数学建模 装箱问题概述
- 格式:ppt
- 大小:1.07 MB
- 文档页数:22
P181 锁具装箱1.某厂生产一种弹子锁具,每个锁具有n个槽,每个槽的高度从{1,2,3,4}这4个数(单位略)中任取一个,限制至少有一个相邻的槽高之差等于3,且至少有3个不同的槽高,每个槽的高度取遍这4个数且满足上面这两个限制时生产出一批锁(例如,当n等于3时,3个槽高为1,4,2的锁符合要求,而3个槽高为1,4,4的锁不满足要求)。
求一批锁的把数。
解:取不同的n的值,通过matlab编程,求出对应的锁的把数(1)当n=3时:源程序:s=0;n=3;for j1=1:n+1for j2=1:n+1for j3=1:n+1a1=j1;a2=j2;a3=j3;amax=max([a1,a2,a3]');amin=min([a1,a2,a3]');numbers=(amax-a1)*(a1-amin)+(amax-a2)*(a2-amin)+(amax-a3)*(a3-amin);neighbors=max([abs(a1-a2),abs(a2-a3)]');if numbers>0.5if neighbors==3s=s+1;endendendendends输出结果:s =8所以当每个锁具有3个槽时,满足要求的这批锁的把数为8把。
(2)当n=4时:源程序:s=0;n=3;for j1=1:n+1for j2=1:n+1for j3=1:n+1for j4=1:n+1a1=j1;a2=j2;a3=j3;a4=j4;amax=max([a1,a2,a3,a4]');amin=min([a1,a2,a3,a4]');numbers=(amax-a1)*(a1-amin)+(amax-a2)*(a2-amin)+(amax-a3)*(a3-amin)+( amax-a4)*(a4-amin);neighbors=max([abs(a1-a2),abs(a2-a3),abs(a3-a4)]');if numbers>0.5if neighbors==3s=s+1;endendendendendends输出结果:s =64所以当每个锁具有4个槽时,满足要求的这批锁的把数为64把。
三维装箱问题算法一、问题概述三维装箱问题是一种经典的优化问题,涉及到在有限的空间内放置多个物体,以满足一定的约束条件并最大化空间利用率。
在这个问题中,我们考虑一个三维盒子,其中可以放置一定数量的物体,每个物体都有一定的体积,我们需要找到一种放置方式,使得盒子的剩余空间最小。
二、算法介绍为了解决三维装箱问题,我们可以使用多种算法,其中一种常用的算法是遗传算法。
遗传算法是一种基于生物进化原理的优化算法,通过模拟自然选择和遗传机制来寻找问题的最优解。
具体步骤如下:1. 初始化:随机生成一组装箱方案,作为种群。
2. 评估:对每个装箱方案进行评估,计算剩余空间的大小。
3. 选择:根据每个装箱方案的剩余空间大小,选择出适应度较高的方案作为父代。
4. 交叉:对父代进行交叉操作,生成新的子代。
5. 变异:对子代进行变异操作,以增加种群的多样性。
6. 终止条件:当满足终止条件(如达到最大迭代次数或找到满足要求的解)时,停止算法,输出当前最优解。
三、算法实现下面是一个简单的遗传算法实现示例,使用Python语言编写:```pythonimport numpy as np# 定义适应度函数def fitness(solution):remaining_space = np.prod(solution) -np.prod(np.delete(solution, axis=0))return remaining_space# 初始化种群population = np.random.randint(low=1, high=10, size=(pop_size, 3)) # 迭代进化for generation in range(max_generations):# 评估种群中每个装箱方案的适应度fitness_values = np.apply_along_axis(fitness, axis=1,arr=population)# 选择适应度较高的方案作为父代parents = np.argmax(fitness_values, axis=0)# 进行交叉和变异操作offspring = crossover(population, parents)population = offspring + np.random.randint(low=-1, high=1, size=offspring.shape, dtype=np.int32)# 输出当前最优解和最优解的适应度值if generation % print_freq == 0:best_solution = np.argmin(fitness_values)best_fitness = fitness_values[best_solution]print(f"Generation {generation}: Best solution:{best_solution}, Best fitness: {best_fitness}")# 判断是否达到终止条件,如果是则输出最终结果if best_fitness <= optimal_fitness:break```以上代码实现了一个简单的遗传算法,通过交叉和变异操作生成新的种群,并在每一代选择适应度较高的方案作为父代进行繁殖,最终得到最优解。
锁具装箱摘要(第06组)本文针对锁具如何装箱问题,建立了模型,并对其进行了分析和评价。
首先根据排列组合知识,用Matlab编程列举出所有符合条件的锁具,得到一批锁具的个数为5880,可装58箱。
就如何装箱及销售问题,本文根据如何对每一批锁具进行装箱和标记才能是消费者的满意度最高的模型,再具体分析实际销售情况,建立了按槽高进行序贯销售的模型。
即先把槽高和为偶数的锁具按字典序列排序装箱,之后装槽高和为奇数的锁具,并对每一个锁具进行编号,计算锁具“安全”距离的极小值为2562,即42.7箱,得到序贯销售时团体顾客最大购买量为42箱时不会出现互开现象。
顾客抱怨互开程度可用所购的一箱或二箱锁具中平均有多少对可能互开来衡量。
本文运用计算机模拟,得到平均一箱中可以互开的个数为2.33,平均两箱中可以互开的个数为9.41。
关键词:排列组合,数学模型,互开,奇偶,概率一、问题重述某厂生产一种弹子锁具,该锁具的锁匙共有5个槽,每个槽可取6种不同的高度,分别以1-6的整数表示。
在生产中要求每把锁匙的5个槽至少具有3种不同的高度且相邻两槽的高差不能是5。
满足上述条件的互不相同的锁具称为一批。
由于工艺条件的限制,当两把锁匙对应的5个槽的高度有4个相同,另一个槽的高差为1时,两锁具可能互开,否则不能互开。
在锁具出厂时,工厂对锁具按批进行随意装箱,每60付装1箱。
当遇到购买量较大时团体顾客时(买几箱到几十箱),由于装箱的随意性,容易引起他们对锁具互开现象的抱怨,现要求解决以下几个问题:(1)每批锁具有多少个,可装多少箱;(2)为售销部门提供一种方案,包括如何装箱,如何给箱子以标记,出售时如何利用这些标记,从而使团体顾客不再或减少抱怨;(3)当团体顾客的购买量不超过多少箱时,可以保证一定不会出现互开的情形;(4)按原来的随意装箱方法,如何定量地衡量团体顾客抱怨互开的程度,并对购买一、二箱者给出具体结果。
二、问题假设(1)随机装箱对锁具来说是等可能概率。
锁具装箱摘要(第06组)本文针对锁具如何装箱问题,建立了模型,并对其进行了分析和评价。
首先根据排列组合知识,用Matlab编程列举出所有符合条件的锁具,得到一批锁具的个数为5880,可装58箱。
就如何装箱及销售问题,本文根据如何对每一批锁具进行装箱和标记才能是消费者的满意度最高的模型,再具体分析实际销售情况,建立了按槽高进行序贯销售的模型。
即先把槽高和为偶数的锁具按字典序列排序装箱,之后装槽高和为奇数的锁具,并对每一个锁具进行编号,计算锁具“安全”距离的极小值为2562,即42.7箱,得到序贯销售时团体顾客最大购买量为42箱时不会出现互开现象。
顾客抱怨互开程度可用所购的一箱或二箱锁具中平均有多少对可能互开来衡量。
本文运用计算机模拟,得到平均一箱中可以互开的个数为2.33,平均两箱中可以互开的个数为9.41。
关键词:排列组合,数学模型,互开,奇偶,概率一、问题重述某厂生产一种弹子锁具,该锁具的锁匙共有5个槽,每个槽可取6种不同的高度,分别以1-6的整数表示。
