01第一讲 热交换器绪论和概述
- 格式:ppt
- 大小:3.02 MB
- 文档页数:35
绪论1.2.热交换器的分类:1)按照材料来分:金属的,陶瓷的,塑料的,是摸的,玻璃的等等2)按照温度状况来分:温度工况稳定的热交换器,热流大小以及在指定热交换区域内的温度不随时间而变;温度工况不稳定的热交换器,传热面上的热流和温度都随时间改变。
3)按照热流体与冷流体的流动方向来分:顺流式,逆流式,错流式,混流式4)按照传送热量的方法来分:间壁式,混合式,蓄热式恒在壁的他侧流动,两种流体不直接接触,热量通过壁面而进行传递。
过时,把热量储蓄于壁内,壁的温度逐渐升高;而当冷流体流过时,壁面放出热量,壁的温度逐渐降低,如此反复进行,以达到热交换的目的。
第一章1.Mc1℃是所需的热量,用W表示。
两种流体在热交换器内的温度变化与他们的热容量成反比;即热容量越大,流体温度变化越小。
2.W—对应单位温度变化产生的流动流体的能量存储速率。
4.顺流和逆流情况下平均温差的区别:在顺流时,不论W1、W2值的大小如何,总有μ>0,因而在热流体从进口到出口的方向上,两流体间的温差△t总是不断降低;而对于逆流,沿着热流体进口到出口方向上,当W1<W2时,μ>0,△t不断降低,当W1>W2时,μ<0,△t不断升高。
5.P(定义式P12)物理意义:流体的实际温升与理论上所能达到的最大温升比,所以只能小于1。
6.R—冷流体的热容量与热流体的热容量之比。
(定义式P12)7.从φ值的大小可看出某种流动方式在给定工况下接近逆流的程度。
除非处于降低壁温的目的,否则最好使φ>0.9,若φ<0.75就认为不合理。
(P22 例1.1)8.所谓Qmax是指一个面积为无穷大且其流体流量和进口温度与实际热交换器的流量和进口温度相同的逆流型热交换器所能达到的传热量的极限值。
9.实际传热量Q与最大可能传热量Qmax=Q/Qmax。
意义:以温度形式反映出热、冷流体可用热量被利用的程度。
10.根据ε的定义,它是一个无因次参数,一般小于1。
其实用性在与:若已知ε及t1′、t2′时,就可很容易地由Q=εW min(t1′-t2′)确定热交换器的实际传热量。
第三章; 热交换器.第一节热交换器的原理和功能;热交换器是用来加热或是冷却介质来达到生产或是生活所需的一种换热设备. 在石油工业中更多的用于利用加热和冷却来达到石油天燃气处理的参数,充分利用和回收利用热能,减少能量损失,浪费. 热交换就是一种热量从高温到低温热传递的过程,而热交换器就是为热能传送所提供的设备.一般的换热器传热是由固体内部的热传导及各种流体与固体表面间的对流传热组合而成.热流体通过间壁与冷流体进行热量交换的传热过程分为三步进行:(1)热流体以对流传热方式将热量传给固体表面;(2)热量以热传导方式由间壁的热侧面传给冷侧面;(3)冷流体以对流方式将间壁传来的热量带走.流体通过间壁的热量交换图中示出了沿热量传递方向从热流体到冷流体的温度分布情况。
热流体以对流方式将热量传给间壁的一侧,如果热流体不发生相变,则热流体的温度逐渐降低;在间壁中沿热流方向温度降低;当热量传给冷流体后,如果冷流体也不发生相变,则其温度将逐渐升高。
第二节热交换器的种类和结构;2.1换热器种类很多,按热量交换的原理和方式,可分为混合式、蓄热式和间壁式三类, 而我们石油工业所用的大部分是间壁式的热交换器; 按照传热面的型式,间壁式换热器又可分为夹套式、管式、板式和各种异型传热面组成的特殊型式换热器.A.夹套式换热器主要用于反应器的加热或冷却,夹套安装在容器外部,通常用钢或铸铁制成。
一般用于换热表面积要求低于40平方米的条件下.它的优点是成本低,结构简单,容易维修和适用范围广,但是它所占空间比较大,而且对材质要求比较高, 夹套式换热器由于传热面积的限制,常常难以满足及时移走大量反应热的换热需求,夹套式换热器,在用冷却水进行冷却天燃气时,则冷却水由夹套下部进入,而由上部流出,天燃气从上部的内部管束进人,而由下部的内管流出.下图为一典型夹套式换热器图例.B. 列管式换热器(又称管壳式换热器)是工业上应用最广泛的换热设备。
与前述换热器相比,它的主要优点是单位体积所具有的传热面积大、结构紧凑、传热效果好。
热交换器原理
热交换器是一种用于热能传递的设备,其原理基于热传导和换热面积的优化利用。
它通常由许多并排的金属管或片组成,这些管或片之间存在热传导的接触。
热交换器的工作原理如下:
1. 流体流动:热交换器内部有两种流体,一个是要被加热的流体(热流体),另一个是需要吸收热量的流体(冷流体)。
