一次函数和二次函数的图像与性质
- 格式:doc
- 大小:158.00 KB
- 文档页数:4
一次函数与二次函数的性质及其像一次函数和二次函数在数学中扮演着重要的角色。
本文将探讨一次函数和二次函数的性质以及它们的像。
我们将首先介绍一次函数,然后转向二次函数,并详细讨论两者的相似之处和不同之处。
一、一次函数(线性函数)一次函数是指具有以下形式的函数:f(x) = ax + b,其中a和b为常数,且a不等于零。
一次函数的图像是一条直线,直线的斜率为a,截距为b。
斜率表示了直线的倾斜程度,截距则表示了直线与y轴的交点。
一次函数的性质:1. 直线的斜率决定了函数的增减性。
当斜率大于零时,函数单调递增;当斜率小于零时,函数单调递减。
2. 零点是一次函数的特殊点,即f(x) = 0的解。
零点表示函数与x轴的交点,也就是函数的根。
3. 一次函数的图像是一条直线,因此没有曲线部分。
4. 一次函数的像是一条直线。
二、二次函数(抛物线函数)二次函数是指具有以下形式的函数:f(x) = ax^2 + bx + c,其中a、b 和c为常数,且a不等于零。
二次函数的图像是一条抛物线,抛物线可能开口向上(a>0)或向下(a<0),具体取决于二次函数的开口方向。
二次函数的性质:1. 抛物线的顶点是二次函数的特殊点,即顶点的横坐标为 -b/2a。
顶点表示抛物线的最高或最低点。
2. 当二次函数的a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
3. 抛物线的轴对称线是与抛物线关于该线对称的直线,其方程为x = -b/2a。
4. 二次函数的像是一条抛物线。
一次函数与二次函数的相似之处:1. 一次函数和二次函数都是多项式函数的特殊形式。
2. 一次函数和二次函数都是连续函数,其图像没有间断。
3. 一次函数和二次函数的像都可以用解析式表示。
一次函数与二次函数的不同之处:1. 一次函数是一条直线,而二次函数是一条抛物线。
2. 一次函数的最高次幂是1,而二次函数的最高次幂是2。
3. 一次函数的图像没有曲线部分,而二次函数的图像有曲线部分。
《初中数学》二次函数与一次函数图像与性
质的结合
在学完二次函数之后或者在中考复习时,经常会碰到下面类型的题:
(一次函数与二次函数的系数中有相同字母)
类型一:给你一个一次函数(二次函数)的图像,判断二次函数(一次函数)图像的位置。
做法:由已知函数的图像判断出系数字母的符号,再看这些字母在另一个函数中的作用,并据此判断出函数图像的位置。
类型二:判断在同一个坐标系中一次函数和二次函数的位置关系。
做法:四个选项可以一个一个看。
先根据一次函数的位置判断未知字母的符号,再对应到二次函数图像上,对应的上,就对;对应不上,就错。
第二题,因为两个函数解析式中只有m这一个未知数,故可以根据m>0和m<0分成两种情况判断。
不用一个一个去看了。
第二种类型是常考的。
当学习完反比例函数后,还会有一次函数、二次函数和反比例函数两两结合或三者结合。
做法大同小异。
二次函数I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式一般式:y=ax^2;+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2;+k [抛物线的顶点P(h,k)]交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2a k=(4ac-b^2;)/4a x1,x2=(-b±√b^2;-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x²的图像,可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质1.抛物线是轴对称图形。
对称轴为直线x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P [ -b/2a ,(4ac-b^2;)/4a ]。
当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)6.抛物线与x轴交点个数Δ= b^2-4ac>0时,抛物线与x轴有2个交点。
Δ= b^2-4ac=0时,抛物线与x轴有1个交点。
一次函数一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b (k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:y1=kx1+b …… ①和y2=kx2+b …… ②(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。
