数学建模 装箱问题概述
- 格式:ppt
- 大小:1.07 MB
- 文档页数:22
P181 锁具装箱1.某厂生产一种弹子锁具,每个锁具有n个槽,每个槽的高度从{1,2,3,4}这4个数(单位略)中任取一个,限制至少有一个相邻的槽高之差等于3,且至少有3个不同的槽高,每个槽的高度取遍这4个数且满足上面这两个限制时生产出一批锁(例如,当n等于3时,3个槽高为1,4,2的锁符合要求,而3个槽高为1,4,4的锁不满足要求)。
求一批锁的把数。
解:取不同的n的值,通过matlab编程,求出对应的锁的把数(1)当n=3时:源程序:s=0;n=3;for j1=1:n+1for j2=1:n+1for j3=1:n+1a1=j1;a2=j2;a3=j3;amax=max([a1,a2,a3]');amin=min([a1,a2,a3]');numbers=(amax-a1)*(a1-amin)+(amax-a2)*(a2-amin)+(amax-a3)*(a3-amin);neighbors=max([abs(a1-a2),abs(a2-a3)]');if numbers>0.5if neighbors==3s=s+1;endendendendends输出结果:s =8所以当每个锁具有3个槽时,满足要求的这批锁的把数为8把。
(2)当n=4时:源程序:s=0;n=3;for j1=1:n+1for j2=1:n+1for j3=1:n+1for j4=1:n+1a1=j1;a2=j2;a3=j3;a4=j4;amax=max([a1,a2,a3,a4]');amin=min([a1,a2,a3,a4]');numbers=(amax-a1)*(a1-amin)+(amax-a2)*(a2-amin)+(amax-a3)*(a3-amin)+( amax-a4)*(a4-amin);neighbors=max([abs(a1-a2),abs(a2-a3),abs(a3-a4)]');if numbers>0.5if neighbors==3s=s+1;endendendendendends输出结果:s =64所以当每个锁具有4个槽时,满足要求的这批锁的把数为64把。
三维装箱问题算法一、问题概述三维装箱问题是一种经典的优化问题,涉及到在有限的空间内放置多个物体,以满足一定的约束条件并最大化空间利用率。
在这个问题中,我们考虑一个三维盒子,其中可以放置一定数量的物体,每个物体都有一定的体积,我们需要找到一种放置方式,使得盒子的剩余空间最小。
二、算法介绍为了解决三维装箱问题,我们可以使用多种算法,其中一种常用的算法是遗传算法。
遗传算法是一种基于生物进化原理的优化算法,通过模拟自然选择和遗传机制来寻找问题的最优解。
具体步骤如下:1. 初始化:随机生成一组装箱方案,作为种群。
2. 评估:对每个装箱方案进行评估,计算剩余空间的大小。
3. 选择:根据每个装箱方案的剩余空间大小,选择出适应度较高的方案作为父代。
4. 交叉:对父代进行交叉操作,生成新的子代。
5. 变异:对子代进行变异操作,以增加种群的多样性。
6. 终止条件:当满足终止条件(如达到最大迭代次数或找到满足要求的解)时,停止算法,输出当前最优解。
三、算法实现下面是一个简单的遗传算法实现示例,使用Python语言编写:```pythonimport numpy as np# 定义适应度函数def fitness(solution):remaining_space = np.prod(solution) -np.prod(np.delete(solution, axis=0))return remaining_space# 初始化种群population = np.random.randint(low=1, high=10, size=(pop_size, 3)) # 迭代进化for generation in range(max_generations):# 评估种群中每个装箱方案的适应度fitness_values = np.apply_along_axis(fitness, axis=1,arr=population)# 选择适应度较高的方案作为父代parents = np.argmax(fitness_values, axis=0)# 进行交叉和变异操作offspring = crossover(population, parents)population = offspring + np.random.randint(low=-1, high=1, size=offspring.shape, dtype=np.int32)# 输出当前最优解和最优解的适应度值if generation % print_freq == 0:best_solution = np.argmin(fitness_values)best_fitness = fitness_values[best_solution]print(f"Generation {generation}: Best solution:{best_solution}, Best fitness: {best_fitness}")# 判断是否达到终止条件,如果是则输出最终结果if best_fitness <= optimal_fitness:break```以上代码实现了一个简单的遗传算法,通过交叉和变异操作生成新的种群,并在每一代选择适应度较高的方案作为父代进行繁殖,最终得到最优解。
锁具装箱摘要(第06组)本文针对锁具如何装箱问题,建立了模型,并对其进行了分析和评价。
首先根据排列组合知识,用Matlab编程列举出所有符合条件的锁具,得到一批锁具的个数为5880,可装58箱。
就如何装箱及销售问题,本文根据如何对每一批锁具进行装箱和标记才能是消费者的满意度最高的模型,再具体分析实际销售情况,建立了按槽高进行序贯销售的模型。
即先把槽高和为偶数的锁具按字典序列排序装箱,之后装槽高和为奇数的锁具,并对每一个锁具进行编号,计算锁具“安全”距离的极小值为2562,即42.7箱,得到序贯销售时团体顾客最大购买量为42箱时不会出现互开现象。
顾客抱怨互开程度可用所购的一箱或二箱锁具中平均有多少对可能互开来衡量。
本文运用计算机模拟,得到平均一箱中可以互开的个数为2.33,平均两箱中可以互开的个数为9.41。
关键词:排列组合,数学模型,互开,奇偶,概率一、问题重述某厂生产一种弹子锁具,该锁具的锁匙共有5个槽,每个槽可取6种不同的高度,分别以1-6的整数表示。
在生产中要求每把锁匙的5个槽至少具有3种不同的高度且相邻两槽的高差不能是5。
满足上述条件的互不相同的锁具称为一批。
由于工艺条件的限制,当两把锁匙对应的5个槽的高度有4个相同,另一个槽的高差为1时,两锁具可能互开,否则不能互开。
在锁具出厂时,工厂对锁具按批进行随意装箱,每60付装1箱。
当遇到购买量较大时团体顾客时(买几箱到几十箱),由于装箱的随意性,容易引起他们对锁具互开现象的抱怨,现要求解决以下几个问题:(1)每批锁具有多少个,可装多少箱;(2)为售销部门提供一种方案,包括如何装箱,如何给箱子以标记,出售时如何利用这些标记,从而使团体顾客不再或减少抱怨;(3)当团体顾客的购买量不超过多少箱时,可以保证一定不会出现互开的情形;(4)按原来的随意装箱方法,如何定量地衡量团体顾客抱怨互开的程度,并对购买一、二箱者给出具体结果。
二、问题假设(1)随机装箱对锁具来说是等可能概率。
锁具装箱摘要(第06组)本文针对锁具如何装箱问题,建立了模型,并对其进行了分析和评价。
首先根据排列组合知识,用Matlab编程列举出所有符合条件的锁具,得到一批锁具的个数为5880,可装58箱。
就如何装箱及销售问题,本文根据如何对每一批锁具进行装箱和标记才能是消费者的满意度最高的模型,再具体分析实际销售情况,建立了按槽高进行序贯销售的模型。
即先把槽高和为偶数的锁具按字典序列排序装箱,之后装槽高和为奇数的锁具,并对每一个锁具进行编号,计算锁具“安全”距离的极小值为2562,即42.7箱,得到序贯销售时团体顾客最大购买量为42箱时不会出现互开现象。
顾客抱怨互开程度可用所购的一箱或二箱锁具中平均有多少对可能互开来衡量。
本文运用计算机模拟,得到平均一箱中可以互开的个数为2.33,平均两箱中可以互开的个数为9.41。
关键词:排列组合,数学模型,互开,奇偶,概率一、问题重述某厂生产一种弹子锁具,该锁具的锁匙共有5个槽,每个槽可取6种不同的高度,分别以1-6的整数表示。
