椭圆方程的一个性质和应用
- 格式:doc
- 大小:217.00 KB
- 文档页数:2
椭圆的标准方程及性质
椭圆是平面上一个动点到两个定点的距离之和等于常数的点的轨迹。
在直角坐
标系中,椭圆的标准方程为:
\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\]
其中a和b分别为椭圆的长半轴和短半轴。
下面我们将详细介绍椭圆的标准方
程及其性质。
首先,我们来看椭圆的标准方程。
椭圆的标准方程是一个二次方程,其中x和
y的平方项系数分别为a的平方和b的平方。
通过这个方程,我们可以轻松地确定
椭圆的长短半轴,进而画出椭圆的图形。
其次,让我们来了解一下椭圆的性质。
椭圆有许多独特的性质,这些性质在数
学和实际应用中都有着重要的作用。
首先,椭圆上任意一点到两个焦点的距离之和等于常数,这个性质被称为椭圆的定义性质。
其次,椭圆的长半轴和短半轴的长度决定了椭圆的形状,长短半轴之比称为离心率,离心率越接近于零,椭圆形状越接近于圆。
另外,椭圆还有对称性,关于x轴、y轴和原点对称的性质。
除此之外,
椭圆还有着许多其他有趣的性质,如切线与法线的性质、椭圆的焦点和直径等。
总之,椭圆的标准方程及性质是数学中一个重要的概念,它不仅有着丰富的数
学内涵,而且在物理、工程等领域都有着广泛的应用。
通过学习椭圆的标准方程及性质,我们可以更好地理解椭圆的几何特征,为解决实际问题提供数学工具和思路。
希望本文对您有所帮助,谢谢阅读!。
椭圆的标准方程及性质椭圆作为二维空间中的图形,具有一些独特的性质和特点。
本文将介绍椭圆的标准方程以及其相应的性质。
一、椭圆的标准方程椭圆的标准方程可以通过平面几何的推导得出。
设椭圆的中心为点(h,k),椭圆的长轴为2a,短轴为2b,则可得出椭圆的标准方程:(x-h)^2/a^2 +(y-k)^2/b^2 = 1其中,h和k分别是椭圆的中心在x轴和y轴上的坐标,a和b分别是椭圆长轴和短轴的一半。
二、椭圆的性质1. 中心:椭圆的中心即标准方程中的点(h,k),表示椭圆在平面上的位置。
2. 焦点:椭圆上的每个点到两个焦点的距离之和等于定值2a,即椭圆的长轴长度。
焦点是椭圆的重要特点,用于定义椭圆的几何性质。
3. 长轴和短轴:标准方程中a和b分别表示椭圆的长轴和短轴的一半。
长轴是椭圆的最长直径,短轴是椭圆的最短直径。
4. 离心率:椭圆的离心率定义为焦距与长轴之比,通常用e表示。
离心率决定了椭圆的扁平程度,e<1时表示椭圆,e=0时表示圆。
5. 直径:椭圆上的两个端点同时到椭圆内一点的距离相等,则这两个端点和该内点连成的线段叫做该椭圆的直径。
6. 弦:椭圆上任意两点连线和椭圆的直径所围内部的线段叫做椭圆的弦。
7. 准线:椭圆上与两个焦点连线垂直的直线,与椭圆的侧弦相切。
8. 焦散性:入射到椭圆的平行光线在反射后会汇聚到另一个焦点上,这是椭圆焦散性的一个重要表现。
三、椭圆的应用椭圆作为一种常见的数学曲线,在现实生活中有广泛的应用。
以下是一些椭圆应用的例子:1. 天体运动:行星围绕太阳的轨迹、人造卫星轨道等可以近似看作椭圆。
2. 光学器件:抛物面镜、椭圆面镜等。
3. 固定时间下的最短路径问题。
4. 卫星通信:卫星的定位和通信领域中使用椭圆轨道。
4. 造船工业:船体的椭圆剖面设计,可以减少水的阻力。
5. 圆锥曲线中的一类,在几何光学中,椭球曲面可以聚焦光线。
总结:本文介绍了椭圆的标准方程及其性质。
椭圆作为一种重要的数学曲线,其在几何和物理学中有着广泛的应用。
椭圆的几何性质和在物理学中的应用1 几何性质为了思路清晰简明,我们采用罗列命题的方式叙述椭圆的几何性质,但这又不是简单的罗列,各命题间是有紧密地联系的。
