第10章:和差倍角公式与解三角形测试
- 格式:doc
- 大小:206.50 KB
- 文档页数:2
第七讲 三角恒等变换与解三角形简单三角恒等变换差角余弦公式倍角公式和(差)角公式余弦定理正弦定理三角形面积公式解三角形应用举例1.(倍角公式)(2013·课标全国卷Ⅱ)已知sin 2α=23,则cos 2⎝⎛⎭⎫α+π4=( ) A.16 B.13 C.12D.23【解析】 ∵sin 2α=23,∴cos 2⎝⎛⎭⎫α+π4=1+cos ⎝⎛⎭⎫2α+π 22 =1-sin 2α2=1-232=16.【答案】 A2.(正弦定理与和角公式)(2013·陕西高考)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .直角三角形B .锐角三角形C .钝角三角形D .不确定【解析】 由正弦定理,及b cos C +c cos B =a sin A ,得 sin B cos C +sin C cos B =sin 2A ,即sin(B +C )=sin 2A , ∴sin A =1,得A =π2(由于0<A <π),故△ABC 是直角三角形. 【答案】 A3.(正弦定理)在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC =________. 【解析】 在△ABC 中,AC sin B =BCsin A, ∴AC =BC ·sin B sin A=2 3.【答案】 2 3图2-2-14.(余弦定理的应用)(2013·福建高考)如图2-2-1,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin ∠BAC =223,AB =32,AD =3,则BD 的长为________.【解析】 ∵sin ∠BAC =sin(90°+∠BAD )=cos ∠BAD =223,∴在△ABD 中,有BD 2=AB 2+AD 2-2AB ·AD cos ∠BAD , ∴BD 2=18+9-2×32×3×223=3,∴BD = 3. 【答案】35.(三角恒等变换)(2013·重庆高考改编)4cos 50°-tan 40°=________. 【解析】 4cos 50°-tan 40°=4sin 40°-sin 40°cos 40°=4sin 40°cos 40°-sin 40°cos 40°=2sin 80°-sin 40°cos 40°=sin 80°+sin (60°+20°)-sin (60°-20°)cos 40°=sin 80°+2cos 60°sin 20°cos 40°=sin 80°+sin 20°cos 40°=sin (50°+30°)+sin (50°-30°)cos 40°=2sin 50°cos 30°cos 40°=3·cos 40°cos 40°= 3.【答案】 3简单的三角恒等变换(2013·湖南高考)已知函数f (x )=sin ⎝⎛⎭⎫x -π6+cos ⎝⎛⎭⎫x -π3,g (x )=2sin 2x 2.(1)若α是第一象限角,且f (α)=335, 求g (α)的值; (2)求使f (x )≥g (x )成立的x 的取值集合.【思路点拨】 (1)利用和(差)角、倍角公式将f (x )、g (x )化简,沟通二者联系;(2)由f (x )≥g (x ),化为“一角一名称”的三角不等式,借助三角函数的图象、性质求解.【自主解答】 f (x )=sin ⎝⎛⎭⎫x -π6+cos ⎝⎛⎭⎫x -π3 =32sin x -12cos x +12cos x +32sin x =3sin x ,g (x )=2sin 2x2=1-cos x .(1)由f (α)=335得sin α=35.又α是第一象限角,所以cos α>0.从而g (α)=1-cos α=1-1-sin 2α=1-45=15.(2)f (x )≥g (x )等价于3sin x ≥1-cos x , 即3sin x +cos x ≥1,于是sin ⎝⎛⎭⎫x +π6≥12, 从而2k π+π6≤x +π6≤2k π+5π6,k ∈Z ,即2k π≤x ≤2k π+2π3,k ∈Z .故使f (x )≥g (x )成立的x 的取值集合为{x |2k π≤x ≤2k π+2π3,k ∈Z }.1.(1)注意角之间的关系,灵活运用和(差)、倍角公式化为“同角x ”的三角函数,这是解题的关键;(2)重视三角函数图象,性质在求角的范围中的应用,由图象的直观性、借助周期性,整体代换可有效避免错误.2.进行三角恒等变换要抓住:变角、变函数名称、变结构,尤其是角之间的关系;注意公式的逆用和变形使用.变式训练1 已知sin α=12+cos α,且α∈⎝⎛⎭⎫0,π2. 求cos 2αsin (α-π4)的值.【解】 依题意得sin α-cos α=12,所以1-2sin αcos α=14,2sin αcos α=34.则(sin α+cos α)2=1+2sin αcos α=74.由0<α<π2,知sin α+cos α=72>0.所以cos 2αsin (α-π4)=cos 2α-sin 2α22(sin α-cos α)=-2(sin α+cos α)=-142.正(余)弦定理(2013·山东高考)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a+c =6,b =2,cos B =79.(1)求a ,c 的值; (2)求sin(A -B )的值.【思路点拨】 (1)由余弦定理,得关于a ,c 的方程,与a +c =6联立求解;(2)依据正弦定理求sin A ,进而求cos A ,sin B ,利用两角差的正弦公式求值.【自主解答】 (1)由余弦定理b 2=a 2+c 2-2ac cos B , 得b 2=(a +c )2-2ac (1+cos B ), 又b =2,a +c =6,cos B =79,所以ac =9,解得a =3,c =3.(2)在△ABC 中,sin B =1-cos 2B =429,由正弦定理得sin A =a sin B b =223.因为a =c ,所以A 为锐角. 所以cos A =1-sin 2A =13.因此sin(A -B )=sin A cos B -cos A sin B =10227.1.(1)本题求解的关键是运用正弦(余弦)定理完成边角转化;(2)求解易忽视判定A 的范围,错求cos A =±13,导致增解.2.以三角形为载体考查三角变换是近年高考的热点,要时刻关注它的两重性:一是作为三角形问题,它必然通过正弦(余弦)定理、面积公式建立关于边的方程,实施边角转化;二是它毕竟是三角变换,只是角的范围受到了限制,因此常见的三角变换方法和原则都是适用的.变式训练2 (2013·重庆高考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a 2=b 2+c 2+3bc .(1)求A ;(2)设a =3,S 为△ABC 的面积,求S +3cos B cos C 的最大值,并指出此时B 的值. 【解】 (1)由余弦定理得cos A =b 2+c 2-a 22bc =-3bc 2bc =-32.又因为0<A <π,所以A =5π6.(2)由(1)得sin A =12.又由正弦定理及a =3得S =12bc sin A =12·a sin B sin A·a sin C =3sin B sin C , 因此,S +3cos B cos C =3(sin B sin C +cos B cos C )=3cos(B -C ). 所以,当B =C ,即B =π-A 2=π12时,S +3cos B cos C 取最大值3.解三角形及应用(2013·济南质检)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin B (tan A +tan C )=tan A tan C .(1)求证:a ,b ,c 成等比数列; (2)若a =1,c =2,求△ABC 的面积S .【思路点拨】 (1)从要证的结论看,需将条件中角的三角函数化为边,因此需统一为正弦函数,然后运用三角变换公式化简.(2)由(1)的结论,联想余弦定理,求cos B ,进而求出△ABC 的面积.【自主解答】 (1)在△ABC 中,由于sin B (tan A +tan C )=tan A tan C ,所以sin B (sin Acos A+sin C cos C )=sin A cos A ·sin Ccos C, 所以sin B (sin A cos C +cos A sin C )=sin A sin C . 所以sin B sin(A +C )=sin A sin C . 又A +B +C =π, 所以sin(A +C )=sin B , 所以sin 2B =sin A sin C . 由正弦定理得b 2=ac , 即a ,b ,c 成等比数列. (2)因为a =1,c =2,所以b = 2. 由余弦定理得cos B =a 2+c 2-b 22ac =12+22-22×1×2=34.因为0<B <π,所以sin B =1-cos 2B =74, 故△ABC 的面积S =12ac sin B =12×1×2×74=74.1.认真分析题设与要求结论的联系与区别,消除差异,从而找到解题的突破口,这是本题求解的关键.2.三角形中的边角计算是近年命题的重点,解决这类问题要抓住两点:(1)根据条件,恰当选择正弦、余弦定理完成边角互化;(2)结合内角和定理、面积公式,灵活运用三角恒等变换公式.变式训练3 已知三角形的三个内角A ,B ,C 所对边的长分别为a ,b ,c ,设向量m =(c -a ,b -a ),n =(a +b ,c ),且m ∥n .(1)求角B 的大小;(2)求sin A +sin C 的取值范围.【解】 (1)∵m ∥n ,∴c (c -a )=(b -a )(a +b ), ∴c 2-ac =b 2-a 2,则a 2+c 2-b 2=ac . 由余弦定理得cos B =a 2+c 2-b 22ac =12.又0<B <π,因此B =π3.(2)∵A +B +C =π,∴A +C =2π3,∴sin A +sin C =sin A +sin ⎝⎛⎭⎫2π3-A =sin A +sin2π3 cos A -cos 2π3sin A =32sin A +32cos A =3sin ⎝⎛⎭⎫A +π6, ∵0<A <2π3,∴π6<A +π6<5π6,∴12<sin ⎝⎛⎭⎫A +π6≤1,∴32<sin A +sin C ≤ 3. 故sin A +sin C 的取值范围是⎝⎛⎦⎤32,3正(余)弦定理的实际应用【命题要点】 ①实际问题中的距离,高度测量;②实际问题中角度、方向的测量;③实际行程中的速度、时间的计算.如图2-2-2所示,A ,B 是海面上位于东西方向相距5(3+3)海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即前往营救,其航行速度为30海里/时,该救援船到达D 点需要多长时间?图2-2-2【思路点拨】 由题设条件,要求该救援船到达D 点的时间,只需求出C 、D 两点间的距离,先在△ABD 中求BD ,再在△BDC 中求CD ,进而求出时间.【自主解答】 由题意知AB =5(3+3),∠DBA =90°-60°=30°,∠DAB =45°,∴∠ADB =105°.∴sin 105°=sin 45°·cos 60°+sin 60°·cos 45° =22×12+32×22=2+64. 在△ABD 中,由正弦定理得: BD sin ∠DAB =ABsin ∠ADB,∴BD =AB ·sin ∠DAB sin ∠ADB =5(3+3)·sin 45°sin 105°=5(3+3)×222+64=103(1+3)1+3=10 3.又∠DBC =180°-60°-60°=60°,BC =203, 在△DBC 中,由余弦定理得 CD 2=BD 2+BC 2-2·BD ·BC ·cos 60° =300+1 200-2×103×203×12=900.∴CD =30(海里),∴救援船需要的时间t =3030=1(小时).1.该题求解的关键是借助方位角构建三角形,要把需求量转化到同一个三角形(或相关三角形)中,运用正(余)弦定理沟通边角关系.2.应用解三角形知识解决实际问题需要下列三步: (1)根据题意,画出示意图,并标出条件.(2)将所求问题归结到一个或几个三角形中,通过合理运用正、余弦定理等有关知识正确求解.(3)检验解出的结果是否符合实际意义,得出正确答案.变式训练4 如图2-2-3,A 、C 两岛之间有一片暗礁,一艘小船于某日上午8时从A 岛出发,以10海里/小时的速度沿北偏东75°方向直线航行,下午1时到达B 处.然后以同样的速度沿北偏东15°方向直线航行,图2-2-3下午4时到达C 岛. (1)求A 、C 两岛之间的距离; (2)求∠BAC 的正弦值.