《集合》单元习题
- 格式:doc
- 大小:284.50 KB
- 文档页数:2
第一卷一、选择题(共10题,每题5分) 1.下列集合的表示法正确的是( ) A .实数集可表示为R ;B .第二、四象限内的点集可表示为{}(,)0,,x y xy x R y R ≤∈∈; C .集合{}1,2,2,5,7; D .不等式14x -<的解集为{}5x <2.对于{,(3)0,(4)0,x x Q N ≤∈∉∅其中正确的个数是( ) A . 4 B. 3 C. 2 D. 13.集合{},,a b c 的子集共有 ( ) A .5个 B .6个 C .7个 D.8个 4.设集合{}{}1,2,3,4,|2P Q x x ==≤,则PQ =( )A .{}1,2B .{}3,4C .{}1D .{}2,1,0,1,2--5.下列五个写法:①{}{}00,1,2;∈②{}0;∅⊆③{}{}0,1,21,2,0;⊆ ④0;∈∅⑤0⋂∅.=∅其中错误..写法的个数为 ( ) A .1 B .2 C .3 D .46.已知全集{}{}|09,|1U x x A x x a =<<=<<,若非空集合A U ⊆,则实数a 的取值范围是( )A .{}|9a a <B .{}|9a a ≤C .{}|19a a <<D .{}|19a a <≤7.已知全集{}{}1,2,3,4,5,6,7,8,3,4,5U A ==,{}1,3,6B =,则集合{}2,7,8C =是( ) A .AB B .A BC .()()U U C A C BD .()()U U C A C B8.设集合(]{}2,,|1,M m P y y x x R =-∞==-∈,若MP =∅,则实数m 的取值范围是( )A .1m ≥-B .1m >-C .1m ≤-D .1m <-9.定义A-B={},,x x A x B ∈∉且若A={}1,2,4,6,8,10,B={}1,4,8,则A-B= ( ) A.{}4,8 B.{}1,2,6,10 C.{}1 D.{}2,6,1010.集合{}{}22,1,1,21,2,34,A a a B a a a =+-=--+{}1,A B ⋂=-则a 的值是( )A .1-B .0或1C .0D . 2第二卷 总分150分二、填空题:(共4题,每题5分) 11.满足{}{}1,21,2,3B =的所有集合B 的集合为 。
小学数学三年级上册《集合》单元习题
1.
(1)超市两天一共进了()种蔬菜。
(2)昨天和今天都进了的蔬菜有()种。
2. 王芳做了一个饮食喜好的调查。
爱吃菜的有吕红、王倩、苏强、杨洋、刘杂、赵西、阮可欣,爱吃肉的有徐茜、吕红、王丽、苏强、李大红、杨洋、陈方、阮可欣。
(1)肉、菜都喜欢吃的有()人。
(2)王芳一共调查了()名同学。
(3)只爱吃菜的有()人,只爱吃肉的有()人。
3. 小小一家去菜园摘菜。
爸爸、妈妈、姑妈、姑父、小小、表弟、表姐7个人摘了黄瓜,爷爷、奶奶、妈妈、表姐4人摘了茄子,外公、外婆、爸爸、舅妈4人摘了辣椒。
(1)摘了黄瓜或茄子的共有多少人?
(2)摘了黄瓜或辣椒的共有多少人?
4. 同学们参加课外活动小组。
参加音乐组的有20人,参加美术组的有26人,两个组都参加的有15人。
(1)填写下面的图。
(2)参加课外小组的一共有()人。
(3)你能提出其他数学问题并解答吗?
5. 三(1)班订阅《少年科学》的有25人,订阅《少年文艺》的有22人,两种刊物都订阅的有18人。
三(1)班订阅《少年科学》或《少年文艺》的有多少人?
6. 同学们举行知识竞赛。
李想做对了20道题,王刚做对了12道题,赵龙做对了14道题。
王刚做对的12道题理想都做对了,赵龙做对的题中有10道题李想也做对了。
(1)李想和王刚一共做对了多少道题?