s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。
一次函数、二次函数和反比例函数是数学中常见的函数类型,它们在图像的增减性质上有着不同的特点。
本文将针对一次函数、二次函数和反比例函数的增区间进行详细分析和比较。
一、一次函数的增区间一次函数的一般形式为y=ax+b,其中a和b为常数且a不等于0。
一次函数的图像是一条直线,它具有以下特点:1. 如果a大于0,表示直线向上倾斜,那么函数的增区间为整个实数集(-∞,+∞);2. 如果a小于0,表示直线向下倾斜,那么函数的增区间为空集∅。
一次函数的增区间要么是整个实数集,要么是空集,取决于直线的斜率a的正负性。
二、二次函数的增区间二次函数的一般形式为y=ax²+bx+c,其中a、b和c为常数且a不等于0。
二次函数的图像是一条开口朝上或者朝下的抛物线,它具有以下特点:1. 如果a大于0,表示抛物线开口朝上,那么函数的增区间为实数集中与顶点的横坐标相等的点构成的单点集{x| x=x0}。
其中,顶点的横坐标x0=-b/2a;2. 如果a小于0,表示抛物线开口朝下,那么函数的增区间为整个实数集(-∞,+∞)。
二次函数的增区间要么是单点集,要么是整个实数集,取决于抛物线开口的方向和顶点的横坐标。
三、反比例函数的增区间反比例函数的一般形式为y=k/x,其中k为非零常数。
反比例函数的图像是一条对称于第一象限和第三象限的双曲线,它具有以下特点:1. 当k大于0时,函数的增区间为区间(0,+∞);2. 当k小于0时,函数的增区间为区间(-∞,0)。
反比例函数的增区间取决于常数k的正负性,当k为正时增区间在正半轴,当k为负时增区间在负半轴。
总结:一次函数、二次函数和反比例函数的增区间分别与直线的斜率、抛物线开口的方向和对称轴的正负相关。
对于一次函数和二次函数而言,其增区间可以通过其一般形式中的参数a的正负性来确定,而对于反比例函数,其增区间可以通过函数的常数k的正负性来确定。
通过本文的分析和比较,读者可以更加清晰地理解一次函数、二次函数和反比例函数在增区间上的不同特点。
二次函数与一次函数二次函数和一次函数是高中数学中的常见函数类型。
本文将从图像、性质和应用三个方面介绍二次函数和一次函数。
一、图像1. 二次函数的图像二次函数的一般形式为y = ax^2 + bx + c,其中a、b和c为实数且a ≠ 0。
二次函数的图像是一个抛物线,可以分为三种情况:情况一:a > 0时,抛物线开口朝上。
此时抛物线的顶点是最小值点。
情况二:a < 0时,抛物线开口朝下。
此时抛物线的顶点是最大值点。
情况三:a = 0时,二次函数退化为一次函数。
2. 一次函数的图像一次函数的一般形式为y = kx + b,其中k和b为实数且k ≠ 0。
一次函数的图像是一条直线,斜率k表示直线的倾斜程度,截距b表示直线与y轴的交点。
二、性质1. 二次函数的性质(1)顶点:二次函数的顶点坐标为(-b/2a, f(-b/2a))。
其中f(x)为二次函数。
(2)对称轴:二次函数的对称轴是通过顶点且垂直于x轴的直线。
(3)开口方向:二次函数开口方向由系数a的正负决定。
(4)最值:当抛物线开口朝上时,最小值点为顶点;当抛物线开口朝下时,最大值点为顶点。
2. 一次函数的性质(1)斜率:斜率k表示直线的倾斜程度。
当斜率为正时,直线向上倾斜;当斜率为负时,直线向下倾斜;当斜率为0时,直线平行于x 轴。
(2)截距:截距b表示直线与y轴的交点,当x=0时,函数值为b。
三、应用1. 二次函数的应用(1)物体抛体运动:考虑到重力的作用,物体在抛体运动中的轨迹可以由二次函数的图像表示。
(2)开口朝上的喷水池:喷水池的喷水高度可以用二次函数来描述,根据喷水池的造型可以确定二次函数的系数。
2. 一次函数的应用(1)成本与效益分析:通常情况下,成本与效益之间呈线性关系,可以用一次函数进行建模与分析。
(2)人口增长预测:根据过去的人口数据可以用一次函数对未来的人口增长进行预测。
综上所述,二次函数和一次函数在数学中具有重要地位。
一次函数和二次函数的性质与图象Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】【本讲主要内容】一次函数和二次函数的性质与图象【知识掌握】 【知识点精析】1. 一次函数定义:形如)0(≠+=a b ax y 的函数叫一次函数。
一次函数图象:斜率为a ,在y 轴上截距为b 的直线。
一次函数性质:在(-∞,+∞)上是单调函数,a>0增函数,a<0减函数。
2. 二次函数(1)定义:形如)0(2≠++=a c bx ax y 的函数叫二次函数。
