高一物理相遇与追及问题
- 格式:docx
- 大小:13.50 KB
- 文档页数:2
高一物理追及、相遇问题班级:________姓名:____________1、在同一水平面上,一辆小车从静止开始以1m/s2的加速度前进。
有一人在车后与车相距S0=25m处,同时开始以6m/s的速度匀速追车,人与车前进方向相同,则人能否追上车?若追不上,求人与车的最小距离。
2、客车以的速度行驶,突然发现同轨道的前方120m处有一列货车正以6m/s的速度同向行驶,于是客车紧急刹车,以0.8m/s2的加速度作匀减速运动,问两车能否相碰?3、一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以3m/s2的加速度开始行驶,恰好此时一辆自行车以6m/s速度驶来,从后边超越汽车.试求:①汽车从路口开动后,追上自行车之前经过多长时间两车相距最远?最远距离是多少?②经过多长时间汽车追上自行车,此时汽车的速度是多少?4、公共汽车从车站开出以4m/s的速度沿平直公路行驶,2s后一辆摩托车从同一车站开出匀加速追赶,加速度为2m/s2。
试问(1)摩托车出发后,经多少时间追上汽车?(2)摩托车追上汽车时,离出发点多远?(3)摩托车追上汽车前,两者最大距离是多少?5、某人骑自行车以4m/s的速度匀速前进,某时刻在他前面7m处以10m/s的速度同向行驶的汽车开始关闭发动机,而以2m/s2的加速度减速前进,求:①自行车未追上前,两车的最远距离;②自行车需要多长时间才能追上汽车.6、羚羊从静止开始奔跑,经过50m 距离能加速到最大速度25m/s并能维持一段较长的时间,猎豹从静止开始奔跑,经过60m距离能加速到最大速度30m/s,以后只能维持这个速度4s,设猎豹距离羚羊x 时开始攻击,羚羊则在猎豹开始攻击后1s才开始奔跑,假定羚羊和猎豹在加速阶段分别做匀加速运动,且均沿同一直线奔跑。
求:(1)猎豹要在其最大速度减速前追到羚羊,x值应在什么范围?(2)猎豹要在其加速阶段追上羚羊,x值应在什么范围?。
高一物理追及相遇问题追及和相遇是高一物理中常见的运动学问题,这类问题涉及到两个或多个物体在同一时间或不同时间运动的情况。
解决这类问题的关键是掌握运动学的基本公式和定理,理解物体之间的相对运动关系,并运用数学工具进行计算和分析。
一、追及问题追及问题通常是指两个物体在同一时间开始运动,其中一个物体追赶另一个物体,直到追上或超过被追物体。
解决追及问题的关键是找出两个物体之间的位移差、速度差和时间关系。
定义变量设被追物体为A,追赶物体为B。
设t时刻A、B的位移分别为x1、x2,速度分别为v1、v2。
建立数学方程根据运动学公式,我们可以建立以下方程:(1) x1 = v1t + 1/2at^2(匀加速运动)(2) x2 = v2t(匀速运动)(3) 当A、B速度相等时,有v1 = v2 + at求解方程解方程组(1)(2)(3),可以求出t、x1、x2的值。
分析结果根据求出的t、x1、x2的值,可以判断A、B是否能够相遇,相遇时A、B的位移和速度关系。
二、相遇问题相遇问题是指两个物体在同一地点开始运动,其中一个物体迎向另一个物体,直到两个物体相遇或相离。
解决相遇问题的关键是找出两个物体之间的位移和速度关系。
定义变量设相遇的两个物体分别为A、B。
设t时刻A、B的位移分别为x1、x2,速度分别为v1、v2。
建立数学方程根据运动学公式,我们可以建立以下方程:(1) x1 + x2 = v1t + v2t(相对速度)(2) v1 - v2 = at(相对加速度)求解方程解方程组(1)(2),可以求出t、x1、x2的值。
分析结果根据求出的t、x1、x2的值,可以判断A、B是否能够相遇,相遇时A、B的位移和速度关系。
如果A、B不能相遇,还可以求出它们之间的距离。
高一物理追击和相遇问题两物体在同一直线上追及、相遇或避免碰撞问题中的条件是:两物体能否同时到达空间某位置。
因此应分别对两物体研究,列出位移方程,然后利用时间关系、速度关系、位移关系而解出。
