03多组分系统热力学
- 格式:pdf
- 大小:230.53 KB
- 文档页数:5
第三章多组分系统热力学及其在溶液中的应用一、基本公式和内容提要1. 偏摩尔量定义:其中X为多组分系统的任一种容量性质,如V﹑U﹑S......全微分式:总和:偏摩尔量的集合公式:2. 化学势定义物质的化学势是决定物质传递方向和限度的强度因素,是决定物质变化方向和限度的函数的总称,偏摩尔吉布斯函数只是其中的一种形式。
3. 单相多组分系统的热力学公式4. 化学势判据等温等压、只做体积功的条件下将化学势判据用于多相平衡和化学平衡中,得多组分系统多相平衡的条件为:化学平衡的条件为:5.化学势与温度、压力的关系(1)化学势与压力的关系(2)化学势与温度的关系6.气体的化学势(1)纯组分理想气体的化学势理想气体压力为(标准压力)时的状态称为标准态,称为标准态化学势,它仅是温度的函数。
(2)混合理想气体的化学势式中:为物质B的分压;为物质B的标准态化学势;是理想气体混合物中B组分的摩尔分数;是B纯气体在指定T,p时的化学势,p是总压。
(3)实际气体的化学势式中:为实际气体或其混合物中物质B的化学势;为B的标准态化学势,其对应状态是B在温度T、压力、且假想具有理想气体行为时的状态,这个状态称为实际气体B的标准态;分别为物质B的逸度系数和逸度。
7. 稀溶液中的两个经验定律(1)拉乌尔定律一定温度时,溶液中溶剂的蒸气压与溶剂在溶液中的物质的量分数成正比,其比例系数是纯溶剂在该温度时的蒸气压。
用公式表示为。
对二组分溶液来说,,故拉乌尔定律又可表示为即溶剂蒸气压的降低值与纯溶剂蒸气压之比等于溶质的摩尔分数。
(2)亨利定律一定温度时,稀溶液中挥发性溶质的平衡分压与溶质在溶液中的物质的量分数成正比。
用公式表示。
式中:为溶质的浓度分别为摩尔分数、质量摩尔浓度和物质的量浓度表示时的亨利系数,单位分别为Pa、和。
使用亨利定律时应注意:①是溶质在液面上的分压;②溶质在气体和在溶液中的状态必须是相同的。
8.溶液的化学势(1)理想液态混合物中物质的化学势①定义:在一定的温度和压力下,液态混合物中任意一种物质在任意浓度均遵守拉乌尔定律的液态混合物称为理想液态混合物。
第三章 多组分体系热力学内容提要只要指定两个强度性质便可以确定单组分体系的状态。
在多组分体系中,决定体系状态的变量还需包括组成体系的各物质的量。
在多组分体系热力学中,有两个重要的概念:偏摩尔量和化学势。
1、偏摩尔量(1)定义:设X 代表多组分体系中任一容量性质,在等温、等压、组成不变的条件下,体系中B 物质的容量性质Z 对B 物质的量n B 的偏微分称偏摩尔量,表示为Z 。
Z =(∂Z∂n B )T,p,nB(B ≠B )偏摩尔量是强度性质,和体系的总量无关,和组成体系各物质的浓度有关。
(2)偏摩尔量的集合公式∑==1B B B Z n Z多组分体系的广度性质等于体系中各组分物质的量与该物质偏摩尔性质的乘积之和。
(3)吉布斯-杜亥姆公式01=∑=B BB dZn该式表述了当发生一个无限小过程时,体系中各组分偏摩尔量变化值之间的关系。
它表明在均相体系中各组分的偏摩尔量之间是相互联系的,具有此消彼长的关系。
2、化学势(1)定义:偏摩尔吉布斯能G B,称为化学势,用μB 表示,单位为J·mol -1。
μB =(∂G∂n B )T,P,nB≠B广义的化学势:μB =(∂U ∂n B )s,v,nB(B≠B ) =(∂H ∂n B )s,p,nB(B≠B ) =(∂F ∂n B )T,V ,nB(B≠B ) =(∂G ∂n B )T,P,nB(B≠B ) (2)多组分组成可变体系的四个热力学基本公式:dU=TdS-pdV+B BBdn ∑μdH=TdS-pdV+B BBdn ∑μdF=sdT-Vpd+B BB dn ∑μdG=sdT-Vpd+B BBdn ∑μ(3)化学势的一些关系式 化学势集合公式∑=BB B n G μ等温、等压条件下化学势的吉布斯-杜亥姆公式∑BB Bd nμ化学势与温度的关系(∂μB∂T )p,nB=-V m ,B ) 化学势与压力的关系(∂μB ∂p )T,nB =v m ,B3、化学势判据等温、等压、W'=0条件下0≤∑B BB dn μ(1)相平衡:在等温、等压、W'=0的条件下,组分B 在α、β、…等各相达到平衡的条件是μB (α)=μB (β)=…在上述条件下,如果μB (α)>μB (β),则组分B 自发地从α相向β相转移。