(2)李想和赵龙一共做对了多少道题?。
1.设集合U={1,2,3,4,5},A={1,3,5},B={2,5},则A ∩(U ðB )等于( D )A .{2}B .{2,3}C .{3}D .{1,3}2.设全集为R ,集合A {}|33x x =-<<,{}15B x x =-<≤,则()RA CB =( A ) A .(]3,1-- B .(3,1)-- C .(3,0)- D .(3,3)-3.若{1,2,3,4},{1,2},{2,3}U M N ===,则()u C M N ⋃是( D ) A .{1,2,3} B .{2} C .{1,3,4} D .{4}4.集合{03,}A x x x N =<<∈的真子集...的个数是( C ) A .8 B .4 C .3 D .15.已知集合A={}03≤-∈x N x ,B={}022≤-+∈x x Z x ,则集合A B = ( B ) A .{}1 B .{}0,1 C .{}0,1,2 D .{}1,26.设集合A={x|1<x <2},B={x|x <a}满足A ≠⊂B ,则实数a 的取值范围是 (A ) A .{a |a ≥2} B .{a |a ≤1} C .{a |a ≥1} D .{a |a ≤2}. 7.设集合{}{}2230,1,1,3,M x x x N M N =+-==-⋃=则( C )A .{}1,3-B .{}1,1,3-C .{}1,1,3,3--D .{}1,1,3-- 8. 已知:A=(){}0,=+y x y x ,B=(){}2,=-y x y x ,则A∩B= .(){}1,1- 9.设集合{|10}A x x =->,集合{|3}B x x =≤,则 A B = ( B ) A .(1,3)- B .(1,3] C .[1,3) D .(1,3]-10.已知全集U =R ,集合{}012A =,,,{}234B =,,,如图阴影部分所表示的集合为( B )A .{}2B .{}01,C .{}34,D .{}0,1,2,3,4 11.已知集合{}210A x x =-=,集合[0,2]B =,则A B = .{1}12.已知集合{}2,0,2A =-,{}220B x x x =--=,则A B ⋂= ( B )A .∅B .{2}C .{0}D .{2-}13.若集合{0}A x x =≥,且A B B = ,则集合B 可能是( A )(A ){}1,2 (B ){1}x x ≤ (C ){1,0,1}- (D ) R14.已知全集 {}{},|0,|1U R A x x B x x ==≤=>-,则集合 ( D )A .{}|10x x -<≤B .{}|10x x -≤≤C .{}|10x x x ≤-≥或D .{}|10x x x ≤->或15.已知全集{1234U =,,,,,集合{1,3,A =,{3,4,5}B =,则集合()u C A B⋂= .{124},, 16.已知{25}A x x =-≤≤,{11}B x m x m =-≤≤+,B A ⊆,则m 的取值范围为 . []-1,4试题16228920解析:17.已知集合{}{}1,1,3,3A B x x =-=<,则A B = .{}1,1-18.已知集合A ={x|-1≤x<1},B ={-1,0,1},则A ∩B =( B )A .{0,1}B .{-1,0}C .{0}D .{-1,0,1} 19.已知全集U =R ,集合{}|23A x x =-≤≤,{}|1B x x =<-,那么集合B A = . [)-2,-120.已知集合A={1,3,5,6},集合B={2,3,4,5},那么A∩B=( A )A .{3,5}B .{1,2,3,4,5,6}C .{1,3,5}D .{3,5,6}21.设集合{}1,2,4A =,集合{},,B x x a b a A b A ==+∈∈,则集合B 中有( C )个元素A .4B .5C .6D .722.已知集合2{10,,}A x ax bx a R b R =++=∈∈,求(1)当2b =时,A 中至多只有一个元素,求a 的取值范围;(2)当2b =-时,A 中至少有一个元素,求a 的取值范围;(3)当a 、b 满足什么条件时,集合A 为非空集合。
高一数学第一章集合单元测试题(一)班级__________ 学号___________姓名_____________一、选择题1、己知A= {x | x > - 1},那么正确的是 ( )(A )0⊆A (B){0}⊆A (C)A={0} (D)Φ∈A2、设U ={1,2,3,4,5,6,7,8},A={3,4,5},B={1,3,6} 则集合 {2,7,8}是 ( )(A )A B (B )A B(C )(C U A ) (C U B ) (D )(C U A ) (C U B )3、下列四个命题 :①空集没有子集 ②空集是任何一个集合的真子集 ③空集中元素个数为0 ④任一集合必有两个或两个以上的子集。