(2)图象:抛物线,对称轴:abx 2-=,顶点)442(2a b ac a b --,,开口方向a>0向上;a<0向下。
(3)二次函数的基本性质 <1>二次函数的三种表示法:n x x a y x x x x a y c bx ax y +-=--=++=20212)();)((;<2>当a>0,f(x)在区间[p ,q ]上的最大值为M ,最小值为m ,令)(210q p x +=若p ab<-2,则M q f m p f ==)()(, 若02x a b p <-≤,则M q f m a bf ==-)()2(,若q a b x <-≤20,则m a bf M p f =-=)2()(,;若q ab ≥-2,则m q f M p f ==)()(,特别提醒:(1)学习“二次”函数时,要注意所给出函数解析式是不是“二次”的,即2x 项的系数是否为零,必要时加以讨论。
(2)一元二次函数、一元二次方程、一元二次不等式常常联系起来考查,要理清它们之间的联系,解题时要做到适时转换。
(3)图象要记熟,它是我们记忆的关键。
【解题方法指导】例1. (1)设x 、y 是关于m 的方程0622=++-a am m 的两个实根,则22)1()1(-+-y x 的最小值是( )A. 4112-B. 18C. 8D. 43剖析:由0)6(4)2(2≥+--=∆a a ,得2-≤a 或3≥a 。
二次函数的性质与图像分析二次函数是数学中一个重要的概念,它具有许多独特的性质和图像特征。
在本文中,我们将探讨二次函数的性质和图像分析,帮助读者更好地理解和应用这一概念。
首先,我们来回顾一下二次函数的定义。
二次函数是指形如f(x) = ax^2 + bx + c的函数,其中a、b、c是实数且a不等于零。
二次函数的图像通常是一个开口向上或向下的抛物线,其形状和方向由a的正负决定。
一、二次函数的性质1. 首先,二次函数的最高次项是二次项,因此它是一个二次多项式。
这意味着函数的图像是光滑的,没有突变或断裂点。
2. 二次函数的导数是一个一次函数,即它的斜率是一个常数。
这意味着二次函数的图像是一个曲线,没有拐点或尖点。
3. 二次函数的对称轴是一个垂直于x轴的直线,它通过抛物线的顶点。
对称轴将抛物线分成两个对称的部分。
4. 二次函数的顶点是抛物线的最低点或最高点,它是对称轴上的一个点。
顶点的坐标可以通过求解二次函数的导数为零来确定。
5. 二次函数的零点是函数与x轴相交的点,也就是函数的解。
零点可以通过求解二次函数的方程ax^2 + bx + c = 0来确定。
二、二次函数的图像分析1. 首先,我们来讨论二次函数的开口方向。
当a大于零时,二次函数的图像开口向上;当a小于零时,二次函数的图像开口向下。
这是因为a的正负决定了二次函数的导数的正负,从而决定了抛物线的凹凸性。
2. 其次,我们来研究二次函数的顶点和对称轴。
对称轴的方程可以通过求解二次函数的x坐标为零的方程ax^2 + bx + c = 0来确定。
顶点的坐标可以通过将对称轴的x坐标代入二次函数来确定。
3. 最后,我们来讨论二次函数的零点。
零点可以通过求解二次函数的方程ax^2 + bx + c = 0来确定。
如果方程有两个不同的实根,那么二次函数与x轴有两个交点;如果方程有一个重根,那么二次函数与x轴有一个交点;如果方程没有实根,那么二次函数与x轴没有交点。
一次函数与二次函数的图像与性质一次函数和二次函数是数学中常见的函数类型。
它们在图像和性质上有着明显的区别。
本文将分别对一次函数和二次函数的图像及性质进行介绍。
一、一次函数的图像与性质一次函数又称为线性函数,它的表达式为y = ax + b,其中a和b是常数,且a ≠ 0。
一次函数的图像是一条直线,具有以下性质:1. 斜率:一次函数的斜率代表了直线的倾斜程度。
斜率为正值时,直线向右上方倾斜;斜率为负值时,直线向右下方倾斜;斜率为零时,直线为水平线。
2. 截距:一次函数的截距代表了直线与y轴的交点。
当x=0时,直线与y轴的交点为截距b。
3. 线性关系:一次函数的图像是一条直线,表示了两个变量之间的线性关系。
直线方程中的斜率a表示了自变量x单位增加时因变量y的增加量。
二、二次函数的图像与性质二次函数的一般形式为y = ax² + bx + c,其中a、b和c是常数,且a ≠ 0。
二次函数的图像是一条抛物线,具有以下性质:1. 开口方向:二次函数的开口方向由二次项系数a的正负决定。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
2. 零点:二次函数的零点是指函数图像与x轴相交的点,也就是函数的根。
零点也是方程y=0的解。
3. 极值点:二次函数的极值点是指函数图像的最高点或最低点。