【解】 (1)在△ABC 中,由已知,得AB =10×5=50(海里),BC =10×3=30(海里), ∠ABC =180°-75°+15°=120°,由余弦定理,得AC 2=502+302-2×50×30 cos 120°=4 900, 所以AC =70(海里).故A 、C 两岛之间的距离是70海里. (2)在△ABC 中,由正弦定理,得BC sin ∠BAC =ACsin ∠ABC,所以sin ∠BAC =BC ·sin ∠ABC AC =30sin 120°70=3314.故∠BAC 的正弦值是3314.从近两年的高考命题看,正弦定理、余弦定理是高考命题的热点,不仅是用来解决一些简单的三角形边角计算问题;且常与三角函数、向量、不等式交汇命题,灵活考查学生分析解决问题的能力,多以解答题的形式出现,属中低档题目.以三角形为载体的创新交汇问题(12分)已知△ABC 是半径为R 的圆内接三角形,且2R ·(sin 2A -sin 2C )=(2a -b )sin B .(1)求角C ;(2)试求△ABC 的面积S 的最大值. 【规范解答】 (1)由2R (sin 2A -sin 2C ) =(2a -b )sin B ,得a sin A -c sin C =2a sin B -b sin B , ∴a 2-c 2=2ab -b 2,4分由余弦定理得cos C =a 2+b 2-c 22ab =22,又0<C <π,∴C =π4.6分(2)∵csin C=2R , ∴c =2R sin C =2R . 由(1)知c 2=a 2+b 2-2ab , ∴2R 2=a 2+b 2-2ab .8分又a 2+b 2≥2ab (当且仅当a =b 时取“=”), ∴2R 2≥2ab -2ab , ∴ab ≤2R 22-2=(2+2)R 2.10分∴S △ABC =12ab sin C =24ab ≤2+12R 2. 即△ABC 面积的最大值为2+12R 2. 12分【阅卷心语】易错提示 (1)不能灵活运用正弦定理化简等式,致使求不出角C ,究其原因是不能深刻理解正弦定理的变形应用.(2)对求△ABC 的面积的最大值束手无策,想不到利用等式求ab 的最大值. 防范措施 (1)利用a =2R sin A ,b =2R sin B ,c =2R sin C ,可实施边角转化.(2)对于“已知一边及其对角”的三角形,常用余弦定理,得到其他两边的关系,再利用基本不等式便可求三角形面积的最值.1.已知函数f (x )=sin(x +7π4)+cos(x -3π4),x ∈R . (1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求f (β)的值. 【解】 (1)∵f (x )=sin ⎝⎛⎭⎫x +74π-2π+sin ⎝⎛⎭⎫x -34π+π2 =sin(x -π4)+sin(x -π4)=2sin(x -π4). ∴T =2π,f (x )的最小值为-2.(2)由cos(β-α)=45,cos(β+α)=-45得 cos βcos α+sin βsin α=45, cos βcos α-sin βsin α=-45. 两式相加得2cos βcos α=0.∵0<α<β≤π2,∴β=π2. ∴f (β)=2sin ⎝⎛⎭⎫π2-π4=2sin π4= 2. 2.△ABC 中内角A ,B ,C 的对边分别为a ,b ,c ,已知a =b cos C +c sin B .(1)求B ;(2)若b =2,求△ABC 面积的最大值.【解】 (1)由已知及正弦定理得sin A =sin B cos C +sin C sin B ,①又A =π-(B +C ),故sin A =sin(B +C )=sin B cos C +cos B sin C .② 由①②和C ∈(0,π)得sin B =cos B .又B ∈(0,π),所以B =π4. (2)△ABC 的面积S =12ac sin B =24ac . 由已知及余弦定理得4=a 2+c 2-2ac cos π4. 又a 2+c 2≥2ac ,故ac ≤42-2, 当且仅当a =c 时,等号成立.因此△ABC 面积的最大值为2+1.。
高二数学三角函数三角恒等变换解三角形试题1.已知⊿ABC和⊿BCD均为边长等于的等边三角形,且,则二面角的大小为()A.30°B.45°C.60°D.90°【答案】C【解析】略2.锐角中,已知,则的取值范围是()A.B.C.D.【答案】C【解析】由正弦定理可得,所以.因为为锐角三角形,所以.即.故C正确.【考点】1正弦定理;2三角函数化简求值.3.在中,三内角、、的对边分别是、、.(1)若求;(2)若,,试判断的形状.【答案】(1)或;(2)等边三角形【解析】(1)由题根据正弦定理得到,因为,所以,可得或;(2)根据正弦定理化简可得,结合条件,得到,判断三角形为等边三角形.试题解析:(1)由正弦定理得:又∴∴或(2)由得又是等边三角形.【考点】正弦定理;余弦定理4.圆锥的表面积是底面积的3倍,则该圆锥的侧面展开图扇形的圆心角的弧度数为.【答案】【解析】设母线长为R,底面半径为r,∴底面周长=,底面面积=,侧面面积,∵侧面积是底面积的3倍,∴,【考点】扇形和圆锥的相关计算5.在中,内角A 、B、C对的边长分别是a、b、c.(1)若c=2,C=,且的面积是,求a,b的值;(2)若,试判断的形状.【答案】(1)a=2, b=2(2)等腰三角形【解析】(Ⅰ)根据余弦定理,得,再由面积正弦定理得,两式联解可得到a,b的值;(Ⅱ)根据三角形内角和定理,得到sinC=sin(A+B),代入已知等式,展开化简合并,得sinBcosA=sinAcosA,最后讨论当cosA=0时与当cosA≠0时,分别对△ABC 的形状的形状加以判断,可以得到结论试题解析:(1)由余弦定理得又的面积为,得ab=4 解得 a=2, b=2(2)得得,为直角三角形;当时,A="B," 为等腰三角形【考点】1.正余弦定理解三角形;2.三角函数基本公式6.在中,,则边的长为()A.B.3C.D.7【答案】A【解析】由三角形的面积公式,得,解得;由余弦定理,得,即;故选A.【考点】1.三角形的面积公式;2.余弦定理.7.在△ABC中,A=60°,,,则B=()A.45°B.135°C.45°或135°D.以上答案都不对【答案】A【解析】由正弦定理,得,即,因为,所以,所以;故选A.【考点】正弦定理.【易错点睛】本题考查正弦定理的应用,属于基础题;在三角形中,若已知两边及其中一边的对角,则选用正弦定理求另一边的对角,但满足该条件的三角形并非唯一,可能一解、两解或无解,要根据题目中的条件合理取舍,如本题中由正弦定理得到后,部分学生会出现选C的错误答案,要注意利用“大边对大角”进行取舍.8.已知的三边长分别为,则的面积为__________.【答案】【解析】的边长由余弦定理得,,所以三角形的面积为.【考点】1、余弦定理的运用;2、三角形的面积公式.9.△ABC的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且c=2a,则cosB=()A. B. C. D.【解析】根据等比数列的性质,可得b=a,将c、b与a的关系结合余弦定理分析可得答案.解:△ABC中,a、b、c成等比数列,则b2=ac,由c=2a,则b=a,=,故选B.【考点】余弦定理;等比数列.10.(2015秋•河南期末)已知△ABC的三内角A,B,C成等差数列,且AB=1,BC=4,则该三角形面积为()A.B.2C.2D.4【答案】A【解析】由A,B,C成等差数列A+B+C=π可求B,利用三角形的面积公式S=bcsinA可求.解:∵△ABC三内角A,B,C成等差数列,∴B=60°又AB=1,BC=4,∴;故选A.【考点】三角形的面积公式.11.边长为5、7、8的三角形的最大角与最小角之和为()A.90°B.120°C.135°D.150°【答案】B【解析】长为7的边对应的角满足,,所以最大角与最小角之和为120°【考点】余弦定理解三角形12.(2015秋•珠海期末)△ABC内角A,B,C的对边分别为a,b,c.已知,则B= .【答案】45°.【解析】由已知及正弦定理可得sinB==,根据大边对大角由b<a可得B∈(0,60°),即可求B的值.解:△ABC中,∵,∴由正弦定理可得:sinB===,∵b<a,∴B∈(0,60°),∴B=45°.故答案为:45°.【考点】正弦定理.13.在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(1)求角A的大小;(2)若a=4,b+c=8,求△ABC的面积.【答案】(1)(2)4【解析】(1)由正弦定理将已知等式化成角的正弦的形式,化简解出sinA=,再由△ABC是锐角三角形,即可算出角A的大小;(2)由余弦定理a2=b2+c2﹣2bccosA的式子,结合题意化简得b2+c2﹣bc=16,与联解b+c=8得到bc的值,再根据三角形的面积公式加以计算,可得△ABC的面积.解:(1)∵△ABC中,,∴根据正弦定理,得,∵锐角△ABC中,sinB>0,∴等式两边约去sinB,得sinA=∵A是锐角△ABC的内角,∴A=;(2)∵a=4,A=,∴由余弦定理a2=b2+c2﹣2bccosA,得16=b2+c2﹣2bccos,化简得b2+c2﹣bc=16,∵b+c=8,平方得b2+c2+2bc=64,∴两式相减,得3bc=48,可得bc=16.因此,△ABC的面积S=bcsinA=×16×sin=4.【考点】余弦定理;正弦定理.14.在中,角对边分别是,且满足.(1)求角的大小;(2)若,且的面积为,求.【答案】(1);(2).【解析】(1)利用正弦定理,化边为角,利用两角差的正弦公式,可得进而得,即可求解角的大小;(2)利用三角形的面积公式得,再利用余弦定理得,联立方程组即可求解的值.试题解析:(1);(2)①,利用余弦定理得:即②,联立①②,解得:.【考点】正弦定理、余弦定理及三角形的面积公式.15.在中,内角所对的边分别为,且.(1)求角的大小;(2)如果,求面积的最大值,并判断此时的形状。
【高中数学】数学《三角函数与解三角形》高考知识点(1)一、选择题1.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且222b c a bc +=+若2sin sin sin B C A ⋅=,则ABC ∆的形状是()A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形【答案】C 【解析】 【分析】直接利用余弦定理的应用求出A 的值,进一步利用正弦定理得到:b =c ,最后判断出三角形的形状. 【详解】在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c , 且b 2+c 2=a 2+bc .则:2221222b c a bc cosA bc bc +-===,由于:0<A <π,故:A 3π=.由于:sin B sin C =sin 2A , 利用正弦定理得:bc =a 2, 所以:b 2+c 2﹣2bc =0, 故:b =c ,所以:△ABC 为等边三角形. 故选C . 【点睛】本题考查了正弦定理和余弦定理及三角形面积公式的应用,主要考查学生的运算能力和转化能力,属于基础题型.2.已知函数()sin f x a x x =的一条对称轴为56x π=,函数()f x 在区间()12,x x 上具有单调性,且()()12f x f x =-,则下述四个结论:①实数a 的值为1;②()()1,x f x 和()()22,x f x 两点关于函数()f x 图象的一条对称轴对称; ③21x x -的最大值为π, ④12x x +的最小值为23π. 其中所有正确结论的编号是( )A .①②③B .①③④C .①④D .③④【答案】B 【解析】 【分析】 根据56x π=是函数()f x 的一条对称轴,确定函数()f x ,再根据函数()f x 在区间()12,x x 上具有单调性,得到21x x -的最大值为2Tπ=,然后由()()12f x f x =-,得到()()11,x f x 和()()22,x f x 两点关于函数()f x 的一个对称中心对称求解验证.【详解】 ∵56x π=是函数()f x 的一条对称轴,∴()53f x f x π⎛⎫=-⎪⎝⎭, 令0x =,得()503f f π⎛⎫=⎪⎝⎭,即-1a =,①正确; ∴()sin 2sin 3π⎛⎫=-=- ⎪⎝⎭f x x x x .又因为函数()f x 在区间()12,x x 上具有单调性, ∴21x x -的最大值为2Tπ=,且()()12f x f x =-, ∴()()11,x f x 和()()22,x f x 两点关于函数()f x 的一个对称中心对称,∴121233223x x x x k ππ⎛⎫⎛⎫-+- ⎪ ⎪+π⎝⎭⎝⎭=-=π,k Z ∈, ∴12223x x k ππ+=+,k Z ∈,当0k =时,12x x +取最小值23π,所以①③④正确,②错误. 