射流管式电液伺服阀与喷嘴挡板式电液伺服阀比较
- 格式:docx
- 大小:13.36 KB
- 文档页数:5
电液伺服阀和电液比例阀的概述摘要 介绍了电液伺服阀和电液比例阀的组成及功能特点,同时对两种阀进行了比较,得出两种阀的使用特点和使用场合。
关键词 电液伺服阀 电液比例阀 闭环控制 力矩马达 比例电磁铁 反馈装置1.前沿阀对流量的控制可以分为两种: 一种是开关控制:要么全开、要么全关,流量要么最大、要么最小,没有中间状态,如普通的电磁换向阀、电液换向阀。
另一种是连续控制:阀口可以根据需要打开任意一个开度,由此控制通过流量的大小,这类阀有手动控制的,如节流阀,也有电控的,如比例阀、伺服阀。
所以使用比例阀或伺服阀的目的就是:以电控方式实现对流量的节流、压力控制。
2.电液伺服阀电液伺服阀是一种自动控制阀,它既是电液转换组件,又是功率放大组件,其功用是将小功率的模拟量电信号输入转换为随电信号大小和极性变化、且快速响应的大功率液压能[能量(或)和压力]输出,从而实现对液压执行器位移(或转速)、速度(或角速度)、加速度(或角加速度)和力(或转矩)的控制。
电液伺服阀通常由电气-机械转换器、液压放大器(先导阀和功率级主阀)和检测机构组成。
电液伺服阀的基本组成有前置级液压放大器的伺服阀,无论是射流放大器还是喷嘴挡板放大器,其产生阀芯驱动力都要比比例电磁铁大得多(高一个数量级)。
就这个意义上讲,伺服阀阀芯卡滞的几率比比例阀小。
特别是射流管伺服阀的射流放大器因为没有压力负反馈,前置级流量增益与压力增益都较高,推动阀芯的力更大,所以伺服阀有更高的分辨率和较小的滞环。
简单地说,所谓伺服系统就是带有负反馈的控制系统,而伺服阀就是带有负反馈的控制阀。
伺服阀的主阀一般来说和换向阀一样是滑阀结构,只不过阀芯的换向不是靠电磁铁来推动,而是靠前置级阀输出的液压力来推动,这一点和电液换向阀比较相似,只不过电液换向阀的前置级阀是电磁换向阀,而伺服阀的前置级阀是动态特性比较好的喷嘴挡板阀或射流管阀。
伺服阀的主阀是靠前置级阀的输出压力来控制的,而前置级阀的压力则来自于伺服阀的入口p,假如p口的压力不足,前置级阀就不能输出足够的压力来推动主阀芯动作。
电液伺服阀论述1.概述电液伺服阀是电液伺服系统中的核心元件。
它既是电液转换元件,又是功率放大元件。
在系统中将输入的小功率电信号转换为大功率的液压能(压力与能量)输出,其性能对系统特性影响很大。
电液伺服阀在电厂中被广泛使用,伺服阀是电液伺服控制系统中的重要控制元件,在系统中起着电液转换和功率放大作用。
电液伺服阀的性能和可靠性将直接影响系统的性能和安全,是电液伺服控制系统中引人瞩目的关键元件。
20 世纪70 年代以来,国内开始了对电液伺服系统的研究和应用。
近年来,随着国内机械工业的高速发展,对于高精度金属成型装备的需求大大增加,大规格电液伺服系统在锻压机械、轧钢机械、折弯机中的应用越来越广泛。
而电液伺服阀的发展可以追溯到二战末期,1940 年前后,在飞机上最早出现了电液伺服控制系统。
电液伺服阀将输入的小功率电信号转换为大功率液压输出形式( 压力和流量) ,具有控制精度高和响应速度快的特点。
电液伺服阀结构精密,对油液介质要求高,价格昂贵。
典型结构有喷嘴挡板式和射流管式,喷嘴挡板式动态响应快,灵敏度高,但是零位泄漏量大,喷嘴易堵塞。
与喷嘴挡板式电液伺服阀相比,射流管式电液伺服阀抗污染能力强,但是响应速度略慢。
为使电液伺服系统能够可靠并廉价地应用到实际工业生产中,20 世纪60 年代末,出现了电液比例阀。
电液比例阀是阀内比例电磁铁根据输入的电压信号产生相应动作,使阀芯产生位移,阀口尺寸发生改变并以此完成与输入电压成比例的压力、流量输出的元件。
后来又经过了一系列的发展,20 世纪末,伺服技术与比例技术相结合,伺服比例阀应运而生。
与电液伺服阀相比,电液比例阀抗污染能力强,成本低,但是其直线性和响应速度均不及电液伺服阀。