在生产中要求每把锁匙的5个槽至少具有3种不同的高度且相邻两槽的高差不能是5。
满足上述条件的互不相同的锁具称为一批。
由于工艺条件的限制,当两把锁匙对应的5个槽的高度有4个相同,另一个槽的高差为1时,两锁具可能互开,否则不能互开。
在锁具出厂时,工厂对锁具按批进行随意装箱,每60付装1箱。
当遇到购买量较大时团体顾客时(买几箱到几十箱),由于装箱的随意性,容易引起他们对锁具互开现象的抱怨,现要求解决以下几个问题:(1)每批锁具有多少个,可装多少箱;(2)为售销部门提供一种方案,包括如何装箱,如何给箱子以标记,出售时如何利用这些标记,从而使团体顾客不再或减少抱怨;(3)当团体顾客的购买量不超过多少箱时,可以保证一定不会出现互开的情形;(4)按原来的随意装箱方法,如何定量地衡量团体顾客抱怨互开的程度,并对购买一、二箱者给出具体结果。
二、问题假设(1)随机装箱对锁具来说是等可能概率。
fitting boxes题解fitting boxes,又称装箱问题,是计算机图形学、优化问题以及算法领域中的一个经典问题。
在计算机图形学中,装箱问题主要用于二维空间中的几何体生成;在优化问题中,装箱问题旨在找到一种最优的装箱方案,以达到空间利用率的最大化或最小化;在算法领域,装箱问题则是许多算法设计的基石。
【背景介绍】装箱问题来源于实际生活中的物流、仓储等领域。
在一个有限的容器中,如何将不同尺寸的物体合理地装进去,成为一个具有重要实际意义的问题。
在计算机图形学中,装箱问题可以帮助生成更加自然、真实的场景;在物流领域,装箱问题可以提高运输效率,降低成本。
【装箱算法介绍】针对装箱问题,有许多经典的算法可以解决。
以下简要介绍几种常见的装箱算法。
【3.1 暴力解法】暴力解法是最简单的装箱算法,其主要思想是将所有物品按照大小顺序排列,然后依次放入容器中。
这种算法的时间复杂度为O(n^2),其中n为物品数量。
暴力解法在物品数量较少时效率较低,但在物品数量较多时,由于物品可以互相填充,空间利用率会有所提高。
【3.2 最大矩形算法】最大矩形算法的主要思想是在容器中寻找一个最大的矩形区域,将所有物品放入该区域。
该算法的时间复杂度为O(nlogn),其中n为物品数量。
与暴力解法相比,最大矩形算法在物品数量较多时具有较高的效率。
【3.3 最长边优先算法】最长边优先算法的主要思想是将物品按照最长边长度排序,然后依次放入容器中。
该算法的时间复杂度为O(nlogn),但在某些情况下可能会导致空间利用率较低。
【3.4 改进算法】针对上述算法存在的问题,可以对其进行一定的改进。
例如,在最长边优先算法的基础上,可以通过动态规划或贪心算法进一步优化,提高空间利用率。
【4.算法实现与代码展示】本文以Python为例,展示一种简单的最长边优先算法实现。
```pythondef fit_boxes(boxes, container_size):# 对物品按最长边长度排序boxes.sort(key=lambda x: x[1])# 初始化容器container = [0] * (container_size + 1)# 遍历物品,填充容器for box in boxes:# 找到可放置物品的最小高度for i in range(container_size, box[1] + 1):if container[i] == 0:# 放置物品后,更新容器状态container[i] = box[0]break# 计算空间利用率utilization = sum(box[0] for box in boxes if container[box[1]] == box[0]) / (container_size * container[container_size])return utilization# 示例boxes = [(10, 5), (15, 10), (20, 15)]container_size = 40utilization = fit_boxes(boxes, container_size)print("空间利用率:", utilization)```【5.总结与拓展】装箱问题是计算机科学领域中的一个经典问题,具有广泛的应用。