定义1:椭圆是到两个定点(焦点)的距离和等于定长(2a )的点的轨迹。
命题1:椭圆外一点到椭圆两焦点的距离和大于椭圆上一点到两焦点的距离和。
【证明】:如图1所示,M 是椭圆外任一点,1MF 和2MF 分别是该点到两焦点1F 和2F 的距离。
由于M 在椭圆之外,所以我们总能够在椭圆上找到一点N ,使此点在21F MF ∆内。
所以总有a NF NF MF MF 22121=+>+。
下面我们证明命题1中用到的关于三角形的一个命题。
命题2:三角形内一点到两个顶点的距离和小于第三个顶点到这两个顶点的距离和。
【证明】:如图,M 是ABC ∆中任一点,我们要证明的是CB CA BM AM +<+。
延长AM 与BC 交于D 点。
在ADC ∆中,由于两边之和大于第三边,有MD AM CD CA +>+; 在BDM ∆中,由于两边之和大于第三边,有MB MD DB >+。
上面两式相加有CB CA BM AM +<+,命题得证。
命题3:椭圆内一点到两焦点的距离和小于椭圆上一点到两焦点的距离和。
图3图1ABCMD 图2【证明】:如图3所示,我们总能够在椭圆上找一点N ,使M 位于21F NF ∆内。
由命题2可知命题正确。
我们可以说,椭圆的外部是这样的点的集合,它到椭圆的两个焦点的距离之和大于2a ;椭圆的内部是这样的点的集合,它到椭圆的两个核糖点的距离之和小于2a ;椭圆上的点到两个焦点的距离之和恰为2a 。
定义2:与椭圆只有一个公共点的直线称为椭圆的切线。
命题4:椭圆的切线不可能通过椭圆内的任何一点。
【证明】:假设切线可过椭圆内一点,则必与椭圆交于两点,这与该线为椭圆的切线相矛盾。
命题5:构成椭圆的切线的点的集合中,切点是到两个焦点的距离和最小的点。
椭圆的参数方程和极坐标方程总结
椭圆是一种常见的二维图形,描述了一个平面上到两个定点的距离之和为常数的点的集合。
本文将总结椭圆的参数方程和极坐标方程。
1. 椭圆的参数方程
椭圆的参数方程表示了椭圆曲线上的点随一个参数的变化而变化的轨迹。
椭圆的参数方程可以表示为:
x = a * cos(t)
y = b * sin(t)
其中,`a`和`b`分别为椭圆的两个半轴长度,`t`为参数。
参数`t`的取值范围通常为`0`到`2π`,表示椭圆曲线的一个周期。
2. 椭圆的极坐标方程
椭圆的极坐标方程描述了椭圆上的点相对于一个原点的极坐标表示。
椭圆的极坐标方程可以表示为:
r = (a * b) / sqrt((b * cos(theta))^2 + (a * sin(theta))^2)
其中,`r`为点相对于原点的距离,`theta`为点相对于正半轴的极角。
3. 椭圆的性质和应用
椭圆具有许多有趣的性质和应用。
以下是一些常见的性质和应用:
- 椭圆是一个闭合的曲线,且具有对称性。
椭圆的两个焦点和每个点到两个焦点的距离之和为常数。
- 椭圆在几何光学中有重要应用,例如实现椭圆镜、椭圆透镜等。
- 椭圆在数学分析、物理学和工程学中广泛应用,例如描述行星轨道、电子轨道等。
总结:本文介绍了椭圆的参数方程和极坐标方程,以及椭圆的一些性质和应用。
通过理解椭圆的方程和性质,可以更好地应用和理解椭圆在各个领域的应用。
椭圆方程及其应用概述椭圆方程是描述平面上椭圆的几何性质的方程。
它是一种二次方程,通常形式为 Ax² + Bxy + Cy² + Dx + Ey + F = 0。
本文将介绍椭圆方程的基本定义、性质,以及它在不同领域的应用。
基本定义与性质椭圆方程的一般形式为 Ax² + Bxy + Cy² + Dx + Ey + F = 0。
其中 A、B、C、D、E 和 F 是实数系数,且 A 和 C 不同时为零。