电液伺服阀和电液比例阀有其独有的特点和优势,但也因其自身结构特点的原因,有一些先天的劣势。
特别是当要求输出的液压功率较大,而电-机械转换元件输出功率较小,无法直接驱动功率级主阀时,需要增加液压先导级,无疑使阀的结构更加复杂,稳定性降低。
电液伺服阀的分类
电液伺服阀是电液联合控制的多级伺服元件,它能将微弱的电气输入信号放大成大功率的液压能量输出。
它具有控制精度高和放大倍数大等优点,在液压控制系统中得到广泛的应用。
电液伺服阀可按不同方面分为以下几大类:
1 按液压放大级数可分为单级电液伺服阀,两级电液伺服阀,三级电液伺服阀。
2 按液压前置级的结构形式,可分为单喷嘴挡板式,双喷嘴挡板式,滑阀式,射流管式和偏转板射流式。
3 按反馈形式可分为位置反馈式,负载压力反馈式,负载流量反馈式,电反馈式等。
4 按电机械转换装置可分为动铁式和动圈式。
5 按输出量形式可分为流量伺服阀和压力控制伺服阀。
襄阳航宇机电液压应用技术有限公司生产的HY系列伺服阀种类多样,也可依据客户需求,专业定制电液伺服系统,以满足各应用领域的不同需求。
---------------------------------------------------------------最新资料推荐------------------------------------------------------射流管伺服阀的原理特性及应用射流管伺服阀的原理特性及应用摘要:射流管伺服阀是射流管伺服系统中的核心元件。
它承担着电气部分和液压部分的桥梁作用,能将几毫安的微弱电控信号转换成几十马力以上的液压功率输出,驱动各样的负载,进行位置控制、速度控制和施力控制等。
论述了射流管伺服阀结构原理,分析了射流管伺服阀特点与国内外研究现状,介绍了射流管伺服阀在相关领域的应用,提出了射流管伺服阀的发展趋势。
为研发人员设计射流管伺服阀提供了借鉴。
关键词:射流管伺服阀;原理;研究现况;应用;发展趋势中图分类号:TH137.53+1 文献标志码:APrinciple and application of jet pipe servo valveTang Yue(College of mechanical Engineering,Zhejiang University of Technology,Zhejiang Hangzhou)Abstract: jet pipe servo valve is the key component of electro-hydraulic servo system. It plays a role as a bridge of electric part and hydraulic part, the weak electrical control signal is converted into a few milliamps hydraulic power output horsepower more than dozens of kinds, driving load, position control, speed control and force control etc.. Discusses the principle of jet pipe servo valve structure,1/ 24analysis and research status of jet pipe servo valve characteristics, introduces the application of jet pipe servo valve in the relevant field, put forward the development trend of jet pipe servo valve. It provides reference for the design of jet pipe servo valve. Key words:jet pipe servo valve;principle;research status;application;development trend1、前言电液伺服阀是电液伺服系统中的核心元件。