当抛物线开口向上时,极值点是最低点;开口向下时,极值点是最高点。
4. 对称轴:二次函数的对称轴是指抛物线的中心线,对称轴的方程为x=-b/(2a)。
对称轴把抛物线分为两个对称的部分。
5. 最值:二次函数的最值是指函数图像的最低点或最高点的纵坐标值。
总结:一次函数和二次函数在图像与性质上具有明显的区别。
一次函数的图像是一条直线,具有斜率和截距,表示了线性关系。
而二次函数的图像是一条抛物线,具有开口方向、零点、极值点、对称轴和最值等性质。
了解和掌握一次函数和二次函数的图像与性质,对于数学问题的解决和实际应用具有重要意义。
一次函数的图像与性质练习1、一次函数y=2x-1的图象大致是( )2、函数y =k (x -k ) (k <0 )的图象不经过( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限3、若点A (2, 4)在函数y =k x -2的图象上,则下列各点在此函数图象上的是( ) A 、(0,-2) B 、(1.5,0) C 、(8, 20) D 、(0.5,0.5)。
4、已知一次函数y=kx+b,y 随着x 的增大而减小,且kb<0,则在直角坐标系内它的大致图象是( )A B C D 5、若把一次函数y=2x -3,向上平移3个单位长度,得到图象解析式是( ) A y=2x B y=2x -6 C y=5x -3 D y=-x -3 6、已知一次函数y=kx+b 的图象如图所示,则k 、b 的 符号是( )(A)k>0,b>0 (B)k>0,b<0 (C)k<0,b>0 (D)k<0,b<07、直线y=2x+1与y=3x-1的交点P 的坐标为____,点P 到x 轴的距离为_______,点P 到y 轴的距离为______。
8、如图,一次函数y=ax+b 的图象经过A 、B 两点,则关于x 的不等式ax+b<0的 解集是9、点P (a,b )点Q (c,d )是一次函数y=-4x+3图像上的两个点,且a<c ,则b 与d 的大小关系是____10、知一次函数图象经过(3, 5)和(-4,-9)两点,①求此一次函数的解析式;②若点(a ,2)在函数图象上,求a 的值。
二次函数的图像与性质①一般式:y =ax +bx +c (a≠0); ②顶点式:;①开口方向:当a>0时,开口向上;当②顶点坐标:;③对称轴方程:;值越小,开口越大;,单调减区间为(-∞,),单调增区间为(,+∞),单调减区间为(,+∞),单调增区间为(-∞,)A .y=x 2+3x -5B .y=-2x 2C .y=2x 2+3x -5D .y=2x 22、若直线y=3x+m 经过第一、三、四象限,则抛物线y=(x -m )2+1的顶点必在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3、已知抛物线的顶点坐标为(1,9),它与x 轴交于A (-2,0),B 两点,则B 点坐标为( )A .(1,0)B .(2,0)C .(3,0)D .(4,0) 4、抛物线y=2(x+3)(x -1)的对称轴是( )A .x=1B .x=-1C .x=12 D .x=-2 5、已知抛物线y=x 2+x+b 2经过点(a ,-14)和(-a ,y 1),则y 1的值是_______.6、如图所示,抛物线y=-x 2+5x+n 经过点A (1,0),与y 轴交于点B . (1)求抛物线的解析式; (2)P 是y 轴正半轴上一点,且△PAB 是以AB 为腰的等腰三角形,试求P 点坐标.7、如图已知二次函数图象的顶点为原点, 直线421+=x y 的图象与该二次函数的图象交 于A 点(8,8),直线与x 轴的交点为C ,与y 轴的交点为B . (1)求这个二次函数的解析式与B 点坐标;(2)P 为线段AB 上的一个动点(点P 与A B ,不重合),过P 作x 轴的垂线与这个二次函数的图象交于D 点,与x 轴交于点E .设线段PD 的长为h ,点P 的横坐标为t ,求h 与t 之间的函数关系式,并写出自变量t 的取值范围;(3)在(2)的条件下,在线段AB 上是否存在点P ,使得以点P 、D 、B 为顶点的三角形与BOC △相似?若存在,请求出P 点的坐标;若不存在,请说明理由.。
一次函数的图像与性质
练习
1、一次函数y=2x-1的图象大致是( )
2、函数y =k (x -k ) (k <0 )的图象不经过( )
A 、第一象限
B 、第二象限
C 、第三象限
D 、第四象限
3、若点A (2, 4)在函数y =k x -2的图象上,则下列各点在此函数图象上的是( ) A 、(0,-2) B 、(1.5,0) C 、(8, 20) D 、(0.5,0.5)。
O
x
y
O
x y O
x
y
y
x
O
A.