通过对齐次化和变换,椭圆方程可以转化为标准形式:(x - h)²/a² + (y - k)²/b² = 1其中 (h, k) 是椭圆的中心坐标,a 和 b 分别是椭圆在 x 和 y 方向上的半长轴长度。
椭圆的离心率定义为 c/a,其中 c 是椭圆的焦点之间的距离。
椭圆方程具有如下性质:1. 椭圆是一个封闭的曲线,其形状类似于圆,但更加拉长。
2. 所有椭圆的焦点到椭圆上任意一点的距离之和是常数。
3. 椭圆的直径是椭圆上两个离焦点最远的点之间的距离。
4. 椭圆的离心率决定了椭圆的形状,当离心率接近于 0 时,椭圆接近于圆;当离心率大于 0 但小于 1 时,椭圆呈现出拉长的形状。
应用领域椭圆方程在许多领域中有广泛的应用,以下介绍其中几个典型的应用:1. 天体力学椭圆方程在描述行星、卫星和彗星的轨道时起着重要作用。
行星的轨道通常是近似椭圆的,通过求解椭圆方程可以精确描述行星在椭圆轨道上的运动,从而预测它们的位置和速度。
2. 信号处理在信号处理领域,椭圆滤波器是一种常用的数字滤波器。
椭圆滤波器的频率响应可以用椭圆方程来描述,它具有可调节的通带和阻带波纹特性,能够实现比其他常见滤波器更陡峭的过渡带和更小的波纹。
3. 地理学在地理学中,椭圆方程被广泛用于描述地球的形状。
根据地球的形状和椭圆方程的参数,可以计算出地球的椭球体参数,如长半轴、短半轴和离心率,从而精确地描述地球的地理特征。
椭圆参数方程椭圆是数学中一个重要的曲线,它有着许多特殊的性质和应用。
在这篇文章中,我将向大家介绍椭圆的参数方程及其几何性质,以及它在日常生活中的一些应用。
首先,让我们来了解椭圆的参数方程。
椭圆的参数方程可以表示为:x = a cos(t)y = b sin(t)其中,x和y是椭圆上的一个点的坐标,t是参数,a和b是椭圆的半长轴和半短轴的长度。
可以看出,参数t的取值范围是[0,2π]。
接下来,我们将探讨椭圆的一些几何性质。
首先是椭圆的离心率。
椭圆的离心率定义为e = √(1 - b²/a²),其中a和b分别是椭圆的半长轴和半短轴的长度。
离心率描述了椭圆的扁平程度,当离心率接近于0时,椭圆接近于圆形,当离心率接近于1时,椭圆则非常扁平。
椭圆还有一个重要的性质是其焦点和准线。
椭圆的焦点是与椭圆上的每个点的距离之和等于常数2a的两个点。
椭圆的准线是位于焦点之间,并与椭圆平行的一组线段。
焦点和准线是椭圆的重要几何特征,它们可以帮助我们更好地理解椭圆的形状和性质。
除了几何性质外,椭圆还有一些重要的应用。
在日常生活中,我们可以发现椭圆的影子是一个常见的现象。
当太阳光照射到一个圆形物体上时,由于光线的投射角度的改变,所形成的影子就是一个椭圆。
这是由于椭圆的离心率决定了不同位置处光线到达地面的角度,从而造成了椭圆形状的影子。
此外,在工程领域中,椭圆也有着广泛的应用。
例如,在天线设计中,椭圆天线可以实现不同方向的辐射和接收信号。
椭圆形状的天线可以实现更广泛的覆盖范围和更高的接收灵敏度。
椭圆还被广泛应用于轨道运动的研究中。
在天体运动中,如果一个天体的轨道为椭圆形状,我们可以利用椭圆参数方程来描述和计算天体在不同位置的位置和速度。
当然,这需要一些高级的数学和物理知识,但椭圆方程提供了一个非常有用的工具。
总结起来,椭圆的参数方程提供了一种描述椭圆曲线的简洁和灵活的方式。
椭圆具有许多特殊的几何性质,例如焦点和准线,这些性质帮助我们更好地理解椭圆的形状和特征。
初中椭圆方程知识点总结椭圆是平面上一个固定点F到平面上任意一点P的距离之和等于常数2a的轨迹。
椭圆的方程可以用于描述椭圆的形状和位置。
在初中数学课程中,学生通常会学习如何识别和使用椭圆方程。
本文将总结初中阶段涉及的椭圆方程的知识点。
一、椭圆的定义在讨论椭圆的方程之前,我们首先来了解一下椭圆的定义。