在生产中要求每把锁匙的5个槽至少具有3种不同的高度且相邻两槽的高差不能是5。
满足上述条件的互不相同的锁具称为一批。
由于工艺条件的限制,当两把锁匙对应的5个槽的高度有4个相同,另一个槽的高差为1时,两锁具可能互开,否则不能互开。
在锁具出厂时,工厂对锁具按批进行随意装箱,每60付装1箱。
当遇到购买量较大时团体顾客时(买几箱到几十箱),由于装箱的随意性,容易引起他们对锁具互开现象的抱怨,现要求解决以下几个问题:(1)每批锁具有多少个,可装多少箱;(2)为售销部门提供一种方案,包括如何装箱,如何给箱子以标记,出售时如何利用这些标记,从而使团体顾客不再或减少抱怨;(3)当团体顾客的购买量不超过多少箱时,可以保证一定不会出现互开的情形;(4)按原来的随意装箱方法,如何定量地衡量团体顾客抱怨互开的程度,并对购买一、二箱者给出具体结果。
二、问题假设(1)随机装箱对锁具来说是等可能概率。
fitting boxes题解fitting boxes,又称装箱问题,是计算机图形学、优化问题以及算法领域中的一个经典问题。
在计算机图形学中,装箱问题主要用于二维空间中的几何体生成;在优化问题中,装箱问题旨在找到一种最优的装箱方案,以达到空间利用率的最大化或最小化;在算法领域,装箱问题则是许多算法设计的基石。
【背景介绍】装箱问题来源于实际生活中的物流、仓储等领域。
在一个有限的容器中,如何将不同尺寸的物体合理地装进去,成为一个具有重要实际意义的问题。
在计算机图形学中,装箱问题可以帮助生成更加自然、真实的场景;在物流领域,装箱问题可以提高运输效率,降低成本。
【装箱算法介绍】针对装箱问题,有许多经典的算法可以解决。
以下简要介绍几种常见的装箱算法。
【3.1 暴力解法】暴力解法是最简单的装箱算法,其主要思想是将所有物品按照大小顺序排列,然后依次放入容器中。
这种算法的时间复杂度为O(n^2),其中n为物品数量。
暴力解法在物品数量较少时效率较低,但在物品数量较多时,由于物品可以互相填充,空间利用率会有所提高。
【3.2 最大矩形算法】最大矩形算法的主要思想是在容器中寻找一个最大的矩形区域,将所有物品放入该区域。
该算法的时间复杂度为O(nlogn),其中n为物品数量。
与暴力解法相比,最大矩形算法在物品数量较多时具有较高的效率。
【3.3 最长边优先算法】最长边优先算法的主要思想是将物品按照最长边长度排序,然后依次放入容器中。
该算法的时间复杂度为O(nlogn),但在某些情况下可能会导致空间利用率较低。
【3.4 改进算法】针对上述算法存在的问题,可以对其进行一定的改进。
例如,在最长边优先算法的基础上,可以通过动态规划或贪心算法进一步优化,提高空间利用率。
【4.算法实现与代码展示】本文以Python为例,展示一种简单的最长边优先算法实现。
```pythondef fit_boxes(boxes, container_size):# 对物品按最长边长度排序boxes.sort(key=lambda x: x[1])# 初始化容器container = [0] * (container_size + 1)# 遍历物品,填充容器for box in boxes:# 找到可放置物品的最小高度for i in range(container_size, box[1] + 1):if container[i] == 0:# 放置物品后,更新容器状态container[i] = box[0]break# 计算空间利用率utilization = sum(box[0] for box in boxes if container[box[1]] == box[0]) / (container_size * container[container_size])return utilization# 示例boxes = [(10, 5), (15, 10), (20, 15)]container_size = 40utilization = fit_boxes(boxes, container_size)print("空间利用率:", utilization)```【5.总结与拓展】装箱问题是计算机科学领域中的一个经典问题,具有广泛的应用。