其中正确的有 ( )(A )0 (B )1 (C )2 (D )34、设A={y | y = -1 + x –2 x 2} ,若m∈A 则必有 ( ) (A )m∈{正有理数} (B )m ∈{负有理数} (C )m ∈{正实数} (D )m ∈{负实数}5、已知=>+-==M C x x x M R U U 则},044{,2( )(A ) R (B )Φ (C ) {2} (D ) {0}6、已知全集},4{},,2{,+++∈==∈===N n n x x B N n n x x A N U 则(A) B A U = (B) B A C U U =(C) )(B C A U U = (D) )()(B C A C U U U =7、已知集合N M y x y x N y x y x M 那么}4),{(},2),{(=-==+=为( )(A)1,3-==y x (B) (3,-1) (C) {3,-1} (D) {(3,-1)}8、已知集合}1{},3,2,1{==A B A 则B 的子集最多可能有( )(A) 5个 (B) 6个 (C) 7个 (D) 8个9、已知},,1{},4,3,2,1{A x x y y B A ∈-===则{0}与B 的关系是( )(A) B ∈}0{ (B) B ⊂}0{ (C) B ⊄}0{ (D) B ⊇}0{10、已知},,14{},,1{22+∈+-==∈+==N m m m x x Q N n n x x P 则P 与Q 的关系是( )(A) Q P = (B) Q P ⊂ (C) P Q ⊂ (D)以上答案都不对11、已知则},,1{},,1{22R x x y y N R x x y y M ∈+-==∈+== N M 是( )(A) {0,1} (B) {(0,1)} (C) {1} (D)C 以上答案均不对12、符合条件{a ,b ,c} ⊆ P ⊆ {a ,b ,c ,d ,e}的集合P 的个数是( )(A )2 (B )3 (C )4 (D )8二、填空题13、{(1,2),(-3,4)}的所有真子集是 ;14、设直线的32+=x y 点集为P =___________________,则点(2,7)与P 的关系为(2,7)____ P15、已知},{b a P =又P 的所有子集组成集合Q ,用列举法表示Q ,则Q =_____________________16、如图所示,阴影部分表示的集合为17、已知,.,},3),{(},12),{(B a A a x y y x B x y y x A ∈∈+==-==则______=a18、若},,34{},,42{22R b b b y y B R a a a x x A ∈+-==∈++==试确定A 与B 的关系为 __________.三、解答题19、已知B A b b B a a A ==++=若},,1{},21,1,1{2,求b a ,20、已知,}1{},62{P Q a x a x Q x x P ⊆+≤≤=≤≤=若求a 的范围21、已知集合},02{2=+-=k x x x P 若集合P 中的元素少于两个,求.k22、已知全集}4{≤=x x U 集合},33{},32{≤<-=<<-=x x B x x A 求B A C B A C B A U U )(),(,23、设A 是数集,满足A a ∈时,必有A a∈-11, (1)若A ∈2,问:①A 中至少有几个元素?并把它列举出来? ② A 中还可以有其它元素吗?(2)若A 中只能有一个元素且A ∉2,实数a 是否存在?。
集合单元测试题及详细答案一、选择题(每题2分,共10分)1. 集合中的元素具有什么特性?A. 唯一性B. 有序性C. 可重复性D. 可变性答案:A2. 下列哪个不是集合的基本运算?A. 并集B. 交集C. 对称差D. 排序答案:D3. 集合A={1, 2, 3},集合B={2, 3, 4},A与B的交集是什么?A. {1}B. {2, 3}C. {4}D. {1, 2, 3}答案:B4. 集合A={1, 2, 3},集合B={2, 3, 4},A与B的并集是什么?A. {1, 2, 3}B. {2, 3}C. {1, 2, 3, 4}D. {4}答案:C5. 集合A={1, 2, 3},集合B={2, 3, 4},A与B的差集是什么?A. {1}B. {2, 3}C. {4}D. {1, 2, 3}答案:A二、填空题(每空1分,共10分)6. 集合的三种基本关系是:________、________、子集。
答案:相等,真子集7. 集合A={x|x<5}表示的是所有小于5的实数的集合,那么集合B={x|x>5}表示的是所有________的实数的集合。
答案:大于58. 集合的幂集是指一个集合所有子集的集合,如果集合A有n个元素,那么它的幂集有2^n个子集。
答案:正确9. 集合A={1, 2, 3},集合B={3, 4, 5},A与B的并集是________。
答案:{1, 2, 3, 4, 5}10. 集合A={1, 2, 3},集合B={2, 3, 4},A与B的差集是________。
答案:{1}三、简答题(每题5分,共10分)11. 简述集合的并集和交集的区别。
答案:并集是指两个集合中所有元素的集合,不去除重复元素;交集是指两个集合中共有的元素组成的集合。
12. 举例说明什么是集合的补集。
答案:假设全集U={1, 2, 3, 4, 5},集合A={1, 2, 3},那么A的补集是U中不属于A的所有元素组成的集合,即{4, 5}。
集合单元测试题及详细答案集合单元测试题一、选择题1.设集合A={x∈Q|x>-1},则()A。
∅∈AB。
2∈AC。
2∈AD。
{2}⊆A2.如果U是全集,M,P,S是U的三个子集,则阴影部分所表示的集合为()A。
(M∩P)∩SB。
(M∩P)∪SC。
(M∩P)∩(C_U S)D。
(M∩P)∪(C_U S)3.已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N为()A。
x=3,y=-1B。
(3,-1)C。
{3,-1}D。
{(3,-1)}4.A={-4,2a-1,a^2},B={a-5,1-a,9},且A∩B={9},则a的值是(。
)A。
a=3B。
a=-3C。
a=±3D。
a=5或a=±35.若集合A={x|x^2+4x+4=0,x∈R}中只有一个元素,则实数k的值为(。
)A。
0B。