椭圆是平面上一个固定点F到平面上任意一点P的距离之和等于常数2a的轨迹。
这个固定点F叫做焦点,称为F1和F2。
椭圆上任意一点P到两个焦点的距离之和是常数2a。
二、椭圆的标准方程椭圆的标准方程可以写成(x-h)²/a² + (y-k)²/b² = 1,其中(h, k)是椭圆的中心坐标,a和b分别是x轴和y轴上的半径。
当椭圆的中心在原点时,标准方程变为x²/a² + y²/b² = 1。
三、椭圆的参数方程椭圆还可以用参数方程表示:x = h + a*cos(θ),y = k + b*sin(θ)。
这里θ是参数,通常取值在[0,2π]之间。
使用参数方程可以方便地描述椭圆上的点,但在初中阶段,学生一般不需要深入研究参数方程。
四、椭圆的一般方程椭圆的一般方程可以写成Ax² + By² + Cx + Dy + E = 0,其中A、B、C、D、E都是常数。
一般方程描述了椭圆的所有可能形状和方位,但通常需要将一般方程转化为标准方程才能进行具体的计算和分析。
五、椭圆的性质对于初中生而言,了解椭圆的一些基本性质是很重要的。
例如,椭圆的离心率e满足0 <e < 1,椭圆的长轴长度是2a,短轴长度是2b,焦点到中心的距离是c,有关椭圆的这些性质可以帮助学生理解椭圆方程的意义和应用。
六、椭圆的图像学生需要掌握如何根据椭圆的方程画出椭圆的图像。
对于标准方程x²/a²+ y²/b²= 1而言,椭圆的图像在x轴和y轴上分别展开a个单位和b个单位。
椭圆方程a和b椭圆是一种常见的几何形状,它在数学和科学中有着广泛的应用。
椭圆的方程可以用一对参数a和b来表示,其中a是椭圆的长半轴,b是椭圆的短半轴。
本文将介绍椭圆方程的基本概念、性质以及一些应用。
一、椭圆方程的基本概念椭圆可以定义为平面上到两个固定点F1和F2的距离之和等于常数2a的点的集合。
这两个固定点被称为焦点,它们分别位于椭圆的长轴两侧。
椭圆的方程可以用坐标系中的参数表示,其中横坐标x和纵坐标y 满足以下方程:(x^2/a^2) + (y^2/b^2) = 1这就是椭圆的标准方程,其中a和b分别是椭圆的长半轴和短半轴。
根据a和b的取值,椭圆可以是一个圆形(a=b),也可以是一个长条形(a>b)或者是一个扁平的形状(a<b)。
二、椭圆的性质椭圆具有一些独特的性质,下面我们将介绍其中的一些重要性质:1. 焦点性质:椭圆上的任意一点到焦点的距离之和等于常数2a。
这个性质决定了椭圆的形状和大小。
2. 对称性质:椭圆具有关于x轴和y轴的对称性。
也就是说,如果(x, y)是椭圆上的一点,则(-x, y)、(x, -y)和(-x, -y)也是椭圆上的点。
3. 切线性质:椭圆上的切线与椭圆的长轴和短轴垂直。
这个性质可以用来确定椭圆上的切线方程。
4. 参数方程:椭圆也可以用参数方程描述。
参数方程的形式为x = a*cos(t),y = b*sin(t),其中t是参数的取值范围。
三、椭圆的应用椭圆在物理学、工程学和天文学等领域有着广泛的应用。
下面列举几个常见的例子:1. 天体轨道:行星、卫星和彗星的轨道可以用椭圆来描述。
行星围绕太阳运动的轨道就是一个椭圆。
2. 光学器件:椭圆镜、椭圆透镜等光学器件的设计和制造涉及到椭圆方程的应用。
这些器件可以将光线聚焦到特定的点上。
3. 电子学:椭圆在微波天线和天线阵列的设计中有着重要的应用。
椭圆形状的天线可以实现特定的辐射模式和指向性。
4. 机械设计:椭圆齿轮可以用来传递旋转运动,广泛应用于机械传动系统中。
一.椭圆曲线的介绍1.域k(特征0)上的椭圆曲线可看成由下面方程的解全体再加上一个无穷远点:y2=x3+ax+b,(x,y)∈k2,a,b为k中常数,并且右边判别式Δ=−16(4a3+27b2)不等于0(即为了光滑性要求无重根)。