故选:B 【点睛】本题主要考查三角函数的图象和性质,还考查了推理论证,运算求解的能力,属于中档题.3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a ﹣c cos B )sin A =c cos A sin B ,则△ABC 的形状一定是( ) A .钝角三角形 B .直角三角形C .等腰三角形D .锐角三角形【答案】C 【解析】 【分析】根据题意,由(cos )sin cos sin a c B A c A B -=变形可得sin sin a A c C =,进而由正弦定理可得22a c =,即a c =,即可得答案. 【详解】根据题意,在ABC ∆中,(cos )sin cos sin a c B A c A B -=, 变形可得:sin cos sin cos sin (cos sin cos sin )sin()sin a A c B A c A B c B A A B c A B c C =+=+=+=,即有sin sin a A c C =,又由正弦定理可得22a c =,即a c =. 故选:C . 【点睛】本题主要考查三角形的形状判断,考查正弦定理的应用,意在考查学生对这些知识点的理解掌握水平,属于基础题.4.在ABC ∆中,角,,A B C 所对的边分别为,,a b c 满足,222b c a bc +-=,0AB BC ⋅>u ur u u r u u,2a =,则bc +的取值范围是( ) A .31,2⎛⎫ ⎪⎝⎭B.32⎫⎪⎪⎝⎭C .13,22⎛⎫⎪⎝⎭D .31,2⎛⎤ ⎥⎝⎦【答案】B 【解析】 【分析】利用余弦定理222cos 2b c a A bc+-=,可得3A π=,由|||cos()|0AB BC AB BC B π⋅=⋅->u u u u u u u u r u ur u r u r,可得B为钝角,由正弦定理可得sin sin(120)30)o o b c B B B ∴+=+-=+,结合B 的范围,可得解【详解】由余弦定理有:222cos 2b c a A bc+-=,又222b c a bc +-=故2221cos 222b c a bc A bc bc +-===又A 为三角形的内角,故3A π=又2a=sin sin sin(120)ob c c B C B ==- 又|||cos()|0AB BC AB BC B π⋅=⋅->u u u u u u u u r u ur u r u r故cos 0B B <∴为钝角3sin sin(120)sin 30)22o o b c B B B B B ∴+=+-=+=+(90,120)o o B ∈Q ,可得130(120150)sin(30)(,22o o o o B B +∈∴+∈,330))22o b c B ∴+=+∈ 故选:B 【点睛】本题考查了正弦定理、余弦定理和向量的综合应用,考查了学生综合分析,转化划归,数学运算能力,属于中档题5.函数()[]()cos 2,2f x x x ππ=∈-的图象与函数()sin g x x =的图象的交点横坐标的和为( ) A .53π B .2πC .76π D .π【答案】B 【解析】 【分析】根据两个函数相等,求出所有交点的横坐标,然后求和即可. 【详解】令sin cos2x x =,有2sin 12sin x x =-,所以sin 1x =-或1sin 2x =.又[],2x ππ∈-,所以2x π=-或32x π=或6x π=或56x π=,所以函数()[]()cos 2,2f x x x ππ=∈-的图象与函数()sin g x x =的图象交点的横坐标的和3522266s πππππ=-+++=,故选B. 【点睛】本题主要考查三角函数的图象及给值求角,侧重考查数学建模和数学运算的核心素养.6.在ABC ∆中,若sin :sin :sin 2:3:4A B C =,则ABC ∆是( ) A .直角三角形 B .钝角三角形C .锐角三角形D .等腰直角三角形【答案】B 【解析】 【分析】由题意利用正弦定理,推出a ,b ,c 的关系,然后利用余弦定理求出cosC 的值,即可得解. 【详解】∵sinA :sinB :sinC=2:3:4∴由正弦定理可得:a :b :c=2:3:4, ∴不妨令a=2x ,b=3x ,c=4x ,∴由余弦定理:c 2=a 2+b 2﹣2abcosC ,所以cosC=2222a b cab+-=2224916223x x x x x +-⨯⨯=﹣14, ∵0<C <π, ∴C 为钝角. 故选B . 【点睛】本题是基础题,考查正弦定理,余弦定理的应用,考查计算能力,常考题型.7.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=()A .5-B .CD 【答案】B 【解析】 【分析】由辅助角公式可确定()max f x =sin 2cos θθ-=平方关系可构造出方程组求得结果. 【详解】()()sin 2cos f x x x x ϕ=-=+Q ,其中tan 2ϕ=- ()max f x ∴sin 2cos θθ-=又22sin cos 1θθ+= cos θ∴=【点睛】本题考查根据三角函数的最值求解三角函数值的问题,关键是能够确定三角函数的最值,从而得到关于所求三角函数值的方程,结合同角三角函数关系构造方程求得结果.8.△ABC 中,已知tanA =13,tanB =12,则∠C 等于( )A .30°B .45°C .60°D .135°【答案】D 【解析】 【分析】利用三角形内角和为180o ,可得:tan tan()tan(+)C A B A B π=--=-,利用两角和公式和已知条件,即可得解. 【详解】在△ABC 中,11tan tan 32tan tan()tan(+)=-1111tan tan 132A BC A B A B A B π++=--=-=-=---⋅,所以135C ?o .故选:D. 【点睛】本题考查了正切的两角和公式,考查了三角形内角和,考查了转化思想和计算能力,属于中档题.9.在△ABC 中,7b =,5c =,3B π∠=,则a 的值为 A .3 B .4C .7D .8【答案】D 【解析】 【分析】根据题中所给的条件两边一角,由余弦定理可得2222cos b a c ac B =+-,代入计算即可得到所求的值. 【详解】因为7,5,3b c B π==∠=,由余弦定理可得2222cos b a c ac B =+-,即214925252a a =+-⨯⨯,整理得25240a a --=, 解得8a =或5a =-(舍去),故选D. 【点睛】该题考查的是有关解三角形的问题,在解题的过程中,涉及到的知识点有余弦定理,解三角形所用的就是正弦定理和余弦定理,结合题中的条件,选择适当的方法求得结果.10.在∆ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .则“sin >sin A B ”是“a b >”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】C 【解析】由正弦定理得sin sin 22a b A B a b R R>⇔>⇔> ,所以“sin sin A B >”是“a b >”的充要条件,选C.11.函数y=ππππcos sin cos -sin 4444x x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦在一个周期内的图象是( ) A .B .C .D .【答案】B 【解析】 【分析】首先根据二倍角余弦公式化简得到函数的解析式,再由函数表达式得到函数的单调性和周期,进而得到选项. 【详解】根据两角和差公式展开得到: y=ππππcos sin cos -sin 4444x x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦22πππcos sin cos 2424x x x ⎛⎫⎛⎫⎛⎫+-+=+ ⎪ ⎪ ⎪⎝⎭⎝=⎝⎭⎭=-sin2x ,函数在0的右侧是单调递减的,且周期为π,故选B. 故答案选B . 【点睛】这个题目考查了三角函数的恒等变换,题型为已知函数表达式选择函数的图像,这种题目,一般是先根据函数的表达式得到函数的定义域,或者值域,进行排除;也可以根据函数的表达式判断函数的单调性,周期性等,之后结合选项选择.12.已知函数f (x )=sin 2x +sin 2(x 3π+),则f (x )的最小值为( ) A .12B .14C 3D .22【答案】A 【解析】 【分析】先通过降幂公式和辅助角法将函数转化为()11cos 223f x x π⎛⎫=-+ ⎪⎝⎭,再求最值. 【详解】已知函数f (x )=sin 2x +sin 2(x 3π+), =21cos 21cos 2322x x π⎛⎫-+⎪-⎝⎭+,=1cos 22111cos 222223x x x π⎛⎫⎛⎫--=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭, 因为[]cos 21,13x π⎛⎫+∈- ⎪⎝⎭, 所以f (x )的最小值为12. 故选:A 【点睛】本题主要考查倍角公式及两角和与差的三角函数的逆用,还考查了运算求解的能力,属于中档题.13.在OAB ∆中,已知OB =u u u v 1AB u u u v=,45AOB ∠=︒,点P 满足(),OP OA OB λμλμ=+∈R u u u v u u u v u u u v ,其中λ,μ满足23λμ+=,则OP u u u v的最小值为( )ABCD【答案】A 【解析】 【分析】根据OB =u u u r,1AB =uu u r ,45AOB ∠=︒,由正弦定理可得OAB ∆为等腰直角三角形,进而求得点A 坐标.结合平面向量的数乘运算与坐标加法运算,用λ,μ表示出OP u u u r.再由23λμ+=,将OP u u u r 化为关于λ的二次表达式,由二次函数性质即可求得OP u u u r的最小值.【详解】在OAB ∆中,已知OB =u u u r,1AB =uu u r ,45AOB ∠=︒由正弦定理可得sin sin AB OBAOB OAB=∠∠u u u r u u u rsin 2OAB =∠,解得sin 1OAB ∠=即2OAB π∠=所以OAB ∆为等腰直角三角形以O 为原点,OB 所在直线为x 轴,以OB 的垂线为y 轴建立平面直角坐标系如下图所示:则点A 坐标为22⎝⎭所以2222OA ⎛= ⎝⎭u u u r ,)2,0OB =u u u r因为(),OP OA OB λμλμ=+∈R u u u r u u u r u u u r则)222,022OP λμ⎛ =+ ⎝⎭u u u r 222,22λμλ⎛⎫⎪ ⎪⎝⎭=则2222222OP λμλ⎛⎫=++⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭u u u r2222λλμμ=++因为23λμ+=,则32μλ=- 代入上式可得()()22322232λλλλ+-+-218518λλ-=+299555λ⎛⎫=-+ ⎪⎝⎭所以当95λ=时, min 93555OP ==u u u r 故选:A 【点睛】本题考查了平面向量基本定理的应用,正弦定理判断三角形形状,平面向量的坐标运算,属于中档题.14.若函数tan 23y x k π⎛⎫=-+ ⎪⎝⎭,0,6x π⎛⎫∈ ⎪⎝⎭的图象都在x 轴上方,则实数k 的取值范围为( )A .)+∞ B .)+∞C .()+∞D .()【答案】A 【解析】 【分析】计算tan 203x π⎛⎫<-< ⎪⎝⎭,tan 23x k π⎛⎫->- ⎪⎝⎭恒成立,得到答案. 【详解】∵0,6x π⎛⎫∈ ⎪⎝⎭,∴2033x ππ-<-<,∴tan 203x π⎛⎫-< ⎪⎝⎭,函数tan 23y x k π⎛⎫=-+ ⎪⎝⎭,0,6x π⎛⎫∈ ⎪⎝⎭的图象都在x 轴上方, 即对任意的0,6x π⎛⎫∈ ⎪⎝⎭,都有tan 203x k π⎛⎫-+> ⎪⎝⎭,即tan 23x k π⎛⎫->- ⎪⎝⎭,∵tan 23x π⎛⎫-> ⎪⎝⎭k -≤,k ≥ 故选:A . 【点睛】本题考查了三角函数恒成立问题,转化为三角函数值域是解题的关键.15.函数()22sin 3cos 2f x x x =+-,2,36x ππ⎡⎤∈-⎢⎥⎣⎦的值域为( ) A .40,3⎡⎤⎢⎥⎣⎦B .41,3⎡⎤⎢⎥⎣⎦C .51,4⎡⎤⎢⎥⎣⎦D .50,4⎡⎤⎢⎥⎣⎦【答案】A 【解析】 【分析】化简得到()23sin 2sin 1f x x x =-++,设sin t x =,利用二次函数性质得到答案. 