1C。
0或1D。
k<16.集合A={y|y=-x^2+4,x∈N,y∈N}的真子集的个数为(。
)A。
9B。
8C。
7D。
67.符号{a}⊈P⊆{a,b,c}的集合P的个数是(。
)A。
2B。
3C。
4D。
58.已知M={y|y=x^2-1,x∈R},P={x|x=a-1,a∈R},则集合M 与P的关系是(。
)A。
M=PB。
P∈RC。
M⊈PD。
M⊈P9.A={x|x^2+x-6=0},B={x|x*m+1=0},且A∪B=A,则m 的取值范围是(。
)A。
{3,-1/2}B。
{0,-1/3,-1/2}C。
{0,3,-2}D。
{3,2}二、选择题11.设集合M={小于5的质数},则M的真子集的个数为?答案:1412.设U={1,2,3,4,5,6,7,8},A={3,4,5},B={4,7,8},则:(C_UA)∩(C_U B)=?答案:{1,2,6}C_U A)∪(C_U B)=?答案:{1,2,6,7,8}13.某班共有55名学生,其中34名喜欢音乐,43名喜欢体育,还有4名既不喜欢体育也不喜欢音乐。
《集合》单元测试卷一、选择题1.(2021年新课标I 卷文)已知集合,,则( )A .B .C .D .【答案】A【解析】根据集合交集中元素的特征,可以求得,故选A .2.(2021年新课标Ⅱ文)已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B =( ) A .(–1,+∞) B .(–∞,2) C .(–1,2) D .∅ 【答案】C【解析】由题知,(1,2)A B =-,故选C . 3.下列关系中,正确的是 A .B .C .D . 【答案】C 【解析】选项A :,错误;选项B ,,错误;选项C ,,正确;选项D ,与是元素与集合的关系,应该满足,故错误;故选:C .4.已知集合是,则A .B .C .D .【答案】A 【解析】集合,.本题正确选项:5.不等式的解集用区间可表示为( )A .(–∞,)B .(–∞,]C .(,+∞)D .[,+∞) 【答案】D【解析】解不等式2x –1≥0,得x ≥,所以其解集用区间可表示为[,+∞)故选D . 6.已知集合A={x|x >0},B={x|-1<x <1},则A ∪B=( ) A .()1,1- B .()1,-+∞ C .()0,1 D .()0,+∞ 【答案】B【解析】由题意,集合A={x|x >0},B={x|-1<x <1},根据集合的并集的运算可得A ∪B={x|x >-1}=(-1,+∞),故选:B .7.若集合M={x|x≤6},a=2,则下面结论中正确的是( ) A .B .C .D . 【答案】A【解析】由集合M={x|x≤6},a =2,知:在A 中,{a }M ,故A 正确;在B 中,a M ,故B 错误;在C 中,{a }⊆M ,故C 错误;在D 中,a M ,故D 错误.故选:A .8.(2021年新课标I 卷)已知集合,则( )A.B.C.D.【答案】B【解析】解不等式得,所以,所以可以求得,故选B.9.设集合,3,,则正确的是A.3,B.3,C.D.【答案】D【解析】集合,3,,则,选项A错误;2,3,,选项B错误;,选项C错误;,选项D正确.故选:D.10.(2021年天津卷理)设全集为R,集合,,则A.B.C.D.【答案】B【解析】由题意可得:,结合交集的定义可得:.本题选择B选项.11.已知,则实数的值为()A.B.C.D.【答案】C 【解析】,,,,由得,由,得,由得或.综上,或.当时,集合为不成立.当时,集合为不成立.当时,集合为,满足条件.故.故选:C .12.(2021年天津卷文)设集合,,,则( )A .B .C .D . 【答案】C【解析】由并集的定义可得:,结合交集的定义可知:.本题选择C 选项.二、填空题 13.已知集合,,则____.【答案】【解析】因为,,所以14.集合A ={x |x ≥0且x ≠1}用区间表示_______________. 【答案】[0,1)∪(1,+∞)【解析】集合A ={x |x ≥0且x ≠1}用区间表示为:[0,1)∪(1,+∞),故答案为:[0,1)∪(1,+∞)15.已知集合{}1,2,3A =,{2,3,4}B =,则集合A B ⋃中元素的个数为_____. 【答案】4【解析】因为集合{}1,2,3A =,{2,3,4}B =,所以{1,2,3,4}A B =.所以集合A B ⋃中元素的个数为4,故答案为4.16.已知集合{}{}21,,9,,1A m B m ==,若A B B =,则实数m =______________【答案】0,3,3-【解析】∵A ∩B =B ,A ={1,m ,9},B ={1,m 2},∴B ⊆A ,∴m =m 2或m 2=9,且m ≠1, 解得:m =1(舍去)或m =0,或m=3或-3,故答案为0,3,-3.三、解答题17.用区间表示下列数集:(1);(2);(3);(4)R;(5);(6).【答案】(1);(2);(3);(4);(5);(6).【解析】由区间的概念可得:(1);(2);(3);(4)R=;(5);(6).18.设集合或,,若是的真子集,求实数的取值范围.【答案】【解析】,因是的真子集,所以,故.19.设集合.(I)用列举法写出集合;(II)求和.【答案】(I);(II),.【解析】(I)因为x,所以,所以.(II)因为,,所以,.20.设全集为,,:(1);(2).【答案】(1)或;(2)或.【解析】(1)由画出数轴:由图得,或.(2)得,或,或.21.已知集合,,全集.当时,求;若,求实数a的取值范围.【答案】(1);(2)或.【解析】(1)当a=2时,A=,所以A∪B=,(2)因为A∩B=A,所以A⊆B,①当A=∅,即a-1≥2a+3即a≤-4时满足题意,②当A≠∅时,由A⊆B,有,解得-1,综合①②得:实数a的取值范围为:或-1,22.设全集,集合,,若,求实数的取值集合.【答案】或.【解析】当,即,时,,满足条件,当,即时,或,若,则或,即或,此时,综上:a的取值范围是或。