第三章 多组分系统热力学一、选择题1.1 mol A 与n mol B 组成的溶液,体积为0.65dm 3,当x B = 0.8时,A 的偏摩尔体积 V A = 0.090dm 3·mol -1,那么B 的偏摩尔V B 为: ( )(A) 0.140 dm 3·mol -1 ; (B) 0.072 dm 3·mol -1 ;(C) 0.028 dm 3·mol -1 ; (D) 0.010 dm 3·mol -1 。
2.注脚“1”代表298K 、p 的O 2,注脚“2”代表298K 、2p 的H 2,那么: ( )(A) 2121,μμμμ≠≠; (B) 因为21μμ≠,1μ与2μ大小无法比较 ;(C) 2121,μμμμ=>;(D) 2121,μμμμ<<。
3.气体B 的化学势表达式:()()B B B ln ln g g x RT p p RT +⎪⎪⎭⎫⎝⎛+=μμ,那么:⑴上式表 明气体B 在混合理想气体中的化学势;⑵()()g g B B μμμ-=∆体现在该条件下做非 体积功的本领;⑶μB (g)是表明做非体积功的本领;⑷μB (g)是气体B 的偏摩尔Gibbs 自由能。
上述四条中正确的是: ( )(A) ⑴⑵⑶ ; (B) ⑵⑶⑷ ; (C) ⑴⑶⑷ ; (D) ⑴⑵⑷ 。
4.373K 、p 时H 2O(g) 的化学势为μ1;373K 、0.5p 时H 2O(g) 的化学势μ2,那么: ①21μμ=;②μ2 - μ1 = RT ln2;③μ2 - μ1 = -RT ln2;④μ2 = μ1 – RT ln0.5。
以上四条中 正确的是: ( )(A) ①② ; (B) ①③ ; (C) ③④ ; (D) ②④5.对于A 、B 两种实际气体处于相同的对比状态,对此理解中,下列何者正确:( )(A) A 、B 两种气体处于相同的状态 ; (B) A 、B 两种气体的压力相等 ;(C) A 、B 两种气体的对比参数π、τ相等 ; (D) A 、B 两种气体的临界压力相等 。
多组分系统热力学
多组分系统热力学是研究多个组分构成的系统的热力学行为的科学。
在多组分系统中,各个组分之间可能会相互作用,从而影响整个系统的热力学性质。
多组分系统热力学的研究内容包括:
1.热力学第一定律:能量守恒定律,即在一个封闭系统中,能量不
能被创造或消除,只能从一种形式转化为另一种形式。
2.热力学第二定律:熵增定律,即在一个封闭系统中,熵(即系统
的混乱程度)只能增加,不能减少。
这意味着,系统总是朝着熵增的方向演化,而不是熵减的方向。
3.相平衡:研究在给定的温度和压力下,不同物质之间是如何平衡
的。
4.化学平衡:研究在给定的温度和压力下,化学反应是如何平衡的。
5.热力学第三定律:绝对零度不能达到原理,即任何物质在绝对零
度下的熵均为零。
这些定律和原理对于理解多组分系统的热力学行为非常重要。
在化学工程、材料科学、生物工程等领域中,多组分系统热力学被广泛应用于研究复杂系统的热力学性质和行为。
第四章 多组分系统热力学 主要内容1.混合物和溶液(1)多组分系统的分类含一个以上组分的系统称为多组分系统。
多组分系统可以是均相(单相)的,也可以是非均相(多相)的。