【详解】根据22sin cos 1x x +=,得()23sin 2sin 1f x x x =-++,2,36x ππ⎡⎤∈-⎢⎥⎣⎦, 令sin t x =,由2,36x ππ⎡⎤∈-⎢⎥⎣⎦,得1sin 1,2x ⎡⎤∈-⎢⎥⎣⎦, 故[]0,1t ∈,有2321y t t =-++,[]0,1t ∈,二次函数对称轴为13t =, 当13t =时,最大值43y =;当1t =时,最小值0y =,综上,函数()f x 的值域为40,3⎡⎤⎢⎥⎣⎦.故选:A . 【点睛】本题考查了三角函数值域,换元可以简化运算,是解题的关键.16.某船开始看见灯塔A 时,灯塔A 在船南偏东30o 方向,后来船沿南偏东60︒的方向航行45km 后,看见灯塔A 在船正西方向,则这时船与灯塔A 的距离是( ) A .152km B .30kmC .15kmD .153km【答案】D 【解析】 【分析】如图所示,设灯塔位于A 处,船开始的位置为B ,船行45km 后处于C ,根据题意求出BAC ∠与BAC ∠的大小,在三角形ABC 中,利用正弦定理算出AC 的长,可得该时刻船与灯塔的距离. 【详解】设灯塔位于A 处,船开始的位置为B ,船行45km 后处于C ,如图所示,可得60DBC ∠=︒,30ABD ∠=︒,45BC =30ABC ∴∠=︒,120BAC ∠=︒在三角形ABC 中,利用正弦定理可得:sin sin AC BCABC BAC=∠∠,可得sin 1153sin 23BC ABC AC km BAC ∠===∠ 故选D 【点睛】本题主要考查的是正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解决本题的关键,属于基础题.17.已知函数()3)(0f x x ωϕω=+>,)22ππ-<ϕ<,1(3A ,0)为()f x 图象的对称中心,B ,C 是该图象上相邻的最高点和最低点,若4BC =,则()f x 的单调递增区间是()A .2(23k -,42)3k +,k Z ∈ B .2(23k ππ-,42)3k ππ+,k Z ∈C .2(43k -,44)3k +,k Z ∈ D .2(43k ππ-,44)3k ππ+,k Z ∈【答案】C 【解析】 【分析】由三角函数图像的性质可求得:2πω=,6πϕ=-,即()sin()26f x x ππ=-,再令222262k x k ππππππ--+剟,求出函数的单调增区间即可.【详解】解:函数())(0f x x ωϕω=+>,)22ππ-<ϕ<, 因为1(3A ,0)为()f x 图象的对称中心,B ,C 是该图象上相邻的最高点和最低点,又4BC =,∴222()42T +=,即221216πω+=,求得2πω=.再根据123k πϕπ+=g ,k Z ∈,可得6πϕ=-,()3sin()26f x x ππ∴=-,令222262k x k ππππππ--+剟,求得244433k x k -+剟, 故()f x 的单调递增区间为2(43k -,44)3k +,k Z ∈, 故选:C . 【点睛】本题考查了三角函数图像的性质及单调性,属中档题.18.4cos2d cos sin xx x xπ=+⎰( )A .1)B 1C 1D .2【答案】C 【解析】 【分析】利用三角恒等变换中的倍角公式,对被积函数进行化简,再求积分. 【详解】因为22cos2cos sin cos sin cos sin cos sin x x xx x x x x x-==-++,∴4400cos 2d (cos sin )d (sin cos )14cos sin 0xx x x x x x x x πππ=-=+=+⎰⎰,故选C . 【点睛】本题考查三角恒等变换知与微积分基本定理的交汇.19.设函数()()sin f x x x x R =∈,则下列结论中错误的是( ) A .()f x 的一个周期为2π B .()f x 的最大值为2 C .()f x 在区间2,63ππ⎛⎫⎪⎝⎭上单调递减 D .3f x π⎛⎫+⎪⎝⎭的一个零点为6x π=【答案】D 【解析】 【分析】先利用两角和的正弦公式化简函数()f x ,再由奇偶性的定义判断A ;由三角函数的有界性判断B ;利用正弦函数的单调性判断C ;将6x π=代入 3f x π⎛⎫+ ⎪⎝⎭判断D .【详解】()sin f x x x = 23sin x π⎛⎫=+ ⎪⎝⎭,()f x 周期22,1T A ππ==正确; ()f x 的最大值为2,B 正确,25,,,63326x x πππππ⎛⎫⎛⎫∈∴+∈ ⎪⎪⎝⎭⎝⎭Q , ()f x ∴在2,63ππ⎛⎫⎪⎝⎭上递减,C 正确; 6x π=时,1032f x f ππ⎛⎫⎛⎫+==≠ ⎪ ⎪⎝⎭⎝⎭,6x π=不是3f x π⎛⎫+⎪⎝⎭的零点,D 不正确. 故选D. 【点睛】本题通过对多个命题真假的判断,综合考查两角和的正弦公式以及三角函数的单调性、三角函数的周期性、三角函数的最值与零点,意在考查对基础知识掌握的熟练程度,属于中档题.20.关于函数()()()sin tan cos tan f x x x =-有下述四个结论: ①()f x 是奇函数; ②()f x 在区间0,4π⎛⎫⎪⎝⎭单调递增; ③π是()f x 的周期; ④()f x 的最大值为2.其中所有正确结论的个数是( ) A .4 B .3C .2D .1【答案】C 【解析】 【分析】计算()()()sin tan cos tan f x x x -=--得到①错误,根据复合函数单调性判断法则判断②正确,()()f x f x π+=③正确,假设()f x 的最大值为2,取()2f a =,得到矛盾,④错误,得到答案. 【详解】()()()sin tan cos tan f x x x =-,()()()sin tan cos tan f x x x -=---⎡⎤⎡⎤⎣⎦⎣⎦()()sin tan cos tan x x =--,所以()f x 为非奇非偶函数,①错误;当0,4x π⎛⎫∈ ⎪⎝⎭时,令tan t x =,()0,1t ∈, 又()0,1t ∈时sin y t =单调递增,cos y t =单调递减,根据复合函数单调性判断法则, 当0,4x π⎛⎫∈ ⎪⎝⎭时,()sin tan y x =,()cos tan y x =-均为增函数, 所以()f x 在区间0,4π⎛⎫⎪⎝⎭单调递增,所以②正确; ()()()sin tan cos tan f x x x πππ+=+-+⎡⎤⎡⎤⎣⎦⎣⎦()()()sin tan cos tan x x f x =-=,所以π是()f x 的周期,所以③正确;假设()f x 的最大值为2,取()2f a =,必然()sin tan 1a =,()cos tan 1a =-, 则tan 22a k ππ=+,k Z ∈与tan 2a k ππ=+,k Z ∈矛盾,所以()f x 的最大值小于2,所以④错误. 故选:C . 【点睛】本题考查了三角函数奇偶性,单调性,周期,最值,意在考查学生对于三角函数知识的综合应用.。
解三角形一、单选题1.如图,在中,,,点在边上,,,为垂足.若,则()A.B.C.D.【答案】C【解析】【分析】根据三角形的内角关系,结合正弦定理与倍角公式,即可求得cosA的值。
【详解】在中,在中,由正弦定理得,即,整理得故选:C.【点睛】本题考查了三角形中的边角关系,正弦定理与二倍角公式的简单应用,属于基础题。
2.在,3,160A 0===∆∆ABC S b ABC ,中,则=++++CB A cb a sin sin sin ( )A .338B .32C .3326D .3392【答案】D 【解析】 试题分析:S=12bcsinA=√3,112c ⨯⨯=c=4a²=b²+c²-2bccosA=1+16-2⨯1⨯4⨯cos60°=13由正弦定理=++++C B A c b a sin sin sin sin a A=3392 考点:正弦定理3.在△ABC 中,若AC =√19,AB =3,∠B =2π3,则BC =( )A .2B .3C .4D .5 【答案】A 【解析】 【分析】由已知,利用余弦定理可得关于BC 的方程,解方程可得BC 的值. 【详解】解:∵AC =√19,AB =3,∠B =2π3,∴由余弦定理可得:AC 2=AB 2+BC 2−2AB ⋅BC ⋅cosB ,可得:19=9+BC 2−2×3×BC ×cos2π3,可得:BC 2+3BC −10=0,∴解得:BC =2或−5(舍去). 故选:A . 【点睛】本题主要考查了余弦定理在解三角形中的应用,属于基础题.4.生于瑞士的数学巨星欧拉在1765年发表的《三角形的几何学》一书中有这样一个定理:“三角形的外心、垂心和重心都在同一直线上。
”这就是著名的欧拉线定理,在ΔABC 中,O,H,G 分别是外心、垂心和重心,D 为BC 边的中点,下列四个结论:(1)GH =2OG ;(2)GA ⃑⃑⃑⃑⃑ +GB ⃑⃑⃑⃑⃑ +GC ⃑⃑⃑⃑⃑ =0;(3)AH =2OD ;(4)S ΔABG =S ΔBCG =S ΔACG 正确的个数为( ) A .1 B .2 C .3 D .4 【答案】D 【解析】分析:根据题意,画出图形,结合图形,利用欧拉线定理得出选项(1)正确; 根据三角形的重心性质得出选项(2)正确; 根据△AHG ∽△DOG ,判断选项(3)正确;求出S ΔABG =S ΔBCG =S ΔACG =13S △ABC ,判断选项(4)正确.详解:ΔABC 中,O,H,G 分别是外心、垂心和重心,,画出图形,如图所示;对于(1),根据欧拉线定理得HG =2OG ,选项(1)正确;对于(2),根据三角形的重心性质得GA ⃑⃑⃑⃑⃑ +GB ⃑⃑⃑⃑⃑ +GC ⃑⃑⃑⃑⃑ =0,选项(2)正确; 对于(3),∵AH ∥OD ,∴△AHG ∽△DOG ,∴AH OD=AG DG=2,∴AH =2OD ,选项(3)正确;对于(4),过点G 作GE ⊥BC ,垂足为E ,则GEAN =DGDA =13,∴△BGC 的面积为S △BGC=12×BC ×GE =12×BC ×13×AN =13S △ABC ;同理,S △AGC=S △AGB=13S △ABC ,选项(4)正确. 故选D .点睛:本题考查了三角形中的重心,外心与垂心的应用问题,也考查了分析问题与解答问题的能力,是综合性题目5.在ΔABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,有下列结论: ①若a 2>b 2+c 2,则ΔABC 为钝角三角形; ②若a 2+b 2>c 2,则ΔABC 为锐角三角形; ③若A:B:C =1:2:3,则a:b:c =1:2:3. 其中正确的个数为 ( ) A .1 B .2 C .3 D .0【答案】A 【解析】 【分析】根据余弦定理可知,cosA =b 2+c 2−a 22bc,判断cosA 的正负,只需判断 b 2+c 2−a 2的正负即可判断①②,根据正弦定理,将角的比转化为角的正弦之比即可得边长之比判断③. 【详解】①由余弦定理cosA =b 2+c 2−a 22bc<0,所以A 为钝角,故①正确;②由余弦定理得cosA =b 2+c 2−a 22bc>0,所以C 为锐角,但A 和B 不一定为锐角,故②错误;③易知A =30°,B =60°,C =90°,由正弦定理得a:b:c =sinA:sinB:sinC =1:√3:2,故③错误. 【点睛】本题主要考查了余弦定理,正弦定理,属于中档题. 6.在ABC ∆中,若2=a ,则B c C b cos cos +等于A .4 B.2C .2 D.1【答案】A 【解析】 7.△ABC 中,如果==,那么△ABC 是( ).A .直角三角形B .等边三角形C .等腰直角三角形D .钝角三角形 【答案】B 【解析】试题分析:根据题意,由于==,则可知a:b:c=sinA:sinB:sinC,则原式可变形为cosA=cosB=cosC,故可知A=B=C,该三角形为等边三角形,故选B. 考点:正弦定理点评:主要是考查了正弦定理的运用,属于基础题。