一、选择题1.设集合A={2,1-a ,a 2-a +2},若4∈A ,则a =( ) A .-3或-1或2 B .-3或-1 C .-3或2D .-1或22.设集合{,}A a b =,{}220,,B a b =-,若A B ⊆,则⋅=a b ( )A .-1B .1C .-1或1D .0 3.已知集合{,}P a b =,{|}Q M M P =⊆,则P 与Q 的关系为( )A .P Q ⊆B .Q P ⊆C .P Q ∈D .P Q ∉4.对于非空集合P ,Q ,定义集合间的一种运算“★”:{P Q x x P Q =∈★∣且}x P Q ∉⋂.如果{111},{1}P x x Q x y x =-≤-≤==-∣∣,则P Q =★( )A .{12}xx ≤≤∣ B .{01xx ≤≤∣或2}x ≥ C .{01xx ≤<∣或2}x > D .{01xx ≤≤∣或2}x > 5.已知集合2{|120}A x x x =--≤, {|211}B x m x m =-<<+.且AB B =,则实数m 的取值范围为 ( ) A .[-1,2)B .[-1,3]C .[-2,+∞)D .[-1,+∞)6.已知集合{}|15A x x =≤<,{}|3B x a x a =-<≤+.若B A B =,则a 的取值范围为( ) A .3,12⎛⎤-- ⎥⎝⎦B .3,2∞⎛⎤-- ⎥⎝⎦C .(],1-∞-D .3,2⎛⎫-+∞ ⎪⎝⎭7.已知集合A ={}{}3(,),(,)x y y x B x y y x ===,则A ∩B 的元素个数是( )A .4B .3C .2D .18.已知全集为R ,集合A ={﹣2,﹣1,0,1,2},102x B xx -⎧⎫=<⎨⎬+⎩⎭∣,则A ∩(∁R B )的子集个数为( ) A .2B .3C .4D .89.已知全集U =R ,集合(){}{}20,1A x x x B x x =+<=≤,则图中阴影部分表示的集合是( )A .()2,1-B .[][)1,01,2-C .()[]2,10,1--D .0,110.若集合A ={x |3+2x -x 2>0},集合B ={x|2x <2},则A∩B 等于( ) A .(1,3) B .(-∞,-1) C .(-1,1)D .(-3,1)11.已知3(,)|32y M x y x -⎧⎫==⎨⎬-⎩⎭,{(,)|20}N x y ax y a =++=,且M N ⋂=∅,则实数a =( ) A .6-或2-B .6-C .2或6-D .212.已知R 为实数集,集合{|lg(3)}A x y x ==+,{|2}B x x =≥,则()R C A B ⋃=( ) A .{|3}x x >-B .{3}x x |<-C .{|3}x x ≤-D .{|23}x x ≤<二、填空题13.集合{(,)|||,}A x y y a x x R ==∈,{(,)|,}B x y y x a x R ==+∈,已知集合A B中有且仅有一个元素,则常数a 的取值范围是________ 14.我们将b a -称为集合{|}M x a x b =≤≤的“长度”,若集合2{|}3M x m x m =≤≤+,{|0.5}N x n x n =-≤≤,且集合M 和集合N 都是集合{|01}x x ≤≤的子集,则集合M N ⋂的“长度”的最小值是________15.设全集{}22,3,3U a a =+-,集合{},3A a =,{}2U C A =,则a =___________.16.若{}2230P x x x =--<,{}Q x x a =>,且P Q P =,则实数a 的取值范围是______.17.已知集合A ={x |x ≥2},B ={x ||x ﹣m |≤1},若A ∩B =B ,则实数m 的取值范围是______. 18.已知点H 是正三角形ABC 内部一点,HAB ∆,HBC ∆,HCA ∆的面积值构成一个集合M ,若M 的子集有且只有4个,则点H 需满足的条件为________. 19.函数()[]f x x =的函数值表示不超过x 的最大整数,例如:[ 3.5]4-=-,[2.1]2=.若{|[][2][3],01}A y y x x x x ==++≤≤,则A 中所有元素的和为_______.20.设集合{}1,2,3A =,若B ≠∅,且B A ⊆,记G(B)为B 中元素的最大值和最小值之和,则对所有的B ,G(B)的平均值是_______.三、解答题21.已知全集U =R ,集合{4A x x =<-或1}x >,{|312}B x x =-≤-≤, (1)求AB 、()()U UA B ;(2)若集合{|211}M x k x k =-≤≤+是集合A 的子集,求实数k 的取值范围. 22.设集合{|12A x a x a =-<<,}a R ∈,不等式2760x x -+<的解集为B . (1)当a 为0时,求集合A 、B ; (2)若A B ⊆,求实数a 的取值范围.23.已知集合A ={x|2a +1≤x≤3a -5},B ={x|x <-1,或x >16},分别根据下列条件求实数a 的取值范围.(1)A∩B =∅;(2)A ⊆(A∩B ).24.已知函数2()lg(231)f x x x =-+的定义域为集合A ,函数()2(],,2x g x x =∈-∞的值域为集合B ,集合22{|430}(0)C x x mx m m =-+≤>. (1)求A ∪B ; (2)若()C AB ⊆,求实数m 的取值范围.25.