2. 热传导:热流体通过热交换器的管道或片内流动时,其热能会通过金属材料逐渐传递给冷流体。
这是通过两种流体之间的热传导实现的。
3. 换热面积:热交换器的设计旨在最大化换热面积,以确保足够的热能传递。
通常,热交换器的管道或片会采用螺旋形状或叠放形式,以增加换热面积。
4. 流体分离:热交换器内的流体是分离的,它们不会混合,但通过金属管壁或片之间的接触而进行换热。
热交换器的优点在于它能够高效地传递热能并方便维护。
通过优化设计和选择合适的材料,热交换器可以实现高热传导效率和较低的能量损失。
这使得热交换器在许多工业和家用应用中得到广泛使用,例如空调系统、汽车发动机、化工过程等。
热交换器的原理
热交换器是一种用于热量传递的设备,其原理基于热量的传导和对流。
热交换器通常由一对互相交叉的管道组成,其中一个管道用于输送热源(如热水或蒸汽),另一个管道用于输送冷却介质(如冷水或空气)。
这两个管道之间通过金属板、管子或片状材料等热导体连接在一起。
在工作过程中,热源通过一个管道进入热交换器,然后流过热导体,热量开始从热源传导到热导体上。
同时,冷却介质通过另一个管道进入热交换器,并流过热导体。
由于热导体的存在,导热板和冷却介质之间会形成一个热传导的接触面,使热量通过导热板从热源一侧传递到冷却介质一侧。
此外,通过流体的对流效应,热源和冷却介质之间的热量交换会更加高效。
当热源传导的热量到达热导体表面时,热量会通过冷却介质的对流而迅速散发出去。
反之,冷却介质也会通过对流将其带走的热量传递给热源一侧。
热交换器的设计可以根据需要进行调整,以确保达到预期的热量传递效果。
例如,热交换器的导热板可以增加表面积,以增加热量的交换量。
此外,通过增加管道的长度或使用多道管道,可以增加热导体的热传导面积,提高热交换器的传热效率。
总的来说,热交换器利用热传导和对流效应,将热源和冷却介质的热量通过热导体相互传递,实现了热能的高效利用。
热交换器原理
热交换器是一种用于热能传递的设备,它可以在不同流体之间
传递热能,常见的应用包括空调系统、供暖系统、工业生产过程等。
热交换器的原理是利用热传导和对流传热来实现不同流体之间的热
能交换,下面我们来详细了解一下热交换器的原理。
首先,热交换器通过热传导来实现热能的传递。
当两种不同温
度的流体接触时,热能会通过热传导从高温流体传递到低温流体。
这种传热方式主要发生在热交换器的传热表面上,通过传热表面的
材料来实现热能的传递。
传热表面的材料通常具有良好的导热性能,以便更有效地传递热能。
其次,热交换器还利用对流传热来实现热能的传递。
对流传热
是指流体通过对流的方式将热能传递给另一种流体。
在热交换器中,通常会通过管道或其他设备将两种流体分开,并通过设计合理的结
构来促进对流传热的进行。
这样可以有效地提高热交换效率,从而
实现更高效的热能传递。
此外,热交换器的原理还包括热交换器的结构设计。
热交换器
通常包括换热管道、传热表面、流体分隔设备等部分。
这些部分的
设计和布局对热交换器的传热效果有着重要的影响。
合理的结构设计可以提高热交换器的换热效率,减小设备的体积和重量,从而更好地满足不同场合的使用需求。
总的来说,热交换器的原理是通过热传导和对流传热来实现不同流体之间的热能交换。
在实际应用中,热交换器可以根据不同的传热要求和流体特性进行设计和选择,以实现更高效的热能传递。
通过深入了解热交换器的原理,可以更好地应用和优化热交换器设备,为各种工业和生活场合提供更加可靠和高效的热能传递解决方案。
绪论1.2.热交换器的分类:1)按照材料来分:金属的,陶瓷的,塑料的,是摸的,玻璃的等等2)按照温度状况来分:温度工况稳定的热交换器,热流大小以及在指定热交换区域内的温度不随时间而变;温度工况不稳定的热交换器,传热面上的热流和温度都随时间改变。
3)按照热流体与冷流体的流动方向来分:顺流式,逆流式,错流式,混流式4)按照传送热量的方法来分:间壁式,混合式,蓄热式恒在壁的他侧流动,两种流体不直接接触,热量通过壁面而进行传递。
过时,把热量储蓄于壁内,壁的温度逐渐升高;而当冷流体流过时,壁面放出热量,壁的温度逐渐降低,如此反复进行,以达到热交换的目的。
第一章1.Mc1℃是所需的热量,用W表示。
两种流体在热交换器内的温度变化与他们的热容量成反比;即热容量越大,流体温度变化越小。
2.W—对应单位温度变化产生的流动流体的能量存储速率。
4.顺流和逆流情况下平均温差的区别:在顺流时,不论W1、W2值的大小如何,总有μ>0,因而在热流体从进口到出口的方向上,两流体间的温差△t总是不断降低;而对于逆流,沿着热流体进口到出口方向上,当W1<W2时,μ>0,△t不断降低,当W1>W2时,μ<0,△t不断升高。