高三数学三角函数综合试题答案及解析1.从原点向圆x2+y2﹣12y+27=0作两条切线,则该圆夹在两条切线问的劣弧长为()A.πB.2πC.4πD.6π【答案】B【解析】圆x2+y2﹣12y+27="0" 即 x2+(y﹣6)2=9,设两切线的夹角为2θ,则有sinθ==,∴θ=30°,∴2θ=60°,∴劣弧对的圆心角是120°,∴劣弧长为×2π×3=2π,故选 B.2.已知tan,是关于x的方程x2-kx+k2-3=0的两个实根,且3π<<,则cos+sin= ( )A.B.C.-D.-【答案】C【解析】∵tan·=k2-3=1∴k=±2,而3π<<,∴tan>0,即tan+=k=2,解之得tanα=1,所以sin=cos=∴cos+sin=-3.已知函数.(1)求函数的最大值,并写出取最大值时的取值集合;(2)已知中,角的对边分别为若求实数的最小值.【答案】(1);(2)实数取最小值1【解析】(1)先用诱导公式化为二倍角,再用两角和的正弦化为一个三角函数,然后求使得成立时x的集合即可;(2)利用已知中求出A角的值,在△ABC中根据余弦定理用含b,c的代数式表示a的平方,再由b与c的和为定值利用均值不等式从而求出a的最小值.试题解析:(1).∴函数的最大值为.要使取最大值,则,解得.故的取值集合为. 6分(2)由题意,,化简得,,∴,∴在中,根据余弦定理,得.由,知,即.∴当时,实数取最小值 12分【考点】(1)三角函数的最值(2)余弦定理和基本不等式.4.已知函数f(x)=sin2+sin-.(1)在△ABC中,若sin C=2sin A,B为锐角且有f(B)=,求角A,B,C;(2)若f(x)(x>0)的图象与直线y=交点的横坐标由小到大依次是x1,x2,…,xn,求数列{xn}的前2n项和,n∈N*.【答案】(1)(2)(2n2-n)π.【解析】(1)因为f(x)=+sin -=sin -cos =sin =sin x,又因为f(B)=,故sin B=.又B为锐角,所以B=.由sin C=2sin A,得c=2a,所以b2=a2+4a2-2a·2a cos =3a2.所以c2=a2+b2.所以△ABC 为直角三角形,C=,A=-=.(2)由正弦曲线的对称性、周期性,可知=,=2π+,…,=2(n-1)π+,所以x1+x2+…+x2n-1+x2n=π+5π+9π+…+(4n-3)π=nπ+n(n-1)·4π=(2n2-n)π.5.已知向量a=(sin(α+),1),b=(4,4cosα-),若a⊥b,则sin(α+)=()A.-B.-C.D.【答案】B【解析】∵a⊥b,∴a·b=4sin(α+)+4cosα-=0,即sin(α+)+cosα=,即sinαcos+cosαsin+cosα=,即sinα+cosα=,故sinα+cosα=,故sin(α+)=,又sin(α+)=-sin(α+)=-.故选B.6.已知函数.(1)求的最小正周期和最小值;(2)若,且,求的值.【答案】(1),;(2).【解析】(1)首先根据二倍角公式进行化简,并将函数的解析式化为的形式,然后利用最小正周期公式,最小值为,可得结果;(2)将代入,化简,利用得到三角函数值,根据,得到的值.此题考察三角函数的化简求值,属于基础题.试题解析:(1)解:, 4分,,所以的最小正周期为,最小值为. 8分(2)解:,所以, 11分因为,,所以,因此的值为. 13分【考点】1.三角函数的化简;2.三角函数的求值.7.等于()A.B.C.D.【答案】D【解析】【考点】三角函数的诱导公式及三角函数值.8.已知向量与,其中(Ⅰ)若,求和的值;(Ⅱ)若,求的值域.【答案】(Ⅰ),;(Ⅱ)的值域为.【解析】(Ⅰ)由已知条件,得,由此可求得的值,由于为特殊值,从而可求得的值,进而求得和的值(也可利用平方关系求得和的值);(Ⅱ)首先列出函数的表达式,利用三角函数的平方关系及三角函数辅助角公式,将其化为一个复合角的三角函数式:,最后利用整体思想来求函数的值域.试题解析:(Ⅰ),, 2分求得. 3分又,, 5分,. 6分(Ⅱ) 8分又,,, 10分,即函数的值域为. 12分【考点】1.向量共线的充要条件;2.三角函数求值;3.三角函数的值域.9.在△ABC中,内角A,B,C满足4sinAsinC-2cos(A-C)=1.(Ⅰ)求角B的大小;(Ⅱ)求sinA+2sinC的取值范围.【答案】(Ⅰ);(Ⅱ)(,].【解析】(Ⅰ)先利用三角函数的和差化积公式化简等式,求得角B的余弦值,从而求得角B的大小;(Ⅱ)根据(Ⅰ)中角B的大小,把化为一个角的三角函数式,再根据此角的范围,求出整个式子的范围.试题解析:(Ⅰ)因为4sinAsinC-2cos(A-C)=4sinAsinC-2cosAcosC+2sinAsinC=-2(cosAcosC-sinAsinC),所以-2cos(A+C)=1,故cos B=.又0<B<π,所以B=. 6分(Ⅱ)由(Ⅰ)知C=-A,故sinA+2sinC=2sinA+cosA=sin(A+θ),其中0<θ<,且sinθ=,cosθ=.由0<A<知,θ<A+θ<+θ,故<sin(A+θ)≤1.所以sinA+2sinC∈(,]. 14分【考点】1、三角函数和差化积公式;2、三角函数的取值范围.10.已知向量,,(Ⅰ)若,求的值;(Ⅱ)在中,角的对边分别是,且满足,求函数的取值范围.【答案】(1);(2).【解析】本题主要考查两角和与差的正弦公式、二倍角公式、余弦定理、三角函数的值域等基础知识,考查运用三角公式进行三角变换的能力和基本的运算能力.第一问,利用向量的数量积将坐标代入得表达式,利用倍角公式、两角和的正弦公式化简表达式,因为,所以得到,而所求中的角是的2倍,利用二倍角公式计算;第二问,利用余弦定理将已知转化,得到,得到,得到角的范围,代入到中求值域.试题解析:(Ⅰ)∵,而,∴,∴,(Ⅱ)∵,∴,即,∴,又∵,∴,又∵,∴,∴.【考点】1.向量的数量积;2.倍角公式;3.两角和与差的正弦公式;4.余弦公式;5.三角函数的值域.11.已知函数为常数).(Ⅰ)求函数的最小正周期;(Ⅱ)若时,的最小值为,求a的值.【答案】(Ⅰ)的最小正周期;(Ⅱ).【解析】(Ⅰ)求函数的最小正周期,由函数为常数),通过三角恒等变化,把它转化为一个角的一个三角函数,从而可求函数的最小正周期;(Ⅱ)利用三角函数的图像,及,可求出的最小值,让最小值等于,可求出a的值.试题解析:(Ⅰ)∴的最小正周期(Ⅱ)时,时,取得最小值【考点】三角函数的性质.12.在△中,角的对边分别为,.(Ⅰ)求角的大小;(Ⅱ)求函数的值域【答案】(Ⅰ);(Ⅱ)值域为.【解析】(Ⅰ)因为,解三角形用到正弦与余弦,因此先切割化弦,,式子即含有角有含有边,由于求的是角,可利用正弦定理把边化为角得,,通过三角恒等变化,和三角形的内角和为,可求得;(Ⅱ)求函数的值域,解这类问题常常通过三角恒等变形,把它转化为一个角的一个三角函数来解,本题通过三角恒等变形得,利用,从而求试题解析:(Ⅰ),而 3分5分7分(Ⅱ) 8分9分11分13分的值域为 14分【考点】解三角形,求三角函数值域.13.在中,角所对的边为,且满足(Ⅰ)求角的值;(Ⅱ)若且,求的取值范围.【答案】(1);(2).【解析】本题考查解三角形中的正弦定理、二倍角公式、二角和与差的正余弦公式及求三角函数最值等基础知识,考查基本运算能力.第一问,先用倍角公式和两角和与差的余弦公式将表达式变形,解方程,在三角形内求角;第二问,利用正弦定理得到边和角的关系代入到所求的式子中,利用两角和与差的正弦公式展开化简表达式,通过得到角的范围,代入到表达式中求值域.试题解析:(1)由已知得, 4分化简得,故. 6分(2)由正弦定理,得,故8分因为,所以,, 10分所以. 12分【考点】1.倍角公式;2.两角和与差的余弦公式;3.正弦公式;4.求三角函数的值域.14.函数是()A.最小正周期为的奇函数B.最小正周期为的奇函数C.最小正周期为的偶函数D.最小正周期为的偶函数【解析】根据诱导公式将函数化简为,于是可判断其为最小正周期为的偶函数.【考点】本小题主要考查诱导公式、三角函数的奇偶性15.已知函数.(Ⅰ)求函数的最小正周期;(Ⅱ)求函数在区间上的值域.【答案】(Ⅰ);(Ⅱ)的值域为.【解析】(Ⅰ)先由三角恒等变换得,从而得;(Ⅱ)先由得得,再由正弦函数的单调性得,从而得的值域为.试题解析:(I)4分所以,周期. 6分(II)∵,∴ 8分,∴的值域为 12分【考点】1.三角恒等变换;2.三角函数的单调性;3.三角函数的值域16.已知向量,,函数的图象与直线的相邻两个交点之间的距离为.(Ⅰ)求的值;(Ⅱ)求函数在上的单调递增区间.【答案】(Ⅰ);(Ⅱ)的单调增区间为和.【解析】(Ⅰ)先由向量数量积坐标运算得,再由图象与直线的相邻两个交点之间的距离为得,从而求得;(Ⅱ)由得,再由余弦函数的单调性可得的单调增区间为和.试题解析:(Ⅰ) 1分5分由题意,, 6分(Ⅱ),时,故或时,单调递增 9分即的单调增区间为和 12分【考点】1.向量的数量积;2.三角恒等变换;3.三角函数的单调性17.已知点是函数图象上的任意两点,若时,的最小值为,且函数的图像经过点.(Ⅰ)求函数的解析式;(Ⅱ)在中,角的对边分别为,且,求的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)由题意先得函数的周期,再由周期得的值,再把点带入函数,根据的范围可得的值,从而得函数的解析式;(Ⅱ)先根据二倍角公式化简等式,再根据正弦定理得三角形三个边的关系,然后利用余弦定理求的范围,进而得角的范围,则可得的范围.试题解析:(I)由题意知,,又且,, 6分(II)即由,得,取值范围为…14分【考点】1、三角函数的周期;2、二倍角公式;3、正弦定理;4、余弦定理;5、三角函数的值域.18.已知函数(其中的最小正周期为.(Ⅰ)求的值,并求函数的单调递减区间;(Ⅱ)在锐角中,分别是角的对边,若的面积为,求的外接圆面积.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)先利用倍角公式及两角和的三角公式将化为一个复合角的三角函数式,由可得的值,最后利用整体思想求函数的单调递减区间;(Ⅱ)由(Ⅰ)及已知得即又是锐角三角形,因此有利用面积公式得方程:即可求出,再利用余弦定理求出,由正弦定理得的外接圆半径,最后求得的外接圆面积.试题解析:(Ⅰ)由已知得,于是.的单调递减区间为.(Ⅱ)由(Ⅰ)及已知得即或或.又是锐角三角形,因此有由已知得由余弦定理得,的外接圆半径为:,则的外接圆面积为.【考点】1.三角恒等变换;2.三角函数的单调性、周期性;3.应用正余弦定理解三角形;4.三角形面积公式.19.对任意实数,函数.如果函数,那么对于函数.对于下列五种说法:(1) 函数的值域是;(2) 当且仅当时,;(3) 当且仅当时,该函数取最大值1;(4)函数图象在上相邻两个最高点的距离是相邻两个最低点的距离的4倍;(5) 对任意实数x有恒成立.其中正确结论的序号是.【答案】(2)(4)(5)【解析】由已知得,.当时,;当时,.函数的值域是,所以(1)错误;(2)当时,,所以(2)正确;(3)该函数的最大值是,所以(3)错误;(4)在区间上,最高点对应的横坐标是和,最低点对应的横坐标是和,所以最高点间的距离是,最低点间的距离是,所以“函数图象在上相邻两个最高点的距离是相邻两个最低点的距离的4倍”是正确的;(5)因为,所以,,所以对任意实数x有恒成立.【考点】1.三角函数的积化和差公式;2.三角函数的最值;3.三角函数的诱导公式;4.三角函数的图像与性质20.已知函数.(Ⅰ)求的最小正周期;(Ⅱ)当时,求的值域.【答案】(Ⅰ)函数的最小正周期;(Ⅱ)所以的值域为[1,3].【解析】(Ⅰ)求的最小正周期,像这一类题,求的周期问题,常常采用把它化成一个角的一个三角函数,即化成,利用它的图象与性质,求出周期,本题首先对降次,然后利用化为一个角的一个三角函数即可;(Ⅱ)当时,求的值域,可由,求出的范围,从而得的值域.试题解析:.(Ⅰ)函数的最小正周期.(Ⅱ)因为,所以,所以,所以,所以的值域为[1,3].【考点】两角和正弦公式、正弦函数的周期性与值域.21.在中,已知内角,边.设内角,的面积为.(1)求函数的解析式和定义域;(2)求函数的值域.【答案】(1),定义域为;(2)函数的值域为.【解析】(1)先利用正弦定理将、用含的表达式进行表示,然后利用面积公式将函数求出并进行化简,然后根据对三角形内角的限制求出自变量的取值范围作为函数的定义域;(2)在(1)的基础上,即函数的前提下,将视为一个整体,先求出的取值范围,然后利用正弦函数的图象确定函数的取值范围,即为函数的值域.试题解析:(1)由正弦定理得,,,,其中,即函数的定义域为;(2),,故,,即函数的值域为.【考点】1.正弦定理;2.三角形的面积公式;3.二倍角公式;4.辅助角公式;5.三角函数的最值22.已知函数.(1)若,求的值;(2)求函数的单调递增区间.【答案】(1);(2)的单调递增区间是.【解析】本题考查两角和与差的正弦公式、降幂公式以及运用三角公式进行三角变换求三角函数的单调区间.第一问,用降幂公式化简式子,得到解出,再代入到中用诱导公式化简;第二问,先利用降幂公式、两角和与差的正弦公式化简表达式,再数形结合求单调区间.试题解析:(1)由题设知.因为,所以,,即 ().所以. (6分)(2)当,即 ()时,函数是增函数,故函数的单调递增区间是 ().(12分)【考点】1.降幂公式;2.诱导公式;3.两角和与差的正弦公式;4.三角函数的单调性.23.若的图象关于直线对称,其中(1)求的解析式;(2)将的图象向左平移个单位,再将得到的图象的横坐标变为原来的2倍(纵坐标不变)后得到的图象;若函数的图象与的图象有三个交点且交点的横坐标成等比数列,求的值.【答案】(1);(2).【解析】(1)本题考查了三角函数的对称性,利用通解来求解;(2)由图象变换求得,再利用三交点的横坐标成等比数列求得,因此.此题将数列与三角函数知识联系在一起,在知识的交汇处命题.