一、追及问题1、追及问题中两者速度大小与两者距离变化的关系。
甲物体追赶前方的乙物体,若甲的速度大于乙的速度,则两者之间的距离。
若甲的速度小于乙的速度,则两者之间的距离。
若一段时间内两者速度相等,则两者之间的距离。
2、追及问题的特征及处理方法:“追及”主要条件是:两个物体在追赶过程中处在同一位置,常见的情形有三种:⑴初速度为零的匀加速运动的物体甲追赶同方向的匀速运动的物体乙,一定能追上,追上前有最大距离的条件:两物体速度,即。
⑵匀速运动的物体甲追赶同向匀加速运动的物体乙,存在一个能否追上的问题。
判断方法是:假定速度相等,从位置关系判断。
①若甲乙速度相等时,甲的位置在乙的后方,则追不上,此时两者之间的距离最小。
②若甲乙速度相等时,甲的位置在乙的前方,则追上。
③若甲乙速度相等时,甲乙处于同一位置,则恰好追上,为临界状态。
解决问题时要注意二者是否同时出发,是否从同一地点出发。
⑶匀减速运动的物体追赶同向的匀速运动的物体时,情形跟⑵类似。
3、分析追及问题的注意点:⑴要抓住一个条件,两个关系:一个条件是两物体的速度满足的临界条件,如两物体距离最大、最小,恰好追上或恰好追不上等。
两个关系是时间关系和位移关系,通过画草图找两物体的位移关系是解题的突破口。
⑵若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。
⑶仔细审题,充分挖掘题目中的隐含条件,同时注意图象的应用。
二、相遇⑴同向运动的两物体的相遇问题即追及问题,分析同上。
⑵相向运动的物体,当各自发生的位移绝对值的和等于开始时两物体间的距离时即相遇。
【典型例题】例1.在十字路口,汽车以3米每二次方秒的加速度从停车线启动做匀加速运动,恰好有一辆自行车以6米每秒的速度匀速驶过停车线与汽车同方向行驶,求:(1)什么时候它们相距最远?最远距离是多少?(2)在什么地方汽车追上自行车?追到时汽车的速度是多大?【针对训练】1、为了安全,在公路上行驶的汽车之间应保持必要的距离.已知某高速公路的最高限速v =120km/h.假设前方车辆突然停止,后车司机从发现这一情况,经操纵刹车,到汽车开始减速所经历的时间(即反应时间)t=0.50s.刹车时汽车的加速度为a=4m/s2.该高速公路上汽车间的距离s至少应为多少?(取重力加速度g=10m/s2.)2、客车以20m/s的速度行驶,突然发现同轨前方120m处有一列货车正以6m/s的速度同向匀速前进,于是客车紧急刹车,刹车引起的加速度大小为0.8m/s2,问两车是否相撞?3、如图,A、B两物体相距S=7米,A正以V1=4米/秒的速度向右做匀速直线运动,而物体B此时速度V2=10米/秒,方向向右,做匀减速直线运动(不能返回),加速度大小a=2米/秒2,从图示位置开始计时,经多少时间A追上B.4、某人在室内以窗户为背景摄影时,恰好把窗外从高处落下的一小石子摄在照片中。
【典型例题】(一).匀加速运动追匀速运动的情况:(开始时v1<v2):v1<v2时,两者距离变大;v1=v2时,两者距离最大;v1>v2时,两者距离变小,相遇时满足x1=x2+Δx,全程只相遇(即追上)一次。
【例1】一辆值勤的警车停在公路边,当警员发现从他旁边以10 m/s的速度匀速行驶的货车严重超载时,决定前去追赶,经过5.5 s后警车发动起来,并以2.5 m/s2的加速度做匀加速运动,但警车的行驶速度必须控制在90 km/h 以内.问:(1)警车在追赶货车的过程中,两车间的最大距离是多少?(2)警车发动后要多长时间才能追上货车?(二).匀速运动追匀加速运动的情况:(开始时v1> v2):v1> v2时,两者距离变小;v1= v2时,①若满足x1< x2+Δx,则永远追不上,此时两者距离最近;②若满足x1=x2+Δx,则恰能追上,全程只相遇一次;③若满足x1> x2+Δx,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。