物流装箱问题数学建模
物流装箱问题是指将一批物品放置到有限的几个箱子中,使得每个箱子的利用率最高且所使用的箱子数量最少。
这是一个经典的数学优化问题,可以通过以下步骤进行建模:
1. 定义变量:假设有 n 个物品需要装箱,第 i 个物品的体积为 vi,第 j 个箱子的容积为 cj,定义决策变量 xi,j 表示将第 i 个物品放入第 j 个箱子中(取值为0或1)。
2. 约束条件:每个物品只能被放入一个箱子中,即∑j xi,j = 1,同时每个箱子的容积不能超过其限制,即∑i vi xi,j ≤ cj。
3. 目标函数:目标是最小化使用的箱子数量,因此可以定义目标函数为∑j ∑i xi,j。
4. 模型求解:该问题可以转化为混合整数线性规划问题,可以使用商业软件(如Gurobi、CPLEX等)求解,也可以使用启发式算法(如遗传算法、模拟退火等)进行求解。
需要注意的是,该问题存在多项式时间内可解的算法,但是在实际应用中,由于数据规模较大,通常需要使用近似算法或者启发式算法进行求解。
物流装箱问题数学建模
物流装箱问题是指在物流运输过程中,如何合理地将货物装箱以最大限度地利用装载空间,并确保货物的安全和稳定。
这是一个复杂的问题,需要综合考虑货物的形状、尺寸、重量、数量以及运输工具的限制等因素。
数学建模可以帮助我们在物流装箱问题中找到最优的解决方案。
首先,我们可以将货物的形状和尺寸抽象为几何体,如长方体、圆柱体等。
然后,通过数学方法计算每个货物的体积,并根据运输工具的限制,确定每个装箱的容量。
接下来,我们可以将问题转化为一个优化问题,即如何在有限的容量内,最大化装载的货物总体积。
在数学建模过程中,我们可以利用线性规划、整数规划、动态规划等方法来求解最优解。
通过确定目标函数和约束条件,我们可以使用数学模型来找到最佳的装箱方案。
同时,我们还可以考虑一些实际问题,如货物的稳定性、避免堆叠过高、减少装卸时间等因素,来综合评估每个装箱方案的可行性。
此外,随着科技的发展,人工智能和机器学习等技术也可以应用于物流装箱问题的数学建模中。
通过对大量历史数据的分析和学习,我们可以提前预测不同类型货物的运输需求,并自动优化装箱方案,提高装箱效率和节省运输成本。
总之,物流装箱问题数学建模是一个复杂且具有挑战性的问题。
通过运用数学方法和相关技术,我们可以找到最优解决方案,提高装箱效率,减少物流成本,提升物流运输的整体效益。
长三角高校数学建模竞赛快递包裹装箱优化问题随着电子商务的迅速发展,快递行业成为中国物流行业中的重要组成部分。
快递包裹的及时送达和安全运输是快递企业必须面对的重要挑战之一。
针对如何在有限的空间中最大化地装载包裹,优化装箱方案已成为快递企业的一项重要课题。
本文将重点讨论长三角高校数学建模竞赛中的快递包裹装箱优化问题。
快递包裹装箱问题涉及到如何在有限的空间中合理地摆放不同尺寸和重量的包裹,以便最大化地利用空间并保证包裹的安全运输。
在实际应用中,我们可以将快递箱视为一个三维的容器,而包裹则是不同形状和大小的物体。
装箱优化问题可以归结为如何在给定的容器和包裹条件下,找到最优的摆放方案,使得总体积最小化或者总重量最小化。
对于快递包裹装箱优化问题,我们可以采用数学建模的方法来解决。
首先,我们需要确定一个合适的目标函数,它可以衡量不同装箱方案的优劣。
对于总体积最小化的问题,我们可以将目标函数定义为所有包裹体积的和。
对于总重量最小化的问题,我们可以将目标函数定义为所有包裹重量的和。
在确定目标函数之后,我们可以建立一个数学模型来描述这个优化问题。
在数学模型中,我们需要定义相关的变量和约束条件。
变量可以表示每个包裹的位置和方向,而约束条件则可以限制包裹之间的相互位置以及与容器的边界的关系。
例如,我们可以定义一个二维数组来表示容器的布局,其中每个元素表示一个位置,0表示空位置,1表示有包裹。
我们还可以引入一些约束条件来控制包裹的位置和方向,例如,每个包裹的底部必须在一个平面上,不能旋转等。
在实际应用中,我们可以采用启发式算法来求解这个优化问题。
启发式算法是一种基于经验和直觉的求解方法,它可以在合理的时间内找到一个较好的解。