射流管式电液伺服阀与喷嘴挡板式电液伺服阀比较黄增方群王学星(中国船舶重工集团公司第七O四研究所上海200072)摘要:射流管式电液伺服阀与喷嘴挡板式电液伺服阀是目前世界上运用最普遍的典型两级流量控制伺服阀。
该文对两种阀的结构、工作原理及特点作了比较与介绍。
并着重分析了射流管式伺服阀在可靠性及工作性能方面的一些优势。
关键词:射流管、喷嘴挡板、伺服阀、力矩马达、先导级、滑阀1 序言射流管式电液伺服阀与喷嘴挡板式电液伺服阀是目前世界上运用最普遍的典型两级流量控制伺服阀。
由于射流管式电液伺服阀在国外属高端产品,主要运用于航空、航天、军事等行业,对国内引进实行限制,目前国内除少数电厂随设备引进较大流量的射流管阀外,一般很少见到该型阀。
国内成规模生产该型阀的单位也只有中国船舶重工集团公司第七O四研究所。
而喷嘴挡板式电液伺服阀国内外运用得比较普遍,国内生产该型阀的单位也比较多。
本文将对两种阀的构造与特点作一简单介绍。
2 工作原理2.1喷嘴挡板式伺服阀的原理图1为喷嘴挡板式伺服阀的原理图。
它主要由力矩马达、喷嘴挡板式液压放大器、滑阀式功率级及反馈杆组件构成。
其工作过程为:输入到力矩马达线圈的电气控制信号在衔铁两端产生磁力,使衔铁挡板组件偏转。
挡板的偏移将一侧喷嘴挡板可变节图1 双喷嘴挡板式力反馈电液流量伺服阀流口减小,液流阻力增大,喷嘴的背压升高;而另一侧的可变节流口增大,液流阻力减小,液流的背压降低。
这样可得到与挡板位置变化相对应的喷嘴背压,此背压加到与与喷嘴腔相通的阀芯端部,推动阀芯移动。
而阀芯又推动反馈杆端部的小球,产生反馈力矩作用在衔铁挡板组件上。
当反馈力矩逐渐等于电磁力矩时,衔铁挡板组件被逐渐移回到对中的位置。
于是,阀芯停留在某一位置。
在该位置上,反馈杆的力矩等于输入控制电流产生的的力矩,因此,阀芯位置与输入控制电流大小成正比。
当供油压力及负载压力为一定时,输出到负载的流量与阀芯位置成正比。
2.2 射流管式伺服阀的原理图2为射流管式伺服阀的原理图。
第2章电液伺服控制技术及应用电液伺服系统是一种采用电液伺服机构,根据液压传动原理建立起来的自动控制系统。
在这种系统中,执行元件的运动随着控制信号的改变而改变。
2.1 电液伺服阀伺服阀通过改变输入信号,连续的、成比例地控制液压系统的流量或压力。
电液伺服阀输入信号功率很小(通常仅有几十毫瓦),功率放大系数高;能够对输出流量和压力进行连续双向控制。
其突出特点是:体积小、结构紧凑、直线性好、动态响应好、死区小、精度高,符合高精度伺服控制系统的要求。
电液伺服阀是现代电液控制系统中的关键部件,它能用于诸如位置控制、速度控制、加速度控制、力控制等各方面。
因此,伺服阀在各种工业自动控制系统中得到了越来越多的应用。
2.1.1 工作原理及组成1 基本组成与控制机理电液伺服阀是一种自动控制阀,它既是电液转换组件,又是功率放大组件,其功用是将小功率的模拟量电信号输入转换为随电信号大小和极性变化、且快速响应的大功率液压能[流量(或)和压力]输出,从而实现对液压执行器位移(或转速)、速度(或角速度)、加速度(或角加速度)和力(或转矩)的控制。
电液伺服阀通常是由电气一机械转换器、液压放大器(先导级阀和功率级主阀)和检测反馈机构组成的(见图2-1)。
图2-1 电液伺服阀的组成2 电气—机械转换器电气—机械转换器包括电流—力转换和力—位移转换两个功能。
典型的电气—机械转换器为力马达或力矩马达。