【例2】一个步行者以6m/s的最大速率跑步去追赶被红绿灯阻停的公共汽车,当它距离公共汽车25m时,绿灯亮了,车子以1m/s2的加速度匀加速起动前进,则()A.人能追上汽车,追车过程中共跑了36mB.人不能追上汽车,人和车最近距离为7mC.人不能追上汽车,自追车开始后人和车间距越来越大D.人能追上汽车,追上车前人共跑了43m(三).匀减速运动追匀速运动的情况(同上)【例3】A、B两列火车,在同轨道上同向行驶,A车在前,其速度v A=10 m/s,B车在后,其速度v B=30 m/s.因大雾能见度低,B车在距A车700 m时才发现前方有A车,这时B车立即刹车,但B车要经过1 800 m才能停止.问A车若按原速度前进,两车是否会相撞?说明理由.(四).匀速运动追匀减速运动的情况:若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。
追及相遇问题1、相遇与追击问题得实质研究得两物体能否在相同得时刻到达相同得空间位置得问题。
2、解相遇与追击问题得关键画出物体运动得情景图,理清一个条件、两个关系(1)一个条件: 两者速度相等。
它往往就是物体间能否追上或(两者)距离最大、最小得临界条件,也就是分析判断得切入点。
(2)时间关系(3)位移关系3、相遇与追击问题剖析:(一)追及问题1、追及问题中两者速度大小与两者距离变化得关系。
甲物体追赶前方得乙物体,若甲得速度大于乙得速度,则两者之间得距离。
若甲得速度小于乙得速度,则两者之间得距离。
若开始甲得速度小于乙得速度过一段时间后两者速度相等,则两者之间得距离 (填最大或最小)。
2、追及问题得特征及处理方法:“追及”主要条件就是:两个物体在追赶过程中处在同一位置,常见得情形有三种:⑴初速度为零得匀加速运动得物体甲追赶同方向得匀速运动得物体乙,一定能追上,追上前有最大距离得条件:两物体速度相等。
⑵匀速运动得物体甲追赶同向匀加速运动得物体乙,存在一个能否追上得问题。
判断方法就是:假定速度相等,从位置关系判断。
①当甲乙速度相等时,甲得位置在乙得后方,则追不上,此时两者之间得距离最小。
②当甲乙速度相等时,甲得位置在乙得前方,则追上,此情况还存在乙再次追上甲。
③当甲乙速度相等时,甲乙处于同一位置,则恰好追上,为临界状态。
解决问题时要注意二者就是否同时出发,就是否从同一地点出发。
⑶匀减速运动得物体追赶同向得匀速运动得物体时,情形跟⑵类似。
3、分析追及问题得注意点:⑴要抓住一个条件,两个关系:一个条件就是两物体得速度满足得临界条件,如两物体距离最大、最小,恰好追上或恰好追不上等。
两个关系就是时间关系与位移关系,通过画草图找两物体得位移关系就是解题得突破口。
⑵若被追赶得物体做匀减速运动,一定要注意追上前该物体就是否已经停止运动。
⑶仔细审题,充分挖掘题目中得隐含条件,同时注意vt图象得应用。
(二)、相遇⑴同向运动得两物体得相遇问题即追及问题,分析同上。
高一物理相遇与追及问题
高一物理相遇与追及问题是一个比较复杂的问题,主要涉及两个物体的运动和时间关系。
在相遇问题中,两个物体从不同的位置出发,朝着相同的方向运动,最终在某一时刻相遇。
在追及问题中,一个物体在后面追赶前面的物体,当两个物体速度相等时,它们之间的距离达到最大值。
解决相遇与追及问题需要掌握以下几个关键点:
1.确定临界状态:在相遇与追及问题中,临界状态是两个物体速度相等或位移相等。
当速度相等时,两个物体之间的距离最大;当位移相等时,两个物体之间的距离最小。
2.画图分析:通过画图可以直观地分析两个物体的运动情况,例如用位移时间图像表示两个物体的运动轨迹。
3.相对运动:在相遇与追及问题中,通常需要将其中一个物体视为静止,从而简化问题。
例如,在追及问题中,通常将前面的物体视为静止,从而得出后面物体的速度和时间关系。
4.公式运用:在相遇与追及问题中,需要运用速度、位移、时间等物理量之间的关系式进行计算。
例如,在追及问题中,需要运用速度相等时的时间关系式进行计算。
总之,解决相遇与追及问题需要灵活运用物理知识,掌握临界状态的分析方法和画图技巧,从而得出正确的结论。