已知集合{}2|280A x x x =+-≤,[)1,B =-+∞,设全集为U =R .(1)求()UA B ∩;(2)设集合(1,1)C a a =-+,若C A B ⊆⋃,求实数a 的取值范围. 26.设全集U =R ,函数2lg(4+3)y x x =-的定义域为A ,函数3[0]1y x m x =∈+,,的值域为B .(1)当4m =时,求UB A ;(2)若“Ux A ∈”是“x B ∈”的必要不充分条件,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】若1−a =4,则a =−3,∴a 2−a +2=14,∴A ={2,4,14}; 若a 2−a +2=4,则a =2或a =−1,检验集合元素的互异性: a =2时,1−a =−1,∴A ={2,−1,4}; a =−1时,1−a =2(舍), 本题选择C 选项.2.A解析:A 【分析】由集合的包含关系得,a b 的方程组,求解即可 【详解】A B ⊆,由集合元素互异性得0,0,a b a b ≠≠≠ 则22a a b b ⎧=⎨=-⎩ 或22b a a b ⎧=⎨=-⎩解得11a b =⎧⎨=-⎩或11b a =⎧⎨=-⎩故选: A 【点睛】本题考查集合的包含关系,考查元素的互异性,是基础题3.C解析:C 【分析】用列举法表示集合Q ,这样就可以选出正确答案. 【详解】{}M P M a ⊆⇒=或{}b 或{},a b 或∅.因此{}{}{}{}{|},,,,Q M M P a b a b =⊆=∅,所以P Q ∈.故选:C 【点睛】本题考查了集合与集合之间的关系,理解本题中集合Q 元素的属性特征是解题的关键.4.C解析:C 【分析】先确定,P Q ,计算P Q 和P Q ,然后由新定义得结论.【详解】由题意{|02}P x x =≤≤,{|10}{|1}Q x x x x =-≥=≥, 则{|0}PQ x x =≥,{|12}P Q x x =≤≤,∴{|01P Q x x =≤<★或2}x >. 故选:C . 【点睛】本题考查集合新定义运算,解题关键是正确理解新定义,确定新定义与集合的交并补运算之间的关系.从而把新定义运算转化为集合的交并补运算.5.D解析:D 【分析】 先求出集合A ,由A B B =,即B A ⊆,再分B φ=和B φ≠两种情况进行求解.【详解】由2120x x --≤,得34x -≤≤. 即[3,4]A =-. 由AB B =,即B A ⊆.当B φ=时,满足条件,则211m m -≥+解得2m ≥.当B φ≠时,要使得B A ⊆,则12121314m m m m +>-⎧⎪-≥-⎨⎪+≤⎩.解得:12m -≤<.综上满足条件的m 的范围是:1m ≥-. 故选:D. 【点睛】本题主要考查集合的包含关系的判断及应用,以及集合关系中的参数范围问题,考查分类讨论思想,属于中档题.6.C解析:C 【分析】首先确定B A ⊂,分B φ=和B φ≠两种情况讨论,求a 的取值范围. 【详解】B A B =B A ∴⊂,当B φ=时,332a a a -≥+⇒≤-; 当B φ≠时,3135a a a a -<+⎧⎪-≥⎨⎪+<⎩,312a ∴-<≤- , 综上:1a ≤-, 故选C. 【点睛】本题考查根据集合的包含关系,求参数取值范围,意在考查分类讨论的思想,属于基础题型.7.B解析:B 【解析】 【分析】首先求解方程组3y x y x ⎧=⎨=⎩,得到两曲线的交点坐标,进而可得答案.【详解】联立3y x y x⎧=⎨=⎩,解得1,0,1x =-即3y x =和y x =的图象有3个交点()11--,,()0,0,(11),, ∴集合A B 有3个元素,故选B.【点睛】本题考查了交集及其运算,考查了方程组的解法,是基础题.8.D解析:D 【分析】解不等式得集合B ,由集合的运算求出()R A B ,根据集合中的元素可得子集个数.【详解】10{|21}2x B x x x x -⎧⎫=<=-<<⎨⎬+⎩⎭∣,{|2R B x x =≤-或1}x ≥,所以()R A B {2,1,2}=-,其子集个数为328=.故选:D . 【点睛】本题考查集合的综合运算,考查子集的个数问题,属于基础题.9.C解析:C 【分析】由集合描述求集合,A B ,结合韦恩图知阴影部分为()()U C A B A B ⋂⋂⋃,分别求出()U C A B 、()A B ⋃,然后求交集即可.【详解】(){}20{|20}A x x x x x =+<=-<<,{}1{|11}B x x x x =≤=-≤≤,由图知:阴影部分为()()U C A B A B ⋂⋂⋃,而{|10}A B x x ⋂=-≤<,{|21}A B x x ⋃=-<≤,∴(){|1U C A B x x ⋂=<-或0}x ≥,即()(){|21U C A B A B x x ⋂⋂⋃=-<<-或01}x ≤≤,故选:C 【点睛】本题考查了集合的基本运算,结合韦恩图得到阴影部分的表达式,应用集合的交并补混合运算求集合.10.C解析:C 【分析】根据不等式的解法,求得集合,A B ,根据集合的交集运算,即可求解. 【详解】依题意,可得集合A ={x |3+2x -x 2>0}=(-1,3),B ={x|2x <2}=(-∞,1), ∴A∩B =(-1,1). 【点睛】本题主要考查了集合的交集运算,其中解答中正确利用不等式的解法,求得集合,A B 是解答的关键,着重考查了推理与运算能力,属于基础题.11.A解析:A 【解析】 【分析】先确定集合M,N,再根据M N ⋂=∅确定实数a 的值. 