试题解析:(1)的图象关于直线对称,,解得, 2分5分(2)将的图象向左平移个单位后,提到,再将得到的图象的横坐标变为原来的2倍(纵坐标不变)后,得到9分函数的图象与的图象有三个交点坐标分别为且则由已知结合图象的对称性,有,解得 11分. 12分【考点】1.三角函数解析式的求解;2.函数的对称性;3.三角函数图象的变换;4.等比中项.24.已知函数.(1)若函数的图像关于直线对称,求的最小值;(2)若存在,使成立,求实数的取值范围.【答案】(1)的最小值为;(2)实数的取值范围是.【解析】(1)先将函数的解析式化为,然后利用对称轴求出有关于的表达式,从而确定的最小值;(2)利用参数分离法将问题转化为方程在上有解,只需要利用三角函数的相关方法计算出函数在区间上的取值范围,进而就可以确定参数的取值范围.试题解析:(1), 2分,又的最小值为 6分(2) 8分10分则 12分【考点】1.两角和的正弦公式;2.二倍角公式;3.辅助角公式;4.三角函数的对称性;5.三角函数的值域25.已知函数,.(Ⅰ)求函数的最小值和最小正周期;(Ⅱ)设的内角、、的对边分别为、、,满足,且,求、的值.【答案】(Ⅰ)最小值为,最小正周期为;(Ⅱ).【解析】(Ⅰ)将原函数化为一角一函数形式解答;(Ⅱ)由得出,然后根据条件得,利用余弦定理得,联立解出.试题解析:(Ⅰ) 3分则的最小值是,最小正周期是; 6分(Ⅱ),则, 7分, ,所以,所以, 9分因为,所以由正弦定理得 10分由余弦定理得,即 11分由①②解得:, 12分【考点】三角函数化简、三角函数的周期、正弦定理、余弦定理.26.已知,其中向量,,.在中,角A、B、C的对边分别为,,.(1)如果三边,,依次成等比数列,试求角的取值范围及此时函数的值域;(2) 在中,若,边,,依次成等差数列,且,求的值.【答案】(1),;(2).【解析】(1)先根据向量的数量积的坐标运算和三角函数的积化和差公式,化简,然后根据三边关系结合余弦定理求得角的取值范围,再将代入化简后的,得到,根据三角函数在定区间上的值域求得函数的值域;(2)根据题中所给信息解得角的大小,由,得到,由已知条件得边,,依次成等差数列,结合余弦定理,得到两个等量关系,解得的值.试题解析:(1),2分由已知,所以,所以,,则,故函数f(B)的值域为; 6分(2)由已知得,所以, 8分所以或,解得或(舍去), 10分由,得,解得,由三边,,依次成等差数列得,则,由余弦定理得, 解得. 12分【考点】1、平面向量的数量积的运算;2、余弦定理;3、解三角形;4、等差数列的性质及应用;5、特殊角的三角函数值.27.函数的最小正周期为,其图像经过点(1)求的解析式;(2)若且为锐角,求的值.【答案】(1);(2).【解析】本题考查三角函数的性质,主要考查三角函数的周期、两角和与差的三角函数、倍角公式等基础知识,考查运算能力,考查数型结合思想.第一问,先利用周期求出,再利用点的坐标求出,注意已知条件中的取值范围;第二问,先利用两角和与差的三角函数公式展开化简表达式,得到,然后求,但是注意的正负符号.试题解析:(1)∵的最小正周期为,,∴,,又的图象经过点∴,即,又∴∴(2),∴整理得即,又为锐角,∴.【考点】1.三角函数的周期;2.三角函数的对称轴;3.三角函数值.28.设函数.(1)求函数最大值和最小正周期;(2)设为的三个内角,若,求.【答案】(1),;(2).【解析】(1)先由两角和的正弦公式和二倍角公式将展开、降次,再重新整理,然后利用公式(其中)将变成的形式,从而可以求出的最大值及最小正周期;(2)由代入可求得,从而得和,再由得,因为与互补,所以由两角和的正弦公式可得.试题解析:(1).即 4分, 6分最小正周期 8分(2),所以,即 10分所以,.在中,,所以14分【考点】1.三角恒等变换;2.三角函数的基本运算;3. 函数的性质.29.在中,角所对的边分别为且满足.(I)求角的大小;(II)求的最大值,并求取得最大值时角的大小.【答案】(I);(II)最大值为2,此时,.【解析】(I)由正弦定理将转化为角的关系,再利用三角函数关系式解答,在三角形中求角或边,通常对条件进行“统一”,统一为边或统一为角,主要的工具是正弦定理和余弦定理,同时不要忘记了三角形内角和定理;(II)先通过三角函数的恒等变形化的形式后再解答,一般地,涉及三角函数的值域问题,多数情况下要将其变形为后,再利用三角函数的性质解答,也有部分题目,可转化为角的某个三角函数,然后用换元法转化为非三角函数问题.试题解析:(I)由正弦定理得,因为所以,从而,又,所以,则 5分(II)由(I)知, 6分于是,因为,所以,从而当,即时,取最大值2.综上所述,的最大值为2,此时, 13分【考点】三角函数性质、正弦定理.30.已知△ABC的三个内角A、B、C所对的边分别为a,b,c,且.(1)求角A的大小,(2)若,求△ABC的面积.【答案】(1);(2).【解析】本题主要考查两角和与差的正弦公式、降幂公式、诱导公式、正弦定理、三角形面积公式等基础知识,考查基本运算能力.第一问,是求角的大小,利用等式的恒等变形,找出所求角的三角函数值,再判断角的范围求角;第二问,是求三角形面积,首先要求出一条边,用正弦定理可以求出边,然后求,利用两角和与差的正弦公式.试题解析:(1)由,得.,得,即,因为,所以. 6分(2)由,得,由正弦定理,得..所以的面积. 12分【考点】1.诱导公式;2.降幂公式;3.正弦定理;4.两角和的正弦公式;5.三角形面积公式.31.已知函数,的最大值是1,最小正周期是,其图像经过点.(1)求的解析式;(2)设、、为△ABC的三个内角,且,,求的值.【答案】(1);(2).【解析】(1)根据题中的已知条件确定函数中各未知量的值进而求出函数的解析式;(2)在求出函数的解析式之后,利用三角形的内角和定理,将的值转化为与的和角的三角函数来求解,具体转化思路为,然后再利用同角三角函数之间的关系以及两角和的余弦公式进行求值.试题解析:(1)因为函数的最大值是1,且,所以.因为函数的最小正周期是,且,所以,解得.所以.因为函数的图像经过点,所以.因为,所以.所以.(2)由(1)得,所以,.因为,所以,.因为为△ABC的三个内角,所以.所以.【考点】三角函数的基本性质、两角和的余弦函数、同角三角函数之间的关系32.已知函数,.(Ⅰ)求函数的最小正周期及对称轴方程;(Ⅱ)当时,求函数的最大值和最小值及相应的x值.【答案】(Ⅰ)最小正周期为,对称轴方程为.(Ⅱ)时,;时,.【解析】(Ⅰ)先化简函数的解析式,再利用函数的图像和性质解决的最小正周期及对称轴方程;(Ⅱ)当时,可以求出,利用函数在上的图像和性质解决的最大值和最小值.(Ⅰ).所以的最小正周期为.由,得对称轴方程为. 6分(Ⅱ)当时,,所以当,即时,;当,即时,. 12分.【考点】三角恒等变形、三角函数的性质.33.已知函数.(1)求函数的最小正周期和最小值;(2)若,,求的值.【答案】(1),;(2).【解析】(1)先用二倍角正弦公式将式子化简,再求最值和周期;(2)先利用第一问的解析式将求出来,所以下面的关键是求出,利用已知和,求出,但是得进行正负的取舍,得到的准确值后,代入到的表达式中.试题解析:(1)已知函数即, 2分∴ 3分当时,即, 4分6分(2) 8分由,,解得: 10分∵,∴ 11分所以 12分.【考点】1.二倍角正弦公式;2.同名三角函数的商数关系、平方关系.34.已知函数.(Ⅰ)求函数在上的值域;(Ⅱ)若对于任意的,不等式恒成立,求.【答案】(Ⅰ)[-3,3];(Ⅱ).【解析】(Ⅰ)先利用三角恒等变换公式化简,再求在定义域范围上的值域;(Ⅱ)根据不等式恒成立,得是的最大值,从而得的范围,最后求的值.试题解析:解:(Ⅰ),3分∵,∴,∴,∴,即函数在上的值域是[-3,3]. 6分(Ⅱ)∵对于任意的,不等式恒成立,∴是的最大值,∴由,解得,10分∴. 12分【考点】1、二倍角公式;2、三角恒等变换;3、三角函数的值域;4、三角函数的基本运算.35.设函数,(I)求函数在上的最大值与最小值;(II)若实数使得对任意恒成立,求的值.【答案】(I)最大值为3,最小值为2(II)-1【解析】(I)将函数化为,再求出最值;(II)由和求出a、b、c,再将值代入。
第十章三角恒等变换10.1两角和与差的三角函数....................................................................................... - 1 -10.1.1两角和与差的余弦.................................................................................... - 1 -10.1.2两角和与差的正弦.................................................................................... - 5 -10.1.3两角和与差的正切.................................................................................... - 8 -10.2二倍角的三角函数............................................................................................. - 11 -10.3几个三角恒等式................................................................................................. - 15 - 10.1两角和与差的三角函数10.1.1两角和与差的余弦知识点两角和与差的余弦公式(1)两角差的余弦公式C(α-β):cos(α-β)=cos αcos β+sin αsin β.(2)两角和的余弦公式C(α+β):cos(α+β)=cos αcos β-sin αsin β.cos(90°-30°)=cos 90°-cos 30°成立吗?[提示]不成立.重点题型类型1两角和与差的余弦公式的简单应用【例1】求下列各式的值:(1)cos 40°cos 70°+cos 20°cos 50°;(2)cos 7°-sin 15°sin 8°cos 8°;(3)12cos 15°+32sin 15°.[解](1)原式=cos 40°cos 70°+sin 70°sin 40°=cos(70°-40°)=cos 30°=3 2.(2)原式=cos(15°-8°)-sin 15°sin 8°cos 8°=cos 15°cos 8°cos 8°=cos 15°=cos(60°-45°)=cos 60°cos 45°+sin 60°sin 45°=2+6 4.(3)∵cos 60°=12,sin 60°=32,∴12cos 15°+32sin 15°=cos 60°cos 15°+sin 60°sin 15°=cos(60°-15°)=cos45°=2 2.1.两角和与差的余弦公式中,α,β可以是单个角,也可以是两个角的和或差,在运用公式时常将两角的和或差视为一个整体.2.在运用公式化简求值时,要充分利用诱导公式构造两角和与差的余弦结构形式,然后逆用公式求值.提醒:要重视诱导公式在角和函数名称的差异中的转化作用.类型2已知三角函数值求角【例2】已知锐角α,β满足sin α=55,cos β=31010,求α+β的值.以同角三角函数的基本关系为切入点,求得cos α,sin β的值,在此基础上,借助cos(α+β)的公式及α+β的范围,求得α+β的值.[解]因为α,β为锐角,且sin α=55,cos β=31010,所以cos α=1-sin2α=1-15=255,sin β=1-cos2β=1-910=1010,故cos(α+β)=cos αcos β-sin αsin β=255×31010-55×1010=22.由0<α<π2,0<β<π2,得0<α+β<π.因为cos(α+β)>0,所以α+β为锐角,所以α+β=π4.已知三角函数值求角,一般分三步:第一步:求角的某一三角函数值(该函数在所求角的取值区间上最好是单调函数);第二步:确定角的范围,由题意进一步缩小角的范围; 第三步:根据角的范围写出所求的角. 类型3 给值求值问题【例3】 (对接教材P 51例3)已知sin α=-45,sin β=513,且π<α<3π2,π2<β<π,求cos(α-β).[解] ∵sin α=-45,π<α<3π2, ∴cos α=-1-sin 2α=-35.又∵sin β=513,π2<β<π, ∴cos β=-1-sin 2β=-1213,∴cos(α-β)=cos αcos β+sin αsin β=⎝ ⎛⎭⎪⎫-35×⎝ ⎛⎭⎪⎫-1213+⎝ ⎛⎭⎪⎫-45×513=1665.1.(变条件)若将本题改为已知sin α=-45,sin β=513,且π<α<2π,0<β<π2,求cos(α-β).