5.P(定义式P12)物理意义:流体的实际温升与理论上所能达到的最大温升比,所以只能小于1。
6.R—冷流体的热容量与热流体的热容量之比。
(定义式P12)7.从φ值的大小可看出某种流动方式在给定工况下接近逆流的程度。
除非处于降低壁温的目的,否则最好使φ>0.9,若φ<0.75就认为不合理。
(P22 例1.1)8.所谓Qmax是指一个面积为无穷大且其流体流量和进口温度与实际热交换器的流量和进口温度相同的逆流型热交换器所能达到的传热量的极限值。
9.实际传热量Q与最大可能传热量Qmaxε表示,即ε=Q/Qmax。
意义:以温度形式反映出热、冷流体可用热量被利用的程度。
10.根据ε的定义,它是一个无因次参数,一般小于1。
其实用性在与:若已知ε及t1′、t2′时,就可很容易地由Q=εW min(t1′-t2′)确定热交换器的实际传热量。
[主畫面] [第一章] [第二章] [第三章] [第四章] [第五章] [第六章] [第柒章] .tw/~me332a/9/index.html前言:熱交換器廣乏的被使用於煉油工業、石油化學工業以及其他一般化學工業的裝置。
用途之廣,包括了冷卻、冷凝、加熱、蒸發以及廢熱回收等。
其使用條件因相當廣範而涉及其容量、壓力、溫度等,為了配合各條件之要求,而發展出了各種形式、構造、種類。
壹、殼管形熱交換器(換熱器“Heat Exchanger”)的種類殼管形熱交換器為化工裝置設備中應用最廣的一種熱交換器,無論在低溫、高溫、低壓、高壓,祇要能在材料的容許使用範圍內就可被用於加熱、冷卻以及蒸發、冷凝等方面且其信賴度很高,效率又佳。
一般都採用將導熱管以水平橫置之形式,若安裝面積受到限制時,或是在用於蒸發操作者以及其他因素非採用導熱豎立形的傳熱管,其性能上才可獲得較佳效果時,也可採用豎立形的,如圖 1-1所示,將多數傳熱管以擴管或焊接等方式,固定於管板上而成管群插入殼體內所構成之換熱器。
一般可由管板和熱交換器殼體銜接部份的方式加以區別,而可分固定管板式,浮動頭式,U字管式等三種。
(一)固定管板式兩端的管板焊接於殼體上或是以其他方式所固定的傳熱管即以擴管方式,或焊接等方式固定於管板而裝設。
此型式之熱交換器因殼內無法清除沉積物,所以在殼內不適於採用有污染性多之流體或具有腐蝕性的流體。
這種殼管型熱交換器形式中最簡單,製造費低廉,但只適於殼內流體污染性較少的流體才有利。
如殼側、管側,兩流體的溫度差在100℃ 以上時,或是溫度差雖低,然而殼和傳熱管之材質相異,會受殼和管的溫度變化而產生之伸長幅度之差距過大者,殼體上必須裝設脹縮式之接頭。
(二)浮動頭式此型是將導熱管以擴管或是焊接等方法分別固定在固定管板端以及浮動管板端上,殼體和管束就可自由自在地應付所發生的熱膨脹而無害,而且管群也可簡單的安裝與撤出。
污染性較高的流體讓它在管側流動,若兩流體污染程度相同者,以壓力高者流於管側,這是因為管側的清除比較容易,又在構造上讓高壓流體流通管內比較便宜,另外具有腐蝕性的流體最好也流通於管側。
什么是热交换器?热交换器原理与设计
换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。
换热器是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产
中占有重要地位。
在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸
发器和再沸器等,应用更加广泛。
换热器分类:
按传送热量方式可分为:间壁式、混合式、蓄热式(或称回热式)三大类;
按其表面的紧凑程度可分为紧凑式和非紧凑式两类。
换热器如何进行热交换?
热交换系统通常是以热传导和对流两种方式进行热交换的。
热传导是热量传递的一种常见的其过程中流体各部位之间不发生相对的方式,。
位移;
对流是流体各部分质点发生相对位移而引起的热量传递过程。
对流分为强制
对流与自然对流,强制对流是使用机械能(如搅拌)使流体发生对流而传热。
热交换器原理
热交换器的原理:热交换器是一种设备,它可以将一个流体中的热能传递到另一个流体中,而不需要这两种流体之间直接接触。
热交换器有两个独立的流道,他们由热导管分隔开来。
这两个流道中的流体可以是气体或液体,也可以是两者兼有。
流体在各自的流道中循环,当流体经过热导管时,热量就从一个流体传递到另一个流体,由此达到调节温度的目的。
热交换器的效率较低,但是价格便宜,因此在工业生产中得到广泛应用。