有对称性,即a>b不一定意味着b<a。
这是因为不等关系是基于数的大小进行比较,而不是数的本身。
二、不等关系的性质2.1 不等关系的反身性不等关系具有反身性,即对于任意的数a,都有a≥a或者a≤a。
2.2 不等关系的传递闭包不等关系的传递闭包是指将不等关系中的传递性扩展到所有可能的数对上。
通过传递闭包,我们可以得到更多的不等关系。
2.3 不等关系的等价关系不等关系可以看做是等价关系的一种特殊情况。
等价关系具有自反性、对称性和传递性,而不等关系只具有自反性和传递性。
三、不等关系的应用3.1 不等关系在数学推理中的应用不等关系在数学推理中起到了重要的作用,可以匡助我们解决各种问题。
例如,在证明不等式时,我们可以利用不等关系的传递性和性质来进行推导。
3.2 不等关系在实际问题中的应用不等关系在实际问题中也有广泛的应用。
例如,在经济学中,不等关系可以描述不同商品的价格大小关系;在物理学中,不等关系可以描述物体的大小和分量关系等。
3.3 不等关系在计算机科学中的应用不等关系在计算机科学中也有重要的应用。
例如,在排序算法中,我们可以利用不等关系对元素进行比较和排序;在数据库查询中,不等关系可以用于筛选满足特定条件的数据。
《1.1 不等关系》一、内容与分析内容:章导言,引出不等关系,会列式表示不等关系。
内容分析:一、章导言向同窗们介绍本章应学习的知识,通过具体事例让学生熟悉到生活中的不等关系比相等关系更多。
二、明白用数学符号表示不等关系,并能够将一些具体的数学问题用不等式列出,为后继学习做好铺垫。
二、目标与分析目标:一、明白得不等式的意义二、能依照条件列出不等式目标分析:同窗们在前面学习过等式,明白等式的含义,不等关系是咱们明白得不等式的前提,因此咱们要从不等关系中抽象出不等式的含义;同时要明白得一些数学语言的含义如“不大于”,“不超过”等,同时要学会从具体问题中抽象出不等关系并列出不等式,为后面应用问题做好预备。
三、问题诊断分析学生在明白得有些数学语言如“不大于”,“不小于”,“不超过”可能会碰到困难,从而可不能列出相应的不等式,因此在介绍这些关键词语的时候要从“大于”“小于”入手,通过具体事例慢慢介绍让学生明白得这些数学词语。
四、教学进程分析一、创设问题情景,引入新课咱们学过等式,明白利用等式能够解决许多问题,同时,咱们也明白现实生活中还存在许多不等关系,利用不等关系一样能够解决实际问题,本章我们就来了解不等式有关的内容。
二、新课教学问题一:你还记得小孩玩的翘翘板吗?你想过它的工作原理吗?其实,翘翘板就是靠不断改变两头的重量对照来工作的.那么,如何用式子来表示不等关系呢?设计用意:在总结前面学生举例的基础上,提出该问题,引发学生进一步试探,培育学生深切试探问题的适应。
学生在层层深切的试探中,切身体会到不等关系在生活中的重要性,此刻再试探该问题正好激发了学生探讨的欲望。
向同窗们介绍不等符号“>” ,“<” ,“≤”,“≥”。
问题二: 例题1:用两根长度均为l cm 的绳索,别离围成一个正方形和圆.(1)若是要使正方形的面积不大于25 cm 2, 那么绳长l 应知足如何的关系式?(2)若是要使圆的面积不小于100 cm 2,那么绳长l 应知足如何的关系式?(3)当l =8时,正方形和圆的面积哪个大?l =12呢?(4)你能取得什么猜想?改变l 的取值,再试一试 设计用意:学生自己总结出不等式的概念,培育学生总结归纳的能力。
1.1 不等关系
课型:新授主编:审核:学生姓名:_______-
[目标导航]
1、学习目标
通过具体情景,感受现实世界和日常生活中存在着大量的不等关系,经历实际问题中数量关系的分析和抽象过程,了解不等式的意义。
2、学习重点:不等式的概念及对文字表述的数量关系能列出不等式。
3、学习难点:根据实际情景列不等式
[课前导学]
1、用不等号填空
7+3 4+3 7×2 4×2
2、以上式子是等式吗?它表示的是 关系的式子。
3、不等关系在现实生活中无处不在!你能举出一些与不等关系有关的现实生活例子吗?[课堂研讨]
1、新知探究
(1)解答以下各题,并与同伴交流
如图用根长度均为l㎝的绳子,分别围成一个正方形和圆。
用S表示下图的面积?
