数学11不等关系课件北师大
- 格式:ppt
- 大小:216.00 KB
- 文档页数:13
第一章预备知识第3节不等式3.1不等式的性质与相等关系一样,不等关系是数学中最基本的数量关系,作为预备知识,掌握好不等关系和不等式的基本性质,是证明和求解不等式的基础,是解决二次函数和二次不等式问题的前提,通过不等关系和不等式性质的学习,有助于提高学生的数学运算能力和逻辑推理能力,同时为培养学生数学建模能力奠定基础。
(1)知识目标:掌握作差法比较两个实数(代数式)大小的基本方法;掌握不等式的基本性质;熟练运用不等式的基本性质进行不等式的变形、运算和证明。
(2)核心素养目标:通过不等式性质的运用,提高学生数学运算能力和数学建模能力。
(1)作差法比较两个实数(代数式)的大小;(2)不等式的基本性质;(3)熟练运用不等式的基本性质进行不等式的变形、运算和证明。
多媒体课件一、复习引入一天,同学甲问同学乙:“你今年多少岁了?”乙回答说:“16岁了,你呢?”“我满15岁了,哈哈!再过一年,明年我们就一样大了!”乙默然。
这个对话里面包含了什么数学知识呢?提示:两人相差1岁,过一年,两人的年龄同时加1,不可能相等。
思考讨论:高速路上的限速标志,上面的数字是什么意思?提示:车速为v,行车道上的车速应该满足100km/ℎ≤v≤120km/ℎ.二、新知识在生活中,有很多数量关系的问题,它们既有相等关系,又有不等关系。
在数学中,用不等式来表示不等关系。
1、实数大小的比较两个实数a,b,如果a−b>0,那么a>b;如果a−b=0,那么a=b;如果a−b<0,那么a<b.即注意:①这种比较实数大小的方法叫作“作差法”,另外在数轴上可以更加直观的看出两个实数的大小;②比较两个代数式的大小,基本方法也是“作差法”,作差后的结果一般要进行因式分解或配方,然后与0相比较。
如:已知实数a,试比较a2+2与2a的大小.a2+2−2a=a2−2a+1+1=(a−1)2+1>0 ∴a2+2>2a例1.试比较(x+1)(x+5)与(x+3)2的大小.解:作差比较,(x+1)(x+5)−(x+3)2=(x2+6x+5)−(x2+6x+9)=−4<0∴(x+1)(x+5)<(x+3)2例2.试证明:若0<a<b,m>0,则a+mb+m >ab.证明:作差比较,a+mb+m −ab=b(a+m)−a(b+m)b(b+m)=m(b−a)b(b+m)a−b>0⇔a>b a−b=0⇔a=b a−b<0⇔a<b因为a <b ,所以b −a >0,又因a >0,b >0,m >0,所以m(b−a)b (b+m )>0∴a +mb +m >ab2、不等式的基本性质性质 内容备注性质1 如果a >b ,且b >c ,那么a >c 传递性性质2 如果a >b ,那么a +c >b +c 加(减)乘(除)运算性质3如果a >b ,c >0,那么ac >bc如果a >b ,c <0,那么ac <bc性质4 如果a >b ,c >d ,那么a +c >b +d 同向不等式相加 性质5如果a >b >0,c >d >0,那么ac >bd如果a >b >0,c <d <0,那么ac <bd不等式相乘注意:①以上性质均可以利用“作差法”给出证明,下面以性质4为例给出证明,其它,请同学们自行完成.性质4的证明:(a +c )−(b +d )=(a −b )+(c −d)因为a >b ,c >d ,有a −b >0,c −d >0,所以有(a −b )+(c −d )>0 得a +c >b +d②根据性质5,可以得出不等式乘方(开方)的运算性质.即:如果a >b >0,n ∈N +,那么a n >b n如果a >b >0,n ∈N +,那么√a n>√b n③不等式的变形、运算等,务必根据性质进行,避免错误. 如:如果a >b ,那么1a<1b ,对吗?提示:不正确,要由a >b 得到1a <1b ,应该将不等式两边同乘以1ab ,但条件并没有给出ab 的正负,所以结论错误例3. (1)已知a >b ,ab >0,求证:1a <1b ;(2)已知a >b ,c <d ,求证:a −c >b −d .证明:(1)因ab>0,则1ab >0,由不等式的性质3,a·1ab>b·1ab,得1a<1b.(2)因c<d. 由不等式的性质3,−c>−d再由a>b,利用不等式的性质4,同向不等式相加,得a−c>b−d思考讨论(综合练习):(1)已知a>0,b>0,求证:a3+b3≥a2b+ab2;(2)已知2≤x≤4,1≤y≤2,求x−2y的范围;(3)已知1≤a−b≤2,2≤a+b≤3,求2a−4b的范围.提示:(1)作差,(a3+b3)−(a2b+ab2)=(a3−a2b)+(b3−ab2)=a2(a−b)+b2(b−a)=(a−b)2(a+b)因a>0,b>0,(a−b)2≥0,所以(a−b)2(a+b)≥0得a3+b3≥a2b+ab2.