其上的点可以自然地有一个群结构(实数域为例,图自wiki):具体说来,取曲线上两个点P,Q,连接P,Q的直线与曲线第三个交点(其存在是因为一元三次方程有两个解在k中,那么由韦达定理第三个也在k中)记为R。
不难看出曲线y2=x3+ax+b,(x,y)∈k2关于x轴对称,R 的对称点就记为P+Q。
这样粗糙的讨论可能会有问题,因为可能会出现图中2,3,4的情况,2的情况把Q看成2重点即可,而3的情况迫使我们引入无穷远点0,规定此时和为0,而如果P,Q重合,那么我们就取切线。
定义保证如下性质:随便取一条直线,其与曲线交于三个点P,Q,R(可能有无穷远点,也可能两个点重合),那么P+Q+R=0.这个定义是“对称”的,可具体写出P+Q的表达式(利用韦达定理):P,Q不重合时:P,Q重合时:总之在椭圆曲线上有一个交换群结构,因此我们可以从y2=x3+ax+b,(x,y)∈k2的一个有理解生成新的有理解,从而得到许多有理解。
椭圆曲线在复数域的图像可以看成复平面模掉一格C/Λ,也就是一个环面:Q上图像可直观想象是实数域的椭圆曲线上的有理点:(图自《数论1 FERMAT的梦想和类域-加藤和也》)而Qp等非阿局部域及Z/pZ等有限域的情况没有很好的几何图像(当然有限域的平面是有限个点,此时椭圆曲线就是一堆点)。
此时不妨就把它看成代数几何意义上的一条曲线。
为了理解为什么椭圆曲线定义成y^2=三次多项式,我们简单讨论一番。
上面已经说过,我们希望找一些好的f,使得f=0即解全体带群结构。
而这个群结构的产生巧就巧在定义一个乘法,是把两个东西运算得到一个新东西,总共涉及3个object,而三次方程恰好有三个根,并且两个根加上方程系数完全可以求出第三个根。
第5讲 椭圆的性质及应用一、知识梳理1x 2y 2y 2x 22(1)一类是与坐标系无关的椭圆本身故有的性质:长轴长、短轴长、焦距、离心率等. (2)一类是与坐标系有关的性质:顶点坐标、焦点坐标等.在解题时要特别注意第二类性质,应根据椭圆方程的形式,首先判断椭圆的焦点在哪条坐标轴上,然后再进行求解.问题 为什么椭圆的离心率决定椭圆的扁平程度?提示:椭圆的离心率反映了焦点远离中心的程度,e 的大小决定了椭圆的形状,反映了椭圆的圆扁程度.因为a 2=b 2+c 2,所以b a =1-e 2,因此,当e 越趋近于1时,ba越接近于0,椭圆越扁;当e 越趋近于0时,ba越接近于1,椭圆越接近于圆. 题型(一) 求椭圆的离心率例1 (1)下列椭圆中最扁的一个是( ) A .B .C .D .【解答】解:椭圆的离心率越小,椭圆越圆,越大,离心率越大,椭圆越扁,越小, A 中=,B 中=,C 中=,D 中=,故选:B .(2)若椭圆的两个焦点与短轴的一个端点构成一个正三角形,则该椭圆的离心率为________. 解析: 依题意,△BF 1F 2是正三角形,∵在Rt △OBF 2中,|OF 2|=c ,|BF 2|=a ,∠OF 2B =60°,∴a cos 60°=c ,∴c a =12,即椭圆的离心率e =12.,答案: 12(3)如图,设椭圆的右顶点为A ,右焦点为F ,B 为椭圆在第二象限上的点,直线BO 交椭圆于C 点,若直线BF 平分线段AC 于M ,则椭圆的离心率是( )A .B .C .D .【解答】解:如图,设AC 中点为M ,连接OM ,则OM 为△ABC 的中位线, ∴OM ∥AB ,于是△OF A ∽△AFB ,且==,即=,可得e ==.故选:C .(4)《九章算术)是我国古代内容极为丰富的数学名著第九章“勾股”,讲述了“勾股定理及一些应用.直角三角形的两直角边与斜边的长分别称“勾”“股”“弦”,且“勾2+股2=弦2”.