常见的启发式算法包括遗传算法、模拟退火算法和禁忌搜索算法等。
这些算法都可以通过不断地调整包裹的位置和方向来搜索最优解。
快递包裹装箱优化问题是一个复杂而实际的问题,它涉及到多个变量和约束条件。
通过数学建模和启发式算法,我们可以找到一个较好的装箱方案,以最大化地利用空间并保证包裹的安全运输。
集装箱问题数学建模
集装箱问题是一个经典的组合优化问题,目的是在给定一组箱子和一组承载它们的集装箱船舶的情况下,找到一种最佳的装载方案,以最大化船舶的装载量。
为了建立数学模型,我们需要定义以下变量和约束条件:
1. 变量:
- x(i,j): 集装箱i在船舶j中的装载数量,其中i=1,2,...,n,
j=1,2,...,m
2. 目标函数:
- 最大化船舶的总装载量,可以表示为 sum( x(i,j)*v(i) )
3. 约束条件:
- 每个集装箱只能被装载到一个船舶中,即 sum( x(i,j) ) <= 1,对所有i=1,2,...,n
- 每艘船舶的装载量不能超过其承载能力,即
sum( x(i,j)*w(i) ) <= c(j),对所有j=1,2,...,m
其中,v(i)表示第i个集装箱的体积,w(i)表示第i个集装箱的
重量,c(j)表示第j艘船舶的承载能力。
以上模型可以使用整数规划方法求解,也可以使用启发式算法(如遗传算法、蚁群算法等)进行近似解求解。
如果问题还有其他特定的约束条件(如集装箱之间的相对位置
关系、船舶的航行能力等),还需要根据实际情况进行调整和加入相应的约束条件。
问题一:两辆平板车的装货问题有7种规格的包装箱要装到两辆平板车上去,包装箱的宽和高是一样的,但厚度(t,以厘米计)及重量(w,以千克计)是不同的。
如下表所示给出了每种包装箱的厚度、重量及数量。
每辆平板车有10.2m长的地方可用来装包装箱(像面包片那样),载重量为40吨。
由于当地货运的限制,对C5、C6、C7类的包装箱的总数有一个特殊的限制,这类箱子所占的空间(厚度)不能超过302.7cm,试把包装箱装到平板车上去使得浪费的空间最小。
解:假设包装箱的宽和高完全一样,假设为使浪费的空间最小,每辆车可以随意选择货型进行装车,假设两辆车相互独立。
x为装入i车的Cj型号包装箱的数量,则可得到线性规划如下:设ij目标函数:max f=max{0.487(x11+x21)+0.52(x12+x22)+0.61(x13+x23)+0.72(x14+x24)+0.487(x15+x25)+0.52(x16+x26)+0.64(x17+x27)}约束条件:0.487x11+0.52x12+0.61x13+0.72x14+0.487x15+0.52x16+0.64x17≤10.20.487x21+0.52x22+0.61x23+0.72x24+0.487x25+0.52x26+0.64x27≤10.20.487(x15+x25) +0.52(x16+x26)+0.64(x17+x27) ≤3.0272x11+3x12+x13+0.5x14+4x15+2x16+x17≤402x21+3x22+x23+0.5x24+4x25+2x26+x27≤40x11+x21≤8x12+x22≤7x13+x23≤9x14+x24≤6x15+x25≤6x16+x26≤4x17+x27≤8x11,x12,x13,x14,x15,x16,x17,x21,x22,x23,x24,x25,x26,x27≥0 利用LINGO数学软件包求解该线性规划,具体如下:model:max=0.487*(x11+x21)+0.52*(x12+x22)+0.613*(x13+x23)+0.72*(x14+x24)+0.487*( x15+x25)+0.52*(x16+x26)+0.64*(x17+x27);0.487*x11+0.52*x12+0.613*x13+0.72*x14+0.487*x15+0.52*x16+0.64*x17<10.2;0.487*x21+0.52*x22+0.613*x23+0.72*x24+0.487*x25+0.52*x26+0.64*x27<10.2;0.487*(x15+x25)+0.52*(x16+x26)+0.64*(x17+x27)<3.027;2*x11+3*x12+x13+0.5*x14+4*x15+2*x16+x17<40;2*x21+3*x22+x23+0.5*x24+4*x25+2*x26+x27<40;x11+x12<8;x12+x22<7;x13+x23<9;x14+x24<6;x15+x25<6;x16+x26<4;x17+x27<4;得出结果如下:Global