(2)由 1≤y≤2得−4≤−2y≤−2,与2≤x≤4不等式相加得−2≤x−2y≤2即x−2y∈[−2,2].(3)设a−b=x,a+b=y,则1≤x≤2, 2≤y≤3,且a=x+y2,b=y−x2所以2a−4b=2·x+y2−4·y−x2=3x−y,与上(2)小题一样得2a−4b∈[0,4].三、课堂练习教材P26,练习1~6.四、课后作业教材P30,习题1-3,A组1~5(1)“作差法”比较大小,是证明不等式的基础,另外还可以采用“作商法”,即如果a>0,b>0,则ba>1⇔b>a;(2)不等式的基本性质是不等式变形、化简、证明的基础,不仅要熟练运用基本性质,还要特别注意性质中的条件.。
北师大版数学八年级下册2.1《不等关系》教案一. 教材分析《不等关系》是北师大版数学八年级下册第2.1节的内容,主要介绍不等式的概念和基本性质。
这一节内容是学生学习不等式的重要基础,对于培养学生的逻辑思维和解决问题的能力具有重要意义。
二. 学情分析学生在学习这一节内容前,已经学习了有理数、方程等基础知识,对于数学符号和运算有一定的了解。
但他们对不等式的概念和性质可能还比较陌生,需要通过实例和练习来逐步理解和掌握。
三. 教学目标1.了解不等式的概念和基本性质。
2.学会用不等式表示实际问题中的不等关系。
3.培养学生的逻辑思维和解决问题的能力。
四. 教学重难点1.不等式的概念和基本性质。
2.如何用不等式表示实际问题中的不等关系。
五. 教学方法采用问题驱动法、案例教学法和小组合作法,引导学生通过观察、思考、讨论和操作,自主探索不等式的概念和性质,提高学生的参与度和实践能力。
六. 教学准备1.PPT课件2.教学案例和练习题3.小组讨论材料七. 教学过程1.导入(5分钟)利用PPT课件,展示一些实际问题中的不等关系,如身高、体重、温度等,引导学生思考如何用数学符号表示这些不等关系。
2.呈现(10分钟)介绍不等式的概念和基本性质,通过示例和讲解,让学生理解不等式的含义和运用。
3.操练(10分钟)让学生分组讨论,选取一些实际问题,尝试用不等式表示不等关系,并互相交流分享。
4.巩固(10分钟)针对每组的问题,选取几个进行讲解和分析,引导学生正确理解和运用不等式。
5.拓展(10分钟)让学生尝试解决一些不等式相关的应用题,提高学生解决实际问题的能力。
6.小结(5分钟)对本节课的内容进行总结,强调不等式的概念和性质,提醒学生注意运用时的细节。
7.家庭作业(5分钟)布置一些有关不等式的练习题,让学生巩固所学知识,提高解题能力。
8.板书(课后整理)总结本节课的主要内容和知识点,方便学生复习和回顾。
教学过程每个环节所用的时间如上所示,供您参考。
北师大版数学八年级下册2.1《不等关系3》说课稿一. 教材分析北师大版数学八年级下册2.1《不等关系3》这一节内容,是在学生已经掌握了不等式的概念、不等式的性质、不等式的解法等基础知识的基础上进行讲解的。
本节课的主要内容是让学生了解不等关系的概念,学会用不等号表示不同种类的不等关系,并能够分析实际问题中的不等关系。
在教材中,通过引入实际问题,引导学生用不等号表示问题中的不等关系,从而让学生理解不等关系的概念。
然后,通过分析不同种类的不等关系,让学生掌握不等关系的分类和特点。
最后,通过练习题,让学生巩固所学的不等关系知识。
二. 学情分析学生在学习这一节内容时,已经有了一定的数学基础,对于不等式的概念和性质有一定的了解。
但是,学生对于不等关系的理解和应用还比较模糊,需要通过实例和练习来加深理解。
同时,学生对于实际问题中的不等关系还没有直观的认识,需要通过生活中的实例和问题来引导学生理解不等关系。
此外,学生在这一阶段的学习中,需要培养分析问题和解决问题的能力,因此,在教学过程中,需要注重学生的参与和实践。
三. 说教学目标1.知识与技能目标:让学生理解不等关系的概念,学会用不等号表示不同种类的不等关系,并能够分析实际问题中的不等关系。
2.过程与方法目标:通过引入实际问题,引导学生用不等号表示问题中的不等关系,从而让学生理解不等关系的概念。
通过分析不同种类的不等关系,让学生掌握不等关系的分类和特点。
3.情感态度与价值观目标:培养学生对数学的兴趣,提高学生分析问题和解决问题的能力。
四. 说教学重难点1.教学重点:让学生理解不等关系的概念,学会用不等号表示不同种类的不等关系。
2.教学难点:让学生理解实际问题中的不等关系,并能够用不等号表示出来。
五. 说教学方法与手段在教学过程中,我将采用讲授法、实例分析法、小组讨论法等教学方法,结合多媒体课件和黑板等教学手段,引导学生理解和掌握不等关系。
六. 说教学过程1.引入新课:通过一个实际问题,引导学生用不等号表示问题中的不等关系,从而引出不等关系的概念。