设F 是椭圆=1(a >b >0)的左焦点,直线y =x 交椭圆于A 、B 两点,若|AF |,|BF |恰好是Rt △ABF 的”勾”“股”,则此椭圆的离心率为( ) A .B .C .D .【解答】解:∵|AF |,|BF |恰好是Rt △ABF 的”勾”“股”,∴AF 1⊥BF 1,∴OA =OB =OF 1=c . ∴A (,),∴⇒,,⇒,e 2=1﹣=4﹣2,∴﹣1.故选:A .变式训练:1、美学四大构件是:史诗、音乐、造型(绘画、建筑等)和数学.素描是学习绘画的必要一步,它包括了明暗素描和结构素描,而学习几何体结构素描是学习素描最重要的一步.某同学在画“切面圆柱体”(用与圆柱底面不平行的平面去截圆柱,底面与截面之间的部分叫做切面圆柱体)的过程中,发现“切面”是一个椭圆,若“切面”所在平面与底面成60°角,则该椭圆的离心率为()A.B.C.D.【解答】解:椭圆的长轴为2a,短轴的长为2b,“切面”是一个椭圆,若“切面”所在平面与底面成60°角,可得,即a=2b,所以e===.故选:C.2、己知椭圆C:(a>b>0)的右焦点为F,过点F作圆x2+y2=b2的切线,若两条切线互相垂直,则椭圆C的离心率为()A.B.C.D.【解答】解:如图,由题意可得,,则2b2=c2,即2(a2﹣c2)=c2,则2a2=3c2,∴,即e=.故选:D.[题后感悟] (1)求离心率e 时,除用关系式a 2=b 2+c 2外,还要注意e =的代换,通过方程思想求离心率. (2) 在椭圆中涉及三角形问题时,要充分利用椭圆的定义、正弦定理及余弦定理、全等三角形、相似三角形等知识. 例21、设F 1(-c ,0),F 2(c ,0)分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若在直线x =a 2c上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆离心率的取值范围是( )A.⎝⎛⎦⎤0,22 B.⎝⎛⎦⎤0,33C.⎣⎡⎭⎫22,1D.⎣⎡⎭⎫33,1解法一:由题意知F 1(-c ,0),F 2(c ,0),P ⎝⎛⎭⎫a2c ,y ,∵PF 1的中垂线过点F 2,∴|F 1F 2|=|F 2P|,即2c =⎝⎛⎭⎫a 2c -c 2+y 2,整理得y 2=3c 2+2a 2-a 4c 2.∵y 2≥0,∴3c 2+2a 2-a 4c 2≥0,即3e 2-1e 2+2≥0,解得e ≥33.∴e 的取值范围是⎣⎡⎭⎫33,1.解法二:设直线x =a 2c 与x 轴交于M 点,则|F 1F 2|=|F 2P |≥|MF 2|,即2c ≥a 2c -c ,整理得13≤e 2<1,33≤e <1.∴椭圆离心率的取值范围是⎣⎡⎭⎫33,1.故选D.2、已知椭圆的标准方程为,F 1,F 2为椭圆的左右焦点,椭圆上存在一点P ,使得21PF F ∠为直角,求椭圆的离心率的取值范围 3、椭圆C 的两个焦点分别是F 1,F 2若C 上的点P 满足21123F F PF =,则椭圆C 的离心率e 的取值范围是A.21≤eB.41≥eC.2141≤≤eD.410≤<e 或121<≤e【答案】C 解析:∵12233,2PF F F c ==∴,由三角形中,两边之和大于第三边得,故选C.点拨:(1)对于参数的取值范围问题,要能从几何特征的角度去分析参数变化引起的图形的变化.在学习中,要能主动的研究几何特征变化的根本性原因.(2)对几何对象的本质属性的把握越准确,代数化就越容易.(3)整个图形都随着P 点的变化而变化,P 点的变化使得线段||PF 2的长度也在变化,进而||PF 2与||MF 2的长度关系也在变化.