多组分体系热力学解析
- 格式:ppt
- 大小:191.00 KB
- 文档页数:31
第五章 多组分系统热力学与相平衡主要公式及其适用条件1. 拉乌尔定律与亨利定律(对非电解质溶液)拉乌尔定律:A *A A x p p = 其中,*A p 为纯溶剂A 之饱和蒸气压,A p 为稀溶液中溶剂A 的饱和蒸气分压,x A 为稀溶液中A 的摩尔分数。
亨利定律: B B B B B B B c k b k x k p c,b,x,===其中,B p 为稀溶液中挥发性溶质在气相中的平衡分压,B B B c,b ,x ,k k ,k 及为用不同单位表示浓度时,不同的亨利常数。
2. 理想液态混合物定义:其任一组分在全部组成范围内都符合拉乌尔定律的液态混合物。
BB B x p p *=其中,0≤x B ≤1 , B 为任一组分。
3. 理想液态混合物中任一组分B 的化学势)ln((l)(l)B *B B x RT μμ+=其中,(l)*B μ为纯液体B 在温度T ﹑压力p 下的化学势。
若纯液体B 在温度T ﹑压力0p 下标准化学势为(l)0B μ,则有:m =+≈⎰*00BBB B (l)(l)(l)d (l)0p*,p μμV p μ 其中,m B (l)*,V 为纯液态B 在温度T 下的摩尔体积。
4. 理想液态混合物的混合性质① 0Δm i x =V;② 0Δm i x=H ; ③ B=-∑∑mix B BB BΔ()ln()S n Rxx ;④ S T Gm i x m i x ΔΔ-=5. 理想稀溶液① 溶剂的化学势:m =++⎰0A AA A(l )(l )l n ()(l )dp*,p μμR Tx V p 当p 与0p 相差不大时,最后一项可忽略。
② 溶质B 的化学势:)ln(ln((g)ln((g))ln((g)(g)(0BB 0BB B 0B 0BB B B b b RT )p b k RT μ)p b k RT μp p RT μμμb,b,++=+=+==溶质)我们定义:⎰∞+=+pp b,b,0pV μ)p b k RT μd ln((g)B 0B0B 0B(溶质)(溶质)同理,有:⎰⎰∞∞+=++=+pp x,x,pp c,c 00p V μpk RT μpV μ)p c k RT μd (溶质)(溶质)d (溶质)(溶质)B 0B 0B 0B B 0B00B ,0B)ln((g)ln((g)⎰⎰⎰∞∞∞++=++=++=p p x ,pp c,pp b,0pV x RT μp V c c RT μp V b b RT μμd ()ln()(d )()ln()(d )()ln(B B 0B B 0B 0BB 0B 0B B 溶质)溶质溶质溶质溶质(溶质)(溶质)注:(1)当p 与0p 相差不大时,最后一项积分均可忽略。
多组分体系热动力学的研究及应用分析多组分体系热动力学是化学领域的一个重要研究方向,它研究的是由多种物质组成的化学体系中各个成分之间相互作用的热力学性质。
这个研究方向在化学工业、环境保护和生命科学等领域都有重要的应用。
本文将从多组分体系的定义、研究方法和应用分析三个方面来介绍多组分体系热动力学的研究及应用。
一、多组分体系的定义多组分体系是由两个或以上的物质组成的体系,其中每种物质都有自己的热力学性质和化学反应特性。
在这样的体系中,不同的物质之间会产生相互作用,包括溶解作用、化学反应、相变等,这些相互作用的程度和性质都会影响整个体系的热力学性质。
二、多组分体系热动力学的研究方法对于多组分体系的热力学性质,研究者常常使用实验方法和模拟计算方法相结合的方法进行研究。
实验方法包括热力学实验和物理化学实验两种。
在热力学实验中,研究者常常测定多组分体系中各个组分的热力学性质,包括热容、焓、熵、自由能等;在物理化学实验中,研究者常常测定各组分之间的相互作用程度,如溶解度、离子平衡常数等。
这些实验数据可以用于制定热力学模型,用来描述整个多组分体系的热力学性质。
除了实验方法,模拟计算方法也在多组分体系热动力学研究中发挥着重要作用。
模拟计算方法可以通过计算机模拟多组分体系中每个组分分子之间的相互作用,来预测整个体系的热力学性质。
包括分子动力学模拟、Monte Carlo 模拟、量子化学模拟等。
三、多组分体系热动力学的应用分析多组分体系热动力学的研究在化学工业、生命科学和环境保护等领域都有着广泛的应用。
1. 化学工业在化学工业中,多组分体系的热动力学性质对于反应工艺设计和产品品质控制都具有重要意义。