【详解】由题得集合M 表示(32)3y x -=-上除去(2)3,的点集,N 表示恒过(10)-,的直线方程. 根据两集合的交集为空集:M N ⋂=∅.①两直线不平行,则有直线20ax y a ++=过(2)3,,将2x =,代入可得2a =-, ②两直线平行,则有32a-=即6a =-, 综上6a =-或2-, 故选:A . 【点睛】本题主要考查集合的化简和集合的关系,意在考查学生对这些知识的理解掌握水平,属于基础题.12.C解析:C 【分析】化简集合,根据集合的并集补集运算即可. 【详解】因为{|lg(3)}{|3}A x y x x x ==+=>-, 所以AB {|3}x x =>-,()R C A B ⋃={|3}x x ≤-,故选C.【点睛】本题主要考查了集合的并集、补集运算,属于中档题.二、填空题13.【分析】若中有且仅有一个元素则方程有且仅有一个解进而求解即可【详解】由题因为中有且仅有一个元素则方程有且仅有一个解当时则当时则由已知得或或或解得故答案为:【点睛】本题考查由交集结果求参数范围考查分类 解析:[1,1]-【分析】 若AB 中有且仅有一个元素,则方程a x x a =+有且仅有一个解,进而求解即可【详解】由题,因为A B 中有且仅有一个元素,则方程a x x a =+有且仅有一个解,当0x ≥时,ax x a =+,则1a x a =-, 当0x <时,ax x a -=+,则1a x a =-+, 由已知得0101a a a a ⎧≥⎪⎪-⎨⎪-≥⎪+⎩或0101aa a a ⎧<⎪⎪-⎨⎪-<⎪+⎩或101a aa =⎧⎪⎨-<⎪+⎩或011a a a ⎧≥⎪-⎨⎪=-⎩, 解得11a -≤≤, 故答案为:[]1,1- 【点睛】本题考查由交集结果求参数范围,考查分类讨论思想和转化思想14.【分析】当集合的长度的最小值时与应分别在区间的左右两端由此能求出的长度的最小值【详解】由题的长度为的长度为当集合的长度的最小值时与应分别在区间的左右两端故的长度的最小值是故答案为:【点睛】本题考查交解析:16【分析】当集合M N ⋂的“长度”的最小值时,M 与N 应分别在区间[]0,1的左右两端,由此能求出M N ⋂的“长度”的最小值 【详解】由题,M 的“长度”为23,N 的“长度”为12, 当集合M N ⋂的“长度”的最小值时,M 与N 应分别在区间[]0,1的左右两端, 故M N ⋂的“长度”的最小值是2111326+-=, 故答案为:16【点睛】本题考查交集的“长度”的最小值的求法,考查新定义的合理运用15.【分析】根据与可知再根据集合相等求解即可【详解】由可知即故当时当时即故不满足故故答案为:【点睛】本题主要考查了根据集合的基本关系求解参数的问题需要根据题意分情况讨论同时注意集合的互异性属于中档题【分析】根据{}2U C A =与{}22,3,3U a a =+-可知{}23,3A a a =+-,再根据集合相等求解即可.【详解】由{}2U C A =,{}22,3,3U a a =+-可知{}23,3A a a =+-,即{}{}23,3,3a a a +-=.故232,3a a aa ⎧+-=⎪⎨≠⎪⎩ .当0a ≥时,23a a a a +-=⇒=当0a <时,23a a a +-=-即 ()()2230130a a a a +-=⇒-+=,故3a =-.不满足2,3a ≠.故a =【点睛】本题主要考查了根据集合的基本关系求解参数的问题,需要根据题意分情况讨论,同时注意集合的互异性,属于中档题.16.【分析】先求出集合由已知条件中即可求出实数a 的取值范围【详解】由解得又因为且则所以即实数a 的取值范围是故答案为:【点睛】本题考查了集合的交集运算在解答此类题目的方法是将其转化为子集问题在取答案时可以 解析:(],1-∞-【分析】先求出集合P ,由已知条件中P Q P =,即可求出实数a 的取值范围.【详解】由{}2230P x x x =--<,解得{}13P x x =-<<,又因为{}Q x x a =>,且PQ P =,则P Q ⊆,所以1a ≤-,即实数a 的取值范围是(],1-∞-.故答案为:(],1-∞- 【点睛】本题考查了集合的交集运算,在解答此类题目的方法是将其转化为子集问题,在取答案时可以画出数轴来得到结果,本题较为基础.17.3+∞)【分析】先求出集合再利用交集定义和不等式性质求解【详解】∵集合解得∴实数m 的取值范围是故答案为:【点睛】本题考查实数的取值范围的求法解题时要认真审题注意不等式性质的合理运用是基础题解析:[3,+∞) 【分析】先求出集合B ,再利用交集定义和不等式性质求解. 【详解】∵集合{|2}A x x =≥,{|||1}{|11}B x x m x m x m =-≤=-≤≤+,A B B =,12m ∴-≥,解得3m ≥,∴实数m 的取值范围是[)3,+∞.故答案为:[)3,+∞. 【点睛】本题考查实数的取值范围的求法,解题时要认真审题,注意不等式性质的合理运用,是基础题.18.在的三条高上且不为重心【分析】由题意知若集合的子集只有个则集合有个元素可得出三个三角形的面积有两个相等分析点的位置即可得出结论【详解】若集合的子集只有个则集合有个元素是等边内部一点三个三角形的面积值解析:H 在ABC ∆的三条高上且H 不为ABC ∆重心 【分析】由题意知,若集合M 的子集只有4个,则集合M 有2个元素,可得出HAB ∆,HBC ∆,HCA ∆三个三角形的面积有两个相等,分析点H 的位置,即可得出结论. 【详解】若集合M 的子集只有4个,则集合M 有2个元素,M 是等边ABC ∆内部一点, HAB ∆,HBC ∆,HCA ∆三个三角形的面积值构成集合M , 故HAB ∆,HBC ∆,HCA ∆三个三角形的面积有且只有两个相等.