力马达是一种直线运动电气一机械转换器,而力矩马达则是旋转运动的电气—机械转换器。
力马达和力矩马达的功用是将输入的控制电流信号转换为与电流成比例的输出力或力矩,再经弹性组件(弹簧管、弹簧片等)转换为驱动先导级阀运动的直线位移或转角,使先导级阀定位、回零。
通常力马达的输入电流为150~300mA,输出力为3~5N。
力矩马达的输入电流为10~30mA,输出力矩为0.02~0.06N·m。
伺服阀中所用的电气一机械转换器有动圈式和动铁式两种结构。
电液伺服阀在各领域的选用和保养.电液伺服阀是电气一液压伺服系统中关键的精密控制元件,价格昂贵,所以伺服阀的选择,应用要谨保养要特别仔细。
本文介绍电液伺服阀选择、使用和保养的一些基本方法。
在伺服阀选择中常常考虑的因素有:A:阀的工作性能、规格;B:工作可靠、性能稳定、一定的抗污染能力;C:价格合理;D:工作液、油源;E:电气性能和放大器;F:安装结构,外型尺寸等等。
一、按控制精度等要求选用伺服阀系统控制精度要求比较低时,还有开环控制系统、动态不高的场合,都可以选用工业伺服阀甚至比例阀。
只有要求比较高的控制系统才选用高性能的电液伺服阀,当然它的价格亦比较高。
二、按用途选用伺服阀电液伺服阀有许多种类,许多规格,分类的方法亦非常多,而只有按用途分类的方法对我们选用伺服阀是比较方便的。
按用途分:有通用型阀和专用型阀。
专用型阀使用在特殊应用的场合,例如:高温阀、防爆阀、高响应阀、余度阀、特殊增益阀、特殊重叠阀、特殊尺寸、特殊结构阀、特殊输入、特殊反馈的伺服阀等等。
还有特殊的使用环境对伺服阀提出特殊的要求,例如:抗冲击、震动、三防、真空……。
通用型伺服阀还分通用型流量伺服阀和通用型压力伺服阀。
在力(或压力)控制系统中可以用流量阀,也可以用压力阀。
压力伺服阀因其带有压力负反馈,所以压力增益比较平缓、比较线性,适用与开环力控制系统,作为力闭环系统也是比较好的。
但因这种阀制造、调试较为复杂,生产也比较少,选用困难些。
当系统要求较大流量时,大多数系统仍选用流量控制伺服阀。
在力控制系统用的流量阀,希望它的压力增益不要象位置控制系统用阀那样要求较高的压力增益,而希望降低压力增益,尽量减少点压力饱和区域,改善控制性能。
虽然在系统中可以通过采用电气补偿的方法,或有意增加压力缸的泄漏等方法来提高系统性能和稳定性等,我们在订货时仍需向伺服阀生产厂家提出低压力增益的要求。
通用型流量伺服阀是用得最广泛,生产量亦最大的伺服阀,可以应用在位置、速度、加速度(力)等各种控制系统中。
射流管式电液伺服阀与喷嘴挡板式电液伺服阀比较1 序言射流管式电液伺服阀与喷嘴挡板式电液伺服阀是目前世界上运用最普遍的典型两级流量控制伺服阀。
由于射流管式电液伺服阀在国外属高端产品,主要运用于航空、航天、军事等行业,对国内引进实行限制,目前国内除少数电厂随设备引进较大流量的射流管阀外,一般很少见到该型阀。
国内成规模生产该型阀的单位也只有中国船舶重工集团公司第七O 四研究所。
而喷嘴挡板式电液伺服阀国内外运用得比较普遍,国内生产该型阀的单位也比较多。
本文将对两种阀的构造与特点作一简单介绍。
2 工作原理2.1 喷嘴挡板式伺服阀的原理图1 为喷嘴挡板式伺服阀的原理图。
它主要由力矩马达、喷嘴挡板式液压放大器、滑阀式功率级及反馈杆组件构成。
其工作过程为:输入到力矩马达线圈的电气控制信号在衔铁两端产生磁力,使衔铁挡板组件偏转。
挡板的偏移将一侧喷嘴挡板可变节流口减小,液流阻力增大,喷嘴的背压升高;而另一侧的可变节流口增大,液流阻力减小,液流的背压降低。
这样可得到与挡板位置变化相对应的喷嘴背压,此背压加到与与喷嘴腔相通的阀芯端部,推动阀芯移动。
而阀芯又推动反馈杆端部的小球,产生反馈力矩作用在衔铁挡板组件上。
当反馈力矩逐渐等于电磁力矩时,衔铁挡板组件被逐渐移回到对中的位置。
于是,阀芯停留在某一位置。