B .
C .
D.
4、已知一次函数y=kx+b,y 随着x 的增大而减小,且kb<0,则在直角坐标系内它的大致图象是( )
A B C D 5、若把一次函数y=2x -3,向上平移3个单位长度,得到图象解析式是( ) A y=2x B y=2x -6 C y=5x -3 D y=-x -3 6、已知一次函数y=kx+b 的图象如图所示,则k 、b 的 符号是( )
(A)k>0,b>0 (B)k>0,b<0 (C)k<0,b>0 (D)k<0,b<0
7、直线y=2x+1与y=3x-1的交点P 的坐标为____,点P 到x 轴的距离为_______,点P 到y 轴的距离为______。
8、如图,一次函数y=ax+b 的图象经过A 、B 两点,则关于x 的不等式ax+b<0的 解集是
9、点P (a,b )点Q (c,d )是一次函数y=-4x+3图像上的两个点,且a<c ,则b 与d 的大小
关系是____
10、知一次函数图象经过(3, 5)和(-4,-9)两点,①求此一次函数的解析式;②若点(a ,2)在函数图象上,求a 的值。
y
0 x
二次函数的图像与性质
1、二次函数:形如y=ax2+bx+c(a≠0)的函数称为二次函数,其定义域是R。
2、二次函数的解析式:
①一般式:y=ax2+bx+c(a≠0);
②顶点式:;
③零点式(两根式):y=a(x-x1)(x-x2)(a≠0),其中,x1、x2是函数y=ax2+bx +c(a≠0)的零点(或是方程ax2+bx+c=0的两个根)。
3、二次函数的图像:二次函数的图像是一条抛物线.
4、二次函数的图像的性质:
①开口方向:当a>0时,开口向上;当a<0时,开口向下;
②顶点坐标:;
③对称轴方程:;
④开口大小:a值越大,开口越小;a值越小,开口越大;
⑤单调性:若a>0,单调减区间为(-∞,),单调增区间为(,+∞);若a<0,单调减区间为(,+∞),单调增区间为(-∞,);
5、三个“二次”的关系:一元二次方程ax2+bx+c=0的两个根x1、x2是函数y=ax2+bx +c(a≠0)的两个零点,也是对应的一元二次不等式ax2+bx+c>0(或<0)的解集的端点。
练习
1、与抛物线y=-1
2
x2+3x-5的形状、开口方向都相同,只有位置不同的抛物线是()
A.y=x2+3x-5 B.y=-
2x22x C.y=
2
x2+3x-5 D.y=
2
x2
2、若直线y=3x+m经过第一、三、四象限,则抛物线y=(x-m)2+1的顶点必在()
A.第一象限B.第二象限C.第三象限D.第四象限
3、已知抛物线的顶点坐标为(1,9),它与x轴交于A(-2,0),B两点,则B点坐标为()
A.(1,0)B.(2,0)C.(3,0)D.(4,0)
4、抛物线y=2(x+3)(x-1)的对称轴是()
A.x=1 B.x=-1 C.x=1
2
D.x=-2
5、已知抛物线y=x2+x+b2经过点(a,-1
4
)和(-a,y1),则y1的值是_______.
6、如图所示,抛物线y=-x 2+5x+n 经过点A (1,0),与y 轴交于点B . (1)求抛物线的解析式; (2)P 是y 轴正半轴上一点,且△PAB 是以
AB 为腰的等腰三角形,试求P 点坐标.
7、如图已知二次函数图象的顶点为原点, 直线42
1
+=
x y 的图象与该二次函数的图象交 于A 点(8,8),直线与x 轴的交点为C ,与y 轴的交点为B . (1)求这个二次函数的解析式与B 点坐标;
(2)P 为线段AB 上的一个动点(点P 与A B ,不重合),过P 作x 轴的垂线与这个二次
函数的图象交于D 点,与x 轴交于点E .设线段PD 的长为h ,点P 的横坐标为t ,求h 与t 之间的函数关系式,并写出自变量t 的取值范围;
(3)在(2)的条件下,在线段AB 上是否存在点P ,使得以点P 、D 、B 为顶点的三角形
与BOC △相似?若存在,请求出P 点的坐标;若不存在,请说明理由.
y
x A
B
C
D
P
O
E。