正确的描述这一变化中量与量之间的数量关系是解题的关键所在.(4)求椭圆的离心率通常要构造关于a ,c 的齐次式,再转化为关于e 的方程或不等式.题型二 直线与椭圆位置关系1、直线和椭圆位置关系判定方法概述①直线斜率存在时221y kx b mx ny =+⎧⎨+=⎩⇒222()210m k n x kbnx b +++-= 当0∆>时 直线和椭圆相交 当0∆=时 直线和椭圆相切当0∆<时 直线和椭圆相离②直线斜率不存在时22221x x y a bλ=⎧⎪⎨+=⎪⎩判断y 有几个解注:1︒无论直线斜率存在与否,关键是看联立后的方程组有几组解,而不是看""∆。
椭圆方程的一个性质和应用
于志洪 金建荣
学习椭圆方程时,大家会发现这样一类椭圆,它们有一个共同特征,即离心率相同。
下面将共离心率的椭圆方程的一个性质及其应用介绍给同学们,供大家学习时参考。
一. 性质 求证:和椭圆x a y b a b 222210+=>>()有相同离心率的椭圆方程都具有x a y b 222
20+=>λλ()的特征。
证明:设椭圆x a y b 22221+=和椭圆x a y b 2
2221λλ
+=的离心率分别为e 和e',则e c a a b a ==-22,e a b a '=-22λλλ=-⋅=-a b a a b a
2222
λ
λ e e =',故椭圆x a y b 22221+=和椭圆x a y b
222
20+=>λλ()有相同的离心率。
也就是说,和椭圆x a y b
a b 222
210+=>>()有相同的离心率的椭圆方程都具有x a y b
222
20+=>λλ()的特征。
二. 应用
例. 求和椭圆x y 2
24
1+=有相同离心率,且与直线327160x y +-=相切的椭圆方程。
(2003年全国重点名校高考模拟题)
解法1:由以上性质,可设所求椭圆方程为x y 2
24
0+=>λλ()。
因其与直线327160x y +-=相切,故由方程组x y 2244+=λ,327160x y +-=联立消去x ,整理得1616764902y y -+-=λ。
其判别式∆=--⨯⨯-=()()16741664902λ,解得λ=4,故所求椭圆方程为x y 22
164
1+= 解法2:设所求椭圆方程为x y 2
24
+=λ,即x y 2244+=λ。
因它与直线327160x y +-=
相切,则设切点为(x 1,y 1),故切线方程为x x y y 1144+=λ。
两直线表示为同一直线,所以3274411x y ==λ,x y 113478
==λλ,。
将x 1和y 1同时代入椭圆方程,得()()34478
422λλλ+=,化简整理得λλ240-=,解得λ=4或λ=0(舍去)。
故所求椭圆方程为x y 22
164
1+= 解法3:设所求椭圆方程为x y 224+=λ,即x y 2241λλ
+=。
则a 24=λ,b 2=λ,a =2λ,b =λ。
设切点为(2λαλαcos sin ,),则椭圆的切线方程为241λαλλαλcos sin x y +=,因为它和直线327160x y +-=重合,得cos sin ααλ37
8==,cos sin 229764ααλ==。
由等比性质得cos sin 229764
4ααλλ++=⇒=。
故所求椭圆方程是x y 22
164
1+=
练一练
1. 求和椭圆98122x y +=有相同离心率且过点(3,9)的椭圆方程。
2. 求和椭圆x y 2
2225125
1+=有相同离心率且通径(过焦点且垂直于长轴的直线与椭圆所交的线段)长等于5的椭圆方程。
答案:
1. x y 2
218162
1+= 2. 481445
122
x y +=。