a、如果要使正方形的面积不大于25㎝2,那么绳长l应满足怎样的关系式?
b、如果要使圆的面积大于100㎝2,那么绳长l应满足怎样的关系式?
c、当l=8时,正方形和圆的面积哪个大?l=12呢?(用计算器计算)
d、改变l的取值再试一试,在这个过程中你能得到什么启发?
2、做一做
通过测量一棵树的树围(树干的周长)可能计算出它的树龄,通常规定以树干离地面1.5m的地方作为测量部位。
某树栽种时的树围为5㎝,以后树围每年增加约3㎝,这棵树至少要生长多少年其树围才能超过
2.4m?(只列关系式)
3、议一议
观察由上述问题得到的关系式,它们有什么共同特点?
4、知识归纳总结
一般地,用符号“<”(或“≤”)“>”(或“≥”)连接的式子叫做不等式。
不等符号:>,<,≥,≤.“≥”读作“大于等于”,表示大于或等于也就是不小于;“≤”读作“小于等于”, 表示小于或等于也就是不大于;例如:x≥y 表示 x大于或等于y,也就是x不小于y。
4、巩固练习
a. 用适当符号表示下列不等关系用适当的符号表述下列关系
①是非负数;②直角三角形斜边比它的直角边都长
③与的17和比它的5倍小;④的2倍与的3倍的差是非负数
⑤某商品原价为元,降价后,价格仍不低于15元。
⑥为非整数
b. 下列各式中的不等式有 个。
(1)8<9; (2)a+b=0; (3)a2+1>0; (4)3x-
1≤x;
(5)x-y≠1; (6)3-x=0; (7)4-2x; (8)x2+y2>0。
[课外拓展]
1、课后记(收获、体会、困惑)
(1)表示不等关系的符号(不等号)都有哪几种?
_________________________。
(2)什么叫做不等式?
________________________________________________。
(3)你能从现实生活中举出几个表示不等关系的不等式吗?
2、分层作业(班级:_____________,学生姓名:____________)
A、必做题(限时7分钟,实际完成时间:_______分钟)
1.在数学表达式①-3<0; ②4x+5>0; ③x=3; ④x2+x;⑤ x+2>x+1是不等式的有
A.2个
B.3个
C.4个
D.5个
2. x的2倍减7的差不大于-1,可列关系式为( )
A.2x-7-1
B. 2x-7<-1
C. 2x-7=-1
D. 2x-7-4
3.下列列出的不等关系式中, 正确的是( )
A.a是负数可表示为a>0;
B. x不大于3可表示为x<3
C. m与4的差是负数,可表示为m-4<0;
D. x与2的和非负数可表示为x+2>0
4. 代数式3x+4的值不小于0,则可列不等式为( )
A. 3x+4<0
B. 3x+4>0
C. 3x+40
D. 3x+4<10
5.用不等式表示“a的5倍与b的和不大于8”为 _______.
6.是个非负数可表示为_______.
7. 用适当的符号表示下列关系:
(1) x的与x的2倍的和是非正数;
(2) 一枚炮弹的杀伤半径不小于300米;
(3) 三件上衣与四条长裤的总价钱不高于268元;
(4) 明天下雨的可能性不小于70%。
B、思考题:比较大小
(1)
(2) ;
观察以上结果,总结规律(不必证明)
当时,
当时,
现在你会做上面那倒题了吗 ,这种方法叫做猜想归纳法。
有兴趣的同学可以自己去查阅有关数学归纳法的相关资料。