在该位置上,反馈杆的力矩等于输入控制电流产生的的力矩,因此,阀芯位置与输入控制电流大小成正比。
当供油压力及负载压力为一定时,输出到负载的流量与阀芯位置成正比。
2.2 射流管式伺服阀的原理图2 为射流管式伺服阀的原理图。
力矩马达采用永磁结构,弹簧管支承着衔铁射流管组件,并使马达与液压部分隔离,所以力矩马达是干式的。
前置级为射流放大器,它由射流管与接受器组成。
当马达线圈输入控制电流,在衔铁上生成的控制磁通与永磁磁通相互作用,于是衔铁上产生一个力矩,促使衔铁、弹簧管、喷嘴组件偏转一个正比于力矩的小角度。
经过喷嘴的高速射流的偏转,使得接受器一腔压力升高,另一腔压力降低,连接这两腔的阀芯两端形成压差,阀芯运动直到反馈组件产生的力矩与马达力矩相平衡,使喷嘴又回到两接受器的中间位置为止。
这样阀芯的位移与控制电流的大小成正比,阀的输出流量就比例于控制电流了。
3 主要特点射流管式与喷嘴挡板式最大差别在于喷嘴挡板式以改变流体回路上所通过的阻抗来进行力的控制。
相反,射流管式是靠射流喷嘴喷射工作液,将压力能变成动能,控制两个接受孔获得能量的比例来进行力的控制。
这种方式的阀与喷嘴挡板式相比因射流喷嘴大,由污粒等工作液中杂物引起的危害小,抗污染能力强。
且射流管式液压放大器的压力效率及容积效率高,一般为7 0%以上,有时也可达到9 0%以上的高效率。
输出控制力(滑阀驱动力)大,进一步提高了抗污染能力。
同样其灵敏度、分辨率及低压工作性能大大优于喷嘴挡板阀。
另外,由于射流管式由于在喷嘴的下游进行力控制,当喷嘴被杂物完全堵死时,因两个接受孔均无能量输入,滑阀阀芯的两端面也没有油压的作用,反馈弹簧的弯曲变形力会使阀芯回到零位上,伺服阀可避免过大的流量输出,具有“失效对中”能力,并不会发生所谓的“满舵”现象。
但射流管式液压放大器及整个阀的性能不易理论计算和预计,力矩马达的结构及工艺复杂,加工难度大。
喷嘴挡板式的阀与射流管阀相比增益特性比较平坦、整阀性能可计算及预测、并能做得比射流管式小。
但按其特性,喷嘴与挡板的间隙不能超过喷嘴直径的1/4,这就决定了该阀的最小尺寸较小,易被污物卡住,使用时必须保持油液的清洁度。
一般情况下使用喷嘴挡板阀的油液清洁度要求达到NAS6 级,并要在阀的进油口前设置过滤精度小于10µm 的滤器。
而在使用射流管阀的场合下,用NAS8 级已经足够,且滤器用25µm 也够了。
并且,由于喷嘴挡板式伺服阀是利用两个喷嘴的背压作为控制力,在工作时如有一侧发生杂物堵塞喷嘴挡板的情况,会造成一侧压力上升,使阀芯向一边移动,阀芯的偏移会形成单方向的流量输出,使执行机构(如舵机)向一边偏移直到最大位置,即所谓的“满舵” 现象。
另外,喷嘴挡板阀的压力效率和容积效率约为50%,比射流管低,其控制力较小,因此,其灵敏度、分辨率及低压工作性能不及射流管阀。
4 结构与可靠性4.1 先导级最小尺寸伺服阀抗工作液污染的能力一般由其最小尺寸所决定,特别对于先导级型的伺服阀,其先导部分油路中的最小尺寸往往成为决定性的因素。
因为从外部来的输入电控信号是在先导部分进行转换的,输出部分滑阀的动作是由先导级的动作'决定的。
射流管阀中的最小尺寸在先导级射流管式液压放大器中的喷嘴处。
喷嘴挡板式伺服阀的最小尺寸在先导级喷嘴与挡板的间隙,约为0.03mm~0.05mm,污染颗粒往往很容易在此堵塞、卡死。
而射流管阀的最小尺寸在喷嘴处为0.2mm~0.4 mm,是喷嘴挡板阀的最小尺寸的5〜10倍,0.2mm的颗粒很容易通过,所以说射流管式比喷嘴挡板式抗污染能力提高了一个数量级。
4.2 先导级的磨蚀伺服阀的先导级在工作时会产生磨蚀,但射流管式与喷嘴挡板式比较,其磨蚀的产生与性能变化的程度低于喷嘴挡板阀。
这是因为在射流管场合下,喷嘴端面与接受孔间的距离为喷嘴直径的1.5~2.5倍,从特性上讲,此距离达到喷嘴直径的3 .5倍也完全可以使用。