optimal solution found.Objective value: 20.40000 Total solver iterations: 10Variable Value Reduced CostX11 8.000000 0.000000X21 0.000000 0.000000X12 0.000000 0.000000X22 7.000000 0.000000X13 9.000000 0.000000X23 0.000000 0.000000X14 0.4444444 0.000000X24 5.555556 0.000000X15 0.000000 0.000000X25 0.000000 0.000000X16 0.8980769 0.000000X26 0.000000 0.000000X17 0.000000 0.000000X27 4.000000 0.000000Row Slack or Surplus Dual Price1 20.40000 1.0000002 0.000000 1.0000003 0.000000 1.0000004 0.000000 0.0000005 12.98162 0.0000006 12.22222 0.0000007 0.000000 0.0000008 0.000000 0.0000009 0.000000 0.00000010 0.000000 0.00000011 6.000000 0.00000012 3.101923 0.00000013 0.000000 0.000000有上述结果可知:第一辆车装载情况如下:第一辆车:10.2—8*0.487—9*0.613—1*0.72=0.067(m)第二辆车:10.2—7*0.5 2—5*0.72—4*0.64=0.0.4 (m)。
fitting boxes题解装箱问题作为计算机图形学、优化领域的一个重要问题,广泛应用于物流、仓储、制造业等领域。
在现实生活中,我们从购物装箱到航空货运,都无法避免地要面临装箱问题。
本文将介绍装箱问题的背景、算法概述,以及常见的装箱算法,旨在帮助读者更好地理解装箱问题及解决方法。
装箱问题的基本目标是在有限的容器空间内,尽可能多地装入物品。
为了实现这一目标,我们需要在物品之间留出尽可能少的空隙。
在实际应用中,装箱问题可以分为两类:一是已知物品大小和容器尺寸的装箱问题,二是未知物品大小和容器尺寸的装箱问题。
为了解决装箱问题,研究者们提出了许多算法。
在这里,我们主要介绍四种常见的装箱算法:最大矩形算法、最小面算法、最大面算法和最小包围矩形算法。
3.1 最大矩形算法最大矩形算法的基本思想是在容器中寻找一个最大的矩形区域,用以容纳物品。
该算法首先将物品按照大小进行排序,然后依次将最大矩形区域的边界与物品的边界进行比较,将可以放入矩形的物品放入,并更新矩形边界。
3.2 最小面算法最小面算法的基本思想是在容器中寻找一个最小的平面,使得物品可以紧密排列在该平面上。
算法首先计算物品的平均尺寸,然后将物品按照大小进行排序,接着依次将最小面与物品进行比较,将可以放入最小面的物品放入,并更新最小面。
3.3 最大面算法与最小面算法相反,最大面算法是在容器中寻找一个最大的平面,使得物品可以紧密排列在该平面上。
算法过程与最小面算法类似,但需要注意的是,在计算最大面时,要考虑到物品之间的空隙。
3.4 最小包围矩形算法最小包围矩形算法的基本思想是首先计算物品的最小包围矩形,然后将容器分割成若干个子区域,再将物品放入子区域中。
算法过程较为复杂,但可以有效提高装箱效率。
在实际应用中,不同的装箱算法具有各自的优缺点。
最大矩形算法和最小面算法较为简单,但容易出现过紧的情况,导致空间利用率不高;而最大面算法和最小包围矩形算法则可以有效提高空间利用率,但计算复杂度较高。