[解] ∵sin β=513,0<β<π2, ∴cos β=1-sin 2β=1213. 又sin α=-45,且π<α<2π,①当π<α<3π2时,cos α=-1-sin 2α=-35,∴cos(α-β)=cos αcos β+sin αsin β=⎝ ⎛⎭⎪⎫-35×1213+⎝ ⎛⎭⎪⎫-45×513=-5665;②当3π2<α<2π时,cos α=1-sin 2α=35, ∴cos(α-β)=cos αcos β+sin αsin β=35×1213+⎝ ⎛⎭⎪⎫-45×513=1665.综上所述,cos(α-β)=-5665或1665.2.(变条件)若将本例改为已知sin α=-45,π<α<3π2,cos(α-β)=1665,π2<β<π.求sin β.[解] ∵sin α=-45,且π<α<3π2, ∴cos α=-1-sin 2α=-35. 又∵π2<β<π, ∴-π<-β<-π2, ∴0<α-β<π. 又cos(α-β)=1665,∴sin(α-β)=1-cos 2(α-β) =1-⎝ ⎛⎭⎪⎫16652=6365, ∴cos β=cos [α-(α-β)]=cos α·cos(α-β)+sin α·sin(α-β) =⎝ ⎛⎭⎪⎫-35×1665+⎝ ⎛⎭⎪⎫-45×6365=-1213, ∴sin β=1-cos 2β=513.1.利用和(差)角的余弦公式求值时,不能机械地从表面去套公式,而要变通地从本质上使用公式,即把所求的角分解成某两个角的和(差),并且这两个角的正、余弦函数值是已知的或可求的,再代入公式即可求解.2.在将所求角分解成某两角的和(差)时,应注意如下变换:α=(α+β)-β,α=β-(β-α),α=(2α-β)-(α-β),2α=[(α+β)+(α-β)],2α=[(β+α)-(β-α)]等.提醒:注意角的范围对三角函数值符号的限制.10.1.2 两角和与差的正弦知识点 两角和与差的正弦公式 (1)两角和的正弦公式:S (α+β):sin(α+β)=sin αcos β+cos αsin β. (2)两角差的正弦公式:S (α-β):sin(α-β)=sin αcos β-cos αsin β. (3)辅助角公式a sin x +b cos x =a 2+b 2⎝ ⎛⎭⎪⎫a a 2+b 2sin x +b a 2+b 2cos x , 令cos φ=a a 2+b 2,sin φ=ba 2+b 2,则有a sin x +b cos x =a 2+b 2(cos φsin x +sin φcos x )=a 2+b 2sin(x +φ),其中tan φ=ba ,φ为辅助角.重点题型类型1 两角和与差的正弦公式的简单应用 【例1】 求下列各式的值: (1)sin 163°sin 223°+sin 253°sin 313°; (2)2cos 55°-3sin 5°sin 85°.(1)从角和“形”入手,转化成两角和(差)的正弦求值. (2)注意角的差异与变换:55°=60°-5°,85°=90°-5°.[解] (1)原式=sin 163°sin(90°+133°)+sin(90°+163°)·sin(180°+133°) =sin 163°cos 133°-cos 163°sin 133° =sin(163°-133°)=sin 30°=12. (2)原式=2cos (60°-5°)-3sin 5°sin (90°-5°)=cos 5°+3sin 5°-3sin 5°cos 5°=cos 5°cos 5°=1.1.对于非特殊角的三角函数式,要想利用两角和与差的正弦、余弦公式求出具体数值,一般有以下三种途径:(1)化为特殊角的三角函数值; (2)化为正负相消的项,消去求值;(3)化为分子、分母形式,进行约分再求值.2.在进行求值过程的变换中,一定要本着先整体后局部的基本原则,先整体分析三角函数式的特点,如果整体符合三角公式,则整体变形,否则进行各局部的变换.提醒:在逆用两角和与差的正弦和余弦公式时,首先要注意结构是否符合公式特点,其次注意角是否满足要求.类型2 给值求值【例2】 已知0<β<π4,π4<α<3π4,cos ⎝ ⎛⎭⎪⎫π4-α=35,sin ⎝ ⎛⎭⎪⎫3π4+β=513,求cos(α+β)的值.注意⎝ ⎛⎭⎪⎫3π4+β-⎝ ⎛⎭⎪⎫π4-α=π2+(α+β),可通过求出3π4+β和π4-α的正、余弦值来求cos (α+β).[解] 由0<β<π4,π4<α<3π4得 -π2<π4-α<0,3π4<3π4+β<π. ∴cos ⎝ ⎛⎭⎪⎫3π4+β=-1213,sin ⎝ ⎛⎭⎪⎫π4-α=-45,cos(α+β)=sin ⎝ ⎛⎭⎪⎫π2+α+β=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫3π4+β-⎝ ⎛⎭⎪⎫π4-α=sin ⎝ ⎛⎭⎪⎫3π4+βcos ⎝ ⎛⎭⎪⎫π4-α-cos ⎝ ⎛⎭⎪⎫3π4+βsin ⎝ ⎛⎭⎪⎫π4-α=513×35-⎝ ⎛⎭⎪⎫-1213×⎝ ⎛⎭⎪⎫-45=-3365.解此类问题的关键是把“所求角”用“已知角”表示出来(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式.(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.(3)角的拆分方法不唯一,可根据题目合理选择拆分方式. 类型3 形如a sin x +b cos x 的函数的化简及应用【例3】 (对接教材P 54探究)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫x +π6-2cos x ,x ∈⎣⎢⎡⎦⎥⎤π2,π,求函数f (x )的值域.等式a sin x +b cos x =A sin (x +φ)中A 和φ一定存在吗?它们与a ,b 有什么关系?[解] f (x )=2sin ⎝ ⎛⎭⎪⎫x +π6-2cos x=3sin x -cos x =2sin ⎝ ⎛⎭⎪⎫x -π6,∵π2≤x ≤π, ∴π3≤x -π6≤5π6. ∴12≤sin ⎝ ⎛⎭⎪⎫x -π6≤1.∴函数f (x )的值域为[1,2].1.(变结论)本例条件不变,将函数f (x )用余弦函数表示. [解] f (x )=3sin x -cos x =2⎝ ⎛⎭⎪⎫32sin x -12cos x=2⎝ ⎛⎭⎪⎫sin x sin π3-cos x cos π3=-2⎝ ⎛⎭⎪⎫cos x cos π3-sin x sin π3=-2cos ⎝ ⎛⎭⎪⎫x +π3.2.(变结论)本例条件不变,求函数f (x )的单调区间. [解] f (x )=2sin ⎝ ⎛⎭⎪⎫x -π6,由2k π-π2≤x -π6≤2k π+π2,得2k π-π3≤x ≤2k π+2π3,与π2≤x ≤π取交集得π2≤x ≤2π3,∴函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤π2,2π3;由2k π+π2≤x -π6≤2k π+3π2,得2k π+2π3≤x ≤2k π+5π3,与π2≤x ≤π取交集得2π3≤x ≤π, ∴函数f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤2π3,π.此类问题的求解思路如下:首先将函数f (x )化简为f (x )=a sin x +b cos x 的形式;,然后借助辅助角公式化f (x )为f (x )=a 2+b 2sin (x +φ)的形式;最后,类比y =sin x 的性质,树立“x +φ”的团体意识研究y =f (x )的性质.10.1.3 两角和与差的正切知识点 两角和与差的正切公式T(α+β):tan(α+β)=tan α+tan β1-tan αtan β.T(α-β):tan(α-β)=tan α-tan β1+tan αtan β.公式T(α±β)有何结构特征和符号规律?[提示](1)结构特征:公式T(α±β)的右侧为分式形式,其中分子为tan α与tan β的和或差,分母为1与tan αtan β的差或和.(2)符号规律:分子同,分母反.重点题型类型1条件求值问题【例1】已知tan(α+β)=5,tan(α-β)=3,求tan 2α,tan 2β,tan⎝⎛⎭⎪⎫2α+π4.2α=(α+β)+(α-β),2β=(α+β)-(α-β),tan⎝⎛⎭⎪⎫2α+π4可以用tan 2α表示出来.[解]tan 2α=tan[(α+β)+(α-β)]=tan(α+β)+tan(α-β)1-tan(α+β)tan(α-β)=5+31-5×3=-47,tan 2β=tan[(α+β)-(α-β)]=tan(α+β)-tan(α-β)1+tan(α+β)tan(α-β)=5-31+5×3=18,tan⎝⎛⎭⎪⎫2α+π4=1+tan 2α1-tan 2α=1-471+47=311.求解此类问题的关键是明确已知角和待求角的关系;求解时要充分借助诱导公式、角的变换技巧等实现求值.倘若盲目套用公式,可能带来繁杂的运算.类型2 给值求角【例2】 已知tan α,tan β是方程x 2+33x +4=0的两根,且α,β∈⎝ ⎛⎭⎪⎫-π2,π2,求α+β.利用根与系数的关系求tan α+tan β及tan αtan β的值,进而求出tan (α+β)的值,然后由α+β的取值范围确定α+β的值.[解] 因为tan α,tan β是方程x 2+33x +4=0的两根,所以tan α+tan β=-33<0,tan αtan β=4>0,所以tan α<0,tan β<0.又因为α,β∈⎝ ⎛⎭⎪⎫-π2,π2,所以α,β∈⎝ ⎛⎭⎪⎫-π2,0,所以-π<α+β<0.又因为tan(α+β)=tan α+tan β1-tan αtan β=-331-4=3,所以α+β=-2π3.1.给值求角的一般步骤 (1)求角的某一三角函数值; (2)确定角的范围;(3)根据角的范围写出所求的角. 2.选取函数时,应遵照以下原则 (1)已知正切函数值,选正切函数;(2)已知正、余弦函数值,选正弦或余弦函数.若角的范围是⎝ ⎛⎭⎪⎫0,π2,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为⎝ ⎛⎭⎪⎫-π2,π2,选正弦较好.类型3 T (α±β)公式的变形及应用【例3】 已知△ABC 中,tan B +tan C +3tan B tan C =3,且3tan A +3tan B =tan A tan B -1,试判断△ABC 的形状.当一个代数式中同时出现“tan α+tan β”及“tan α tan β”两个团体时,我们可以联想哪些公式解题?[解] ∵3tan A + 3 tan B =tan A tan B -1, ∴3(tan A +tan B )=tan A tan B -1, ∴tan A +tan B 1-tan A tan B=-33,∴tan(A +B )=-33.又∵0<A +B <π,∴A +B =5π6,∴C =π6. ∵tan B +tan C +3tan B tan C =3,tan C =33, ∴tan B +33+tan B =3,tan B =33, ∴B =π6,∴A =2π3,∴△ABC 为等腰三角形.1.公式T (α+β),T (α-β)是变形较多的两个公式,公式中有tan α·tan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β)).三者知二可表示或求出第三个.2.一方面要熟记公式的结构,另一方面要注意常值代换.提醒:当一个式子中出现两角正切的和或差时,常考虑使用两角和或差的正切公式.10.2 二倍角的三角函数知识点 倍角公式 (1)sin 2α=2sin αcos α;(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)tan 2α=2tan α1-tan α.(1)T 2α对任意角α都成立吗?(2)倍角公式中的“倍角”只能是2α吗?[提示] (1)不是.所含各角要使正切函数有意义.(2)倍角公式中的“倍角”具有相对性,对于两个角的比值等于2的情况都成立,如6α是3α的2倍,3α是3α2的2倍.这就是说,“倍”是相对而言的,是描述两个数量之间的关系的.重点题型类型1 直接应用二倍角公式求值【例1】 (对接教材P 63例1)已知sin 2α=513,π4<α<π2,求sin 4α,cos 4α,tan 4α的值.[解] 由π4<α<π2,得π2<2α<π. 又因为sin 2α=513, 所以cos 2α=-1-sin 22α =-1-⎝ ⎛⎭⎪⎫5132=-1213. 于是sin 4α=2sin 2αcos 2α =2×513×⎝ ⎛⎭⎪⎫-1213=-120169;cos 4α=1-2sin 22α=1-2×⎝ ⎛⎭⎪⎫5132=119169;tan 4α=sin 4αcos 4α=-120169119169=-120119.