例如,在纤维素乙醇水溶液的生产中,多组分体系的相互作用会影响纤维素的溶解性质,从而影响生产效率和产品质量。
此时,研究多组分体系的热力学性质可以帮助优化生产工艺并制定更好的质量控制方案。
2. 生命科学在生命科学领域,多组分体系的研究可以帮助人们更好地了解细胞内分子之间的相互作用和生物分子结构的稳定性。
多组分系统热力学小结1. 引言多组分系统热力学研究了由多个组分组成的热力学系统的性质和行为。
在这篇文档中,我们将总结多组分系统热力学的一些重要概念和理论,并讨论其在应用中的一些关键应用。
2. 多组分系统的基本概念在多组分系统中,每个组分都有自己的化学组成和性质。
这些组分可以是单一物质或混合物。
多组分系统研究的核心是了解混合物内各组分的相互作用和行为。
多组分系统中的组分可以通过化学势来描述。
化学势是衡量组分在系统中存在的倾向的度量。
对于一个多组分系统,其总能量和组分的化学势之间存在一定的关系,这在热力学理论中被称为Gibbs-Duhem方程。
3. 多组分系统的相平衡在多组分系统中,相平衡是重要的概念。
相平衡指的是不同组分之间达到了平衡状态,可以通过化学势来描述。
当系统达到相平衡时,每个组分的化学势相等。
根据Gibbs相律,对于多组分系统,相平衡条件可以表示为:$\\sum_i \\mu_i dx_i=0$,其中$\\mu_i$表示第i个组分的化学势。
这个方程表明,在相平衡条件下,各组分的化学势满足一定的平衡关系。
4. 多组分系统的热力学性质多组分系统的热力学性质包括混合熵、混合焓和混合自由能等。
这些性质可以通过计算混合物的热力学函数来获得。
4.1 混合熵混合熵指的是混合物的熵减去各组分的熵的总和。
根据熵的定义,混合熵可以通过计算每个组分的摩尔熵和摩尔分数来求得。
4.2 混合焓混合焓指的是混合物的焓减去各组分的焓的总和。
根据焓的定义,混合焓可以通过计算每个组分的摩尔焓和摩尔分数来求得。
4.3 混合自由能混合自由能指的是混合物的自由能减去各组分的自由能的总和。
根据自由能的定义,混合自由能可以通过计算每个组分的摩尔自由能和摩尔分数来求得。
5. 多组分系统的关键应用多组分系统热力学在很多领域中有着重要的应用,以下是其中几个典型的应用:5.1 相平衡计算根据相平衡条件的方程,可以使用多组分系统热力学的理论和方法来计算系统中各相的成分和分布。
第三章 多组分体系热力学内容提要只要指定两个强度性质便可以确定单组分体系的状态。
在多组分体系中,决定体系状态的变量还需包括组成体系的各物质的量。
在多组分体系热力学中,有两个重要的概念:偏摩尔量和化学势。
1、偏摩尔量(1)定义:设X 代表多组分体系中任一容量性质,在等温、等压、组成不变的条件下,体系中B 物质的容量性质Z 对B 物质的量n B 的偏微分称偏摩尔量,表示为Z 。
Z =(∂Z∂n B )T,p,nB(B ≠B )偏摩尔量是强度性质,和体系的总量无关,和组成体系各物质的浓度有关。
(2)偏摩尔量的集合公式∑==1B B B Z n Z多组分体系的广度性质等于体系中各组分物质的量与该物质偏摩尔性质的乘积之和。
(3)吉布斯-杜亥姆公式01=∑=B BB dZn该式表述了当发生一个无限小过程时,体系中各组分偏摩尔量变化值之间的关系。
它表明在均相体系中各组分的偏摩尔量之间是相互联系的,具有此消彼长的关系。
2、化学势(1)定义:偏摩尔吉布斯能G B,称为化学势,用μB 表示,单位为J·mol -1。
μB =(∂G∂n B )T,P,nB≠B广义的化学势:μB =(∂U ∂n B )s,v,nB(B≠B ) =(∂H ∂n B )s,p,nB(B≠B ) =(∂F ∂n B )T,V ,nB(B≠B ) =(∂G ∂n B )T,P,nB(B≠B ) (2)多组分组成可变体系的四个热力学基本公式:dU=TdS-pdV+B BBdn ∑μdH=TdS-pdV+B BBdn ∑μdF=sdT-Vpd+B BB dn ∑μdG=sdT-Vpd+B BBdn ∑μ(3)化学势的一些关系式 化学势集合公式∑=BB B n G μ等温、等压条件下化学势的吉布斯-杜亥姆公式∑BB Bd nμ化学势与温度的关系(∂μB∂T )p,nB=-V m ,B ) 化学势与压力的关系(∂μB ∂p )T,nB =v m ,B3、化学势判据等温、等压、W'=0条件下0≤∑B BB dn μ(1)相平衡:在等温、等压、W'=0的条件下,组分B 在α、β、…等各相达到平衡的条件是μB (α)=μB (β)=…在上述条件下,如果μB (α)>μB (β),则组分B 自发地从α相向β相转移。