与此相反,在喷嘴挡板场合下,喷嘴挡板间的间隙在特性上的上限为直径的1/16,要想增大最小尺寸,只能做到1/16 的极限值上,因此容易产生磨蚀及特性变化。
而且在双喷嘴挡板式的场合下,两个喷嘴及挡板左右侧所产生的磨蚀不一定对称,容易产生零位偏移。
而射流管式的喷射流是由单喷嘴喷射的,且被接受孔分成两股,磨蚀的产生一般是对称的,产生的磨蚀量也比喷嘴挡板式少。
再加上其接受器的尖边即使经高压油长期冲刷凹陷下去,但仍其着分水岭的作用,只要其与喷嘴的距离不大于喷嘴直径的3.5倍,对伺服阀性能的影响非常小,故其稳定性、可靠性高于双喷嘴挡板阀。
4.3 力矩马达的结构射流管式伺服阀的力矩马达零件全部采用压配及焊接结合成一体,并经严格的时效处理消除内应力,结构牢固稳定,零位漂移小,更能承受强冲击及振动。
而双喷嘴挡板阀的力矩马达只靠4个M3的小螺钉固定,在螺钉应力疏散和受到强冲击、振动、颠振后,零位漂移大。
另外,射流管式力矩马达的衔铁处有一对支撑簧片,衔铁偏转时只有转角,没有挠度,大大改善了弹簧管的受力,抗疲劳性能大大增强,保证了伺服阀的长寿命使用4.4 滑阀级尺寸由于射流管式先导级比喷嘴挡板式的控制力大, 所以射流管式伺服阀阀芯的 从上表可以看出射流管阀的阀芯直径明显大于喷嘴挡板阀, 而阀芯直径越大, 其 驱动力也越大, 即使有一点杂物和污粒, 滑阀级也能顺利工作, 从而提高了可靠 性。
此外,阀芯行程的加长也能提高伺服阀的寿命。
因为伺服阀工作时其高速流 动的油液会磨蚀滑阀级工作窗口的棱边, 从而引起流量特性的变化。
在加长行程 后,磨蚀量相对于行程量所占的比例减小,所以工作窗口流通面积的变化减小。
这样,流量特性的变化与伺服阀使用时间的比值减小了, 能比阀芯行程短的伺服 阀维持更长时间的稳定性。
5 工作性能5.1 分辨率喷嘴挡板阀的先导级在工作时存在压力负反馈 (即挡板靠向一测喷嘴, 由于喷嘴 的压力升高, 会增大对挡板的推力, 阻碍其靠近) ,影响其灵敏度及分辨率指标。
射流管阀的先导级不存在压力负反馈, 而且其射流管放大器的流量效益最高可达 90%,压力效益亦可达到 80%以上。
所以射流管放大器推动阀芯的力比双喷嘴放 大器高许多,射流管伺服阀的分辨率一般可达到小于 0.1%的程度。
5.2 低压工作性能表1阀芯尺寸比较表 射流管式喷嘴挡板式 阀芯直径mm 6.99 3. 阀芯行程mm 0.64 0. 驱动力kg (在端面压力4 0kg/cm2时)9 61315.35 4.92直径和行程, 比喷嘴挡板式的大而长的直径、行程及驱动力比较。
表1为同级别先导级时,其输出部分阀芯根据前文所述,射流管阀的阀芯驱动力明显大于双喷嘴阀,故其低压工作性能亦优于双喷嘴挡板阀。
通过试验可得:射流管伺服阀在供油压力为1MPa 条件下,其流量曲线的重复性也非常好;在供油压力为0.5MPa 的情况下,也能正常工作;在额定供油压力时,只输入±3%的额定电流其阀芯位移特性曲线的线性度和重复性都非常好。
而所有这些都是双喷嘴挡板阀在同样条件下无法达到的。
另外,双喷嘴阀在许多场合需加颤振信号来提高分辨率,而射流管阀在绝大多数应用场合均不需要加颤振信号。
5.3 动态响应一般认为射流管阀的动态响应比较低,其实有所误解。
根据MOOG 公司的观点:射流管式先导级具有很高的无阻尼自然频率,一般可达500Hz~700Hz 以上,只要有足够的先导放大级流量增益,射流管阀也可达到较高的动态响应。
之所以一般射流管阀产品的增益较低,是因为在国外射流管阀往往应用于航空、航天等高端场合,其对内泄漏要求较高,喷嘴直径较小,造成频率特性比双喷嘴阀稍低一些。
而在一般使用场合,只要适当增加喷嘴直径,就能大大提高射流管阀的动态响应。
在国内额定流量在30L/min 左右的射流管伺服阀其频率响应亦能达到160Hz 以上。
另外对于同样规格的伺服阀,射流管阀的阀芯和行程往往设计得比较大,这也是造成它动态低于喷嘴挡板阀的一个原因。