将多组分均相系统区分为混合物和溶液,并以不同的方法加以研究:(Ⅰ)混合物:各组分均选用同样的标准态和方法处理;(Ⅱ)溶液:组分要区分为溶剂及溶质,对溶剂及溶质则选用不同的标准态和方法加以研究。
(2)混合物及溶液的分类混合物有气态混合物液态混合物和固态混合物;溶液亦有气态溶液液态溶液和固态溶液。
按溶液中溶质的导电性能来区分,溶液又分为电解质溶液和非电解质溶液(分子溶液)。
2.拉乌尔定律与亨利定律拉乌尔定律与亨利定律是稀溶液中两个重要的经验规律。
(1)拉乌尔定律平衡时,稀溶液中溶剂A 在气相中的蒸气分压A p 等于纯溶剂在同一温度下的饱和蒸气压与该溶液中溶剂的摩尔分数A x 的乘积。
这就是拉乌尔定律。
用数学式表达拉乌尔定律为 A *A Ax p p = (2)亨利定律一定温度下,微溶气体B 在溶剂A 中的溶解度B x 与该气体在气相中的分压B p 成正比。
也可表述为:一定温度下,稀溶液中挥发性溶质B 在平衡气相中的分压力B p 与该溶质B 在平衡液相中的摩尔分数B x 成正比。
这就是亨利定律。
用数学式表达亨利定律为: B B ,B x k p x =B ,x k 、B ,b k 为以不同组成标度表示的亨利系数,其单位分别为Pa ,Pa·kg·mol -1。
应用亨利定律时,要注意其不同表达式所对应的亨利系数及其单位。
还要注意亨利定律适用于稀溶液中的溶质分子同气相同种分子相平衡,即亨利定律适用于稀溶液中的溶质在液相及气相中具有相同分子形态的场合。
3.偏摩尔量(1)偏摩尔量的定义设X 代表V ,U ,H,S ,A ,G 这些广度性质,则对多组份系统(混合物或溶液)即 X =f (T ,p ,n A ,n B ,…)定义 ()B C C,,,B B def ≠⎪⎪⎭⎫ ⎝⎛∂∂n p T n X X式中,X B称为广度性质X (X=V ,U ,H ,S ,A ,G 等)的偏摩尔量,它们分别为只有系统的广延量才具有偏摩尔量,偏摩尔量是强度量。
1.溶液的化学势等于溶液中各组分化学势之和。
解:错,对溶液整体没有化学势的概念。
2.系统达到平衡时,偏摩尔量为一个确定的值。
解:错,不同相中的偏摩量一般不相同。
3.对于纯组分,化学势等于其吉布斯函数。
解:错,纯组分物质的化学势应等于摩尔吉布斯函数。
4.在同一稀溶液中组分B的浓度可用x B、m B、c B表示,因而标准态的选择是不相同的,所以相应的化学势也不同。
解:错,化学势与标准态、浓标的选择无关。
5.水溶液的蒸气压一定小于同温度下纯水的饱和蒸气压。
解:错,当溶质不挥发时才一定成立。
6.将少量挥发性液体加入溶剂中形成稀溶液,则溶液的沸点一定高于相同压力下纯溶剂剂的沸点。
溶液的凝固点也一定低于相同压力下纯溶剂的凝固点。
解:错,因加人挥发性溶质,沸点不一定升高。
凝固点是否降低要看溶质是否析出。
7.纯物质的熔点一定随压力升高而增加,蒸气压一定随温度的增加而增加,沸点一定随压力的升高而升高。
解:第一个结论错,如水的熔点随压力增大而降低。
后两个结论都正确。
8.理想稀溶液中溶剂分子与溶质分子之间只有非常小的作用力,以至可以忽略不计。
解:错,两种分子之间的作用力和同种分子之间的作用力都较大,不可忽略。
9.当温度一定时,纯溶剂的饱和蒸气压越大,溶剂的液相组成也越大。
解:错,液相组成与纯溶剂的蒸气压无关。
10.在一定的温度和同一溶剂中,某气体的亨利系数越大,则此气体在该溶剂中的溶解度也越大。
解:错,当压力一定时,溶解度与亨利系数成反比。
11.在非理想溶液中,浓度大的组分的活度也大,活度因子也越大。
解:错,一般而言,浓度大活度也大,但活度因子不一定大。
12.在298K时0.01mol·kg-1的蔗糖水溶液的渗透压与0.01mol·kg-1的食盐水的渗透压相同。
解:错,食盐因电离;溶液中粒子数多,渗透压大。
13.物质B在α相和β相之间进行宏观转移的方向总是从浓度高的相迁至浓度低的相。
解:错,相变的方向是以化学势的大小而不是以浓度的大小来判断。