对二倍角公式的理解及二倍角公式的应用形式对于“二倍角”应该有广义上的理解,如:8α是4α的二倍角;6α是3α的二倍角;4α是2α的二倍角;3α是32α的二倍角;α2是α4的二倍角;α3是α6的二倍角;…,又如α=2·α2,α2=2·α4,….类型2逆用二倍角公式化简求值【例2】化简:2cos2α-12tan⎝⎛⎭⎪⎫π4-αsin2⎝⎛⎭⎪⎫π4+α.[解]原式=2cos2α-12sin⎝⎛⎭⎪⎫π4-αcos⎝⎛⎭⎪⎫π4-α·cos2⎝⎛⎭⎪⎫π4-α=2cos2α-12sin⎝⎛⎭⎪⎫π4-α·cos⎝⎛⎭⎪⎫π4-α=2cos2α-1cos 2α=cos 2αcos 2α=1.1.三角函数的化简有四个方向,即分别从“角”“函数名”“幂”“形”着手分析,消除差异.2.解决此类非特殊角的求值问题,其关键是利用公式转化为特殊角求值,要充分观察角与角之间的联系,看角是否有倍数关系,能否用二倍角公式求值,是否是互余关系,能否进行正弦与余弦的互化;要充分根据已知式的结构形式,选择公式进行变形并求值.类型3活用“倍角”关系巧解题【例3】已知sin⎝⎛⎭⎪⎫π4-x=513,0<x<π4,求cos 2xcos⎝⎛⎭⎪⎫π4+x的值.本题中角“π4-x”与角“π4+x”有什么关系?如何借助诱导公式实现cos 2x与sin⎝⎛⎭⎪⎫π4+x的转换?[解]∵⎝⎛⎭⎪⎫π4-x+⎝⎛⎭⎪⎫π4+x=π2,∴sin⎝⎛⎭⎪⎫π4-x=cos⎝⎛⎭⎪⎫π4+x=513,又0<x<π4,∴π4<x+π4<π2,∴sin⎝⎛⎭⎪⎫π4+x=1213.∴cos 2xcos⎝⎛⎭⎪⎫π4+x=sin⎝⎛⎭⎪⎫π2+2xcos⎝⎛⎭⎪⎫π4+x=2sin⎝⎛⎭⎪⎫π4+x cos⎝⎛⎭⎪⎫π4+xcos⎝⎛⎭⎪⎫π4+x=2sin⎝⎛⎭⎪⎫π4+x=2413.1.(变结论)本例条件不变,求cos 2x.[解]∵0<x<π4,∴0<π4-x<π4,由sin⎝⎛⎭⎪⎫π4-x=513,得cos⎝⎛⎭⎪⎫π4-x=1213,cos 2x=sin⎝⎛⎭⎪⎫π2-2x=sin 2⎝⎛⎭⎪⎫π4-x=2sin⎝⎛⎭⎪⎫π4-x cos⎝⎛⎭⎪⎫π4-x=2×513×1213=120169.2.(变结论)本例条件不变,求sin 2x-2sin2x1-tan x的值.[解]∵⎝⎛⎭⎪⎫π4-x+⎝⎛⎭⎪⎫π4+x=π2,∴cos⎝⎛⎭⎪⎫π4+x=sin⎝⎛⎭⎪⎫π4-x=513.∵sin 2x-2sin2x1-tan x=2sin x cos x-2sin2x1-sin xcos x=2sin x(cos x-sin x)cos x-sin xcos x=2sin x cos x=sin 2x,又sin 2x =-cos ⎝ ⎛⎭⎪⎫π2+2x =1-2cos 2⎝ ⎛⎭⎪⎫π4+x =1-2×25169=119169.∴sin 2x -2sin 2x 1-tan x=119169.当遇到π4±x 这样的角时可利用角的互余关系和诱导公式,将条件与结论沟通.cos 2x =sin ⎝ ⎛⎭⎪⎫π2-2x =2sin ⎝ ⎛⎭⎪⎫π4-x cos ⎝ ⎛⎭⎪⎫π4-x .类似这样的变换还有:(1)cos 2x =sin ⎝ ⎛⎭⎪⎫π2+2x =2sin ⎝ ⎛⎭⎪⎫π4+x cos ⎝ ⎛⎭⎪⎫π4+x ;(2)sin 2x =cos ⎝ ⎛⎭⎪⎫π2-2x =2cos 2⎝ ⎛⎭⎪⎫π4-x -1;(3)sin 2x =-cos ⎝ ⎛⎭⎪⎫π2+2x =1-2cos 2⎝ ⎛⎭⎪⎫π4+x 等.提醒:在使用二倍角公式时要特别注意公式中的系数,防止出错.10.3 几个三角恒等式知识点1 积化和差与和差化积公式 (1)积化和差公式sin αcos β=12[sin(α+β)+sin(α-β)],cos αsin β=12[sin(α+β)-sin(α-β)], cos αcos β12[cos(α+β)+cos(α-β)], sin αsin β=-12[cos(α+β)-cos(α-β)]. (2)和差化积公式sin α+sin β=2sin α+β2cos α-β2, sin α-sin β=2cos α+β2sin α-β2, cos α+cos β=2cosα+β2cos α-β2, cos α-cos β=-2sinα+β2sin α-β2.知识点2 半角公式与降幂公式半角公式降幂公式sin α2=±1-cos α2, cos α2=±1+cos α2, tan α2=±1-cos α1+cos α,tan α2=sin α1+cos α=1-cos αsin αsin 2α=1-cos 2α2, cos 2α=1+cos 2α2, tan 2α=1-cos 2α1+cos 2α设tan α2=t ,则sin α=2t 1+t 2,cos α=1-t 21+t 2,tan α=2t1-t 2.重点题型类型1 应用和差化积或积化和差求值【例1】 求sin 220°+cos 250°+sin 20°·cos 50° 的值. [解] 原式=1-cos 40°2+1+cos 100°2+12(sin 70°-sin 30°)=1+12(cos 100°-cos 40°)+12sin 70°-14 =34+12(-2sin 70°sin 30°)+12sin 70° =34-12sin 70°+12sin 70° =34.套用和差化积公式的关键是记准、记牢公式,为了能够把三角函数式化为积的形式,有时需要把常数首先化为某个角的三角函数,然后再化积,有时函数不同名,要先化为同名再化积,化积的结果能求值则尽量求出值来.类型2 万能代换公式的应用 【例2】 设tan θ2=t ,求证:1+sin θ1+sin θ+cos θ=12(t +1).利用万能代换公式,分别用t 表示sin θ,cos θ,代入待证等式的左端即可证明.[证明] 由sin θ=2tan θ21+tan 2θ2及cos θ=1-tan 2θ21+tan 2θ2,得1+sin θ=⎝ ⎛⎭⎪⎫1+tan θ221+tan 2θ2=(1+t )21+t 2, 1+sin θ+cos θ=2⎝ ⎛⎭⎪⎫1+tan θ21+tan 2θ2=2(1+t )1+t2, 故1+sin θ1+sin θ+cos θ=12(t +1).在万能代换公式中不论α的哪种三角函数(包括sin α与cos α)都可以表示成tan α2=t 的“有理式”,将其代入式子中,就可将代数式表示成t 的函数,从而就可以进行相关代数恒等式的证明或三角式的求值.类型3 f (x )=a sin 2ωx +b sin ωx cos ωx +c cos 2ωx 的性质【例3】 求函数f (x )=53cos 2x +3sin 2x -4sin x cos x ,x ∈⎣⎢⎡⎦⎥⎤π4,7π24的最小值,并求其单调减区间.[解] f (x )=53×1+cos 2x 2+3×1-cos 2x2-2sin 2x =33+23cos 2x -2sin 2x=33+4⎝ ⎛⎭⎪⎫32cos 2x -12sin 2x=33+4⎝ ⎛⎭⎪⎫sin π3cos 2x -cos π3sin 2x=33+4sin ⎝ ⎛⎭⎪⎫π3-2x =33-4sin ⎝ ⎛⎭⎪⎫2x -π3,∵π4≤x ≤7π24, ∴π6≤2x -π3≤π4. ∴sin ⎝ ⎛⎭⎪⎫2x -π3∈⎣⎢⎡⎦⎥⎤12,22.∴当2x -π3=π4,即x =7π24时, f (x )取最小值为33-22.∵y =sin ⎝ ⎛⎭⎪⎫2x -π3在⎣⎢⎡⎦⎥⎤π4,7π24上单调递增,∴f (x )在⎣⎢⎡⎦⎥⎤π4,7π24上单调递减.1.(变结论)本例中,试求函数f (x )(x ∈R )的对称轴方程. [解] f (x )=33-4sin ⎝ ⎛⎭⎪⎫2x -π3,令2x -π3=π2+k π,k ∈Z ,得x =k π2+5π12,k ∈Z . 所以函数f (x )的对称轴方程为x =k π2+5π12,k ∈Z .2.(变条件)本例中,函数解析式变为f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6+2sin 2⎝ ⎛⎭⎪⎫x -π12(x ∈R ),求f (x )的单调减区间.[解] ∵f (x )=3sin 2⎝ ⎛⎭⎪⎫x -π12+1-cos 2⎝ ⎛⎭⎪⎫x -π12=2⎣⎢⎡⎦⎥⎤32sin 2⎝ ⎛⎭⎪⎫x -π12-12cos 2⎝ ⎛⎭⎪⎫x -π12+1=2sin ⎝ ⎛⎭⎪⎫2x -π3+1,由2k π+π2≤2x -π3≤2k π+3π2,k ∈Z , 得k π+5π12≤x ≤k π+11π12,k ∈Z ,∴f (x )的单调减区间为⎣⎢⎡⎦⎥⎤k π+5π12,k π+11π12,k ∈Z .1.应用公式解决三角函数综合问题的三个步骤 (1)运用和、差、倍角公式和重要恒等式化简. (2)统一化成f (x )=a sin ωx +b cos ωx +k 的形式.(3)利用辅助角公式化为f (x )=A sin(ωx +φ)+k 的形式,研究其性质. 2.对三角函数式化简的常用方法 (1)降幂化倍角; (2)升幂角减半;(3)利用f (x )=a sin x +b cos x =a 2+b 2sin(x +φ)⎝ ⎛⎭⎪⎫其中tan φ=b a ,化为“一个角”的函数.。
第十章:和差倍角公式与解斜三角形测试
一、选择题(每小题4分,共40分) 1、在ABC ∆中,若cosA =
54,cosB =13
12
,则sinC 的值为 ( ) A 、6563 B 、-6533 C 、-6563 D 、-6533或65
63
2、化简=-0
2
25cos 70sin 20sin ( ) A 、21-
B 、21
C 、41-
D 、41
3、若4
π
βα=
+,则)tan 1)(tan 1(βα++= ( )
A 、1
B 、0
C 、2
D 、-2 4、已知βα,均为锐角,且14
11
)cos(,71cos -=+=
βαα,则角=βcos ( ) A 、3π B 、12π C 、6π D 、4
π
5、在ABC ∆中,若7:6:5::=c b a ,则此三角形是 ( ) A 、锐角三角形 B 、直角三角形 C 、钝角三角形 D 、不能确定
6、函数x x y cos sin 3-=的最大值为 ( ) A 、13- B 、13+ C 、2 D 、4
7、0
100cos 60cos 40cos 20cos 的值为 ( ) A 、
161 B 、-161 C 、81 D 、-8
1 8、设
παπ<<43,ααα2cos ,21
cos sin 则=+= ( ) A 、
47 B 、-47 C 、4
7
± D 、41
9、等腰ABC ∆中,顶角A 的正弦值为
25
7
,则cosB = ( ) A 、
1027 B 、102 C 、1027或 10
2
D 、54
10、在ABC ∆中,若a=4,
b=30,A ∠= 则B ∠等于 ( )
A.120
B.120 或30
C.60
D.60 或120
二、填空题(每小题5分,共30分)
11.已知角α的终边经过点(-3,4),则sin()tan()2
π
απα+--= 。
12、tan250
+tan350
+3tan250
tan350
= 。
13、在ABC ∆中,若3
2
ta n ,21ta n ==
B A ,则=
C ta n 。
14、,3,1600===∠∆a b A ABC ,中,则ABC S ∆= 。
15、在ABC ∆中,045,13,6=+==C b a ,则A= 。
16、若,7
1
ta n ,21)ta n(-==
-ββα则=-βα2 。
三、解答题(共7小题,合计62分) 17、(本题满分12分)若
432
παβπ
<
<<,5
3
)sin(,1312)cos(-=+=
-βαβα,求α2c o s 与 β2sin 的值。
18、(满分10分)已知 βα,是锐角,且βαtan ,tan 是方程013562
=++x x 的两个根,求
βα+的值。
19、(本题满分10分)已知αcot =2,5
2
)tan(=-βα,求)2tan(αβ-的值。
20、(本题满分12分)在ABC ∆中,已知 63,3
1
cos ,600===∠AC C B 。
求: (1)AB 的长; (2)C sin 的值; (3)ABC ∆的面积。
21、(本题10分)已知,αβ
均为锐角,且sin αβαβ==求+的值。
22、(本题满分10分)在ABC ∆中,已知 2,4,450=
==c b A 。
求:(1)a (2)ABC S ∆ (3)B sin
23、(本题满分16分)隔河可看到两目标A 、B ,但不能到达,在岸边选取相距为60m 的C 、D 两点,并测得000045,75,30,120DCB BDC ADC ACD ∠=∠=∠=∠=,求A 、B 两点间的距离。
A B
C
D。