若HAB ∆,HBC ∆的面积相等,则点H 在边AC 的高上且不为ABC ∆的重心; 若HBC ∆,HCA ∆的面积相等,则点H 在边AB 的高上且不为ABC ∆的重心; 若HAB ∆,HCA ∆的面积相等,则点H 在边BC 的高上且不为ABC ∆的重心. 综上所述,点H 在等边ABC ∆的三条高上且不为ABC ∆的重心. 故答案为:H 在ABC ∆的三条高上且H 不为ABC ∆重心 【点睛】本题考查子集的个数与元素个数之间的关系,根据已知条件得出集合元素的个数是解题的关键,考查推理能力,属于中等题.19.【分析】分5种情况讨论的范围计算函数值并求元素的和【详解】①当时;②当时;③当时;④时;⑤当时则中所有元素的和为故答案为12【点睛】本题考查新定义的题型需读懂题意并能理解应用分类讨论解决问题本题的难 解析:12【分析】分103x ≤<,1132x ≤<,1223x ≤<,213x ≤<,1x =,5种情况讨论2,3x x 的范围,计算函数值,并求元素的和. 【详解】①当103x ≤<时, 220,3x ⎡⎫∈⎪⎢⎣⎭,[)30,1x ∈,∴ [][][]230x x x ===,[][][]230x x x ++= ;②当1132x ≤<时,22,13x ⎡⎫∈⎪⎢⎣⎭,331,2x ⎡⎫∈⎪⎢⎣⎭ , [][]20,x x ∴==[]31x =,[][][]231x x x ∴++=;③当1223x ≤<时,[)21,2x ∈ ,33,22x ⎡⎫∈⎪⎢⎣⎭[]0x ∴=,[]21x = ,[]31x = ,[][][]232x x x ∴++=; ④213x ≤<时,42,23x ⎡⎫∈⎪⎢⎣⎭,[)32,3x ∈ []0x ∴=,[]21x =,[]32x =,[][][]233x x x ∴++=;⑤当1x =时[]1x =,[]22x =,[]33x = ,[][][]236x x x ∴++={}0,1,2,3,6A ∴=,则A 中所有元素的和为0123612++++=.故答案为12【点睛】本题考查新定义的题型,需读懂题意,并能理解,应用,分类讨论解决问题,本题的难点是分类较多,不要遗漏每种情况20.4【分析】根据题意列出所有可能的集合B 求出相应的求出平均数即可【详解】因为集合若且所以集合B 为:当时当时当时当时当时当时当时则G(B)的平均值是故答案为:【点睛】本题主要考查了集合间的包含关系考查学 解析:4【分析】根据题意列出所有可能的集合B ,求出相应的()G B ,求出平均数即可.【详解】因为集合{}1,2,3A =,若B ≠∅,且B A ⊆所以集合B 为:{}{}{}{}{}{}{}1231,21,32,31,2,3,,,,,,当{}1B =时,()112G B =+=当{}2B =时,()224G B =+=当{}3B =时,()336G B =+=当{}1,2B =时,()123G B =+=当{}1,3B =时,()134G B =+=当{}2,3B =时,()235G B =+=当{}1,2,3B =时,()134G B =+=则G(B)的平均值是246345447++++++= 故答案为:4【点睛】本题主要考查了集合间的包含关系,考查学生分析问题和解决问题的能力,属于中档题. 三、解答题21.(1){|13}A B x x =<≤∩;()(){|13}U U A B x x x ⋃=≤>或;(2)5k <-或1k >.【分析】(1)首先求集合B ,再求U A 和U B ,再求集合的运算;(2)首先讨论集合M 是空集和非空集两种情况,再分别列不等式求解. 【详解】解:(1)因为全集U =R ,集合{4A x x =<-或1}x >,,{|312}B x x =-≤-≤, 所以23{|}B x x =-≤≤{|41}U x x A =-≤≤{2U B x x =<-或3}x >所以{|13}A B x x =<≤∩ ()()(){|1U U U A B A B x x ⋃=⋂=≤或3}x >,(2)因为集合{|211}M x k x k =-≤≤+是集合A 的子集,所以①当M =∅时,211k k ->+,解得2k >;②当M 时,21114k k k -≤+⎧⎨+<-⎩或211211k k k -≤+⎧⎨->⎩解得:5k <-或12k <≤综上所述:实数k 的取值范围是5k <-或1k >.【点睛】易错点睛:(1)已知子集关系求参数时,要记得讨论空集的情况,这是本题的易错点. (2)集合的交并补运算,需审题清楚,注意端点值的开闭,涉及复杂运算时可以参考补集运算的经典结论:()()()U U v A B A B ⋃=⋂,()()()U U v A B A B ⋂=⋃;22.(1){|10}A x x =-<<,{|16}B x x =<<;(2)1a -或23a .【分析】(1)根据题意,由0a =可得结合A ,解不等式2760x x -+<可得集合B ,(2)根据题意,分A 是否为空集2种情况讨论,求出a 的取值范围,综合即可得答案.【详解】解:(1)根据题意,集合{|12A x a x a =-<<,}a R ∈,当0a =时,{|10}A x x =-<<,276016x x x -+<⇒<<,则{|16}B x x =<<,(2)根据题意,若A B ⊆,分2种情况讨论:①,当12a a -时,即1a -时,A =∅,A B ⊆成立;②,当12a a -<时,即1a >-时,A ≠∅,若A B ⊆,必有1126a a -⎧⎨⎩, 解可得23a ,综合可得a 的取值范围为1a -或23a .【点睛】本题考查集合的包含关系的应用,(2)中注意讨论A 为空集,属于基础题.23.(1){a|a≤7};(2){a|a <6或a >152} 【分析】(1)根据A∩B=∅,可得-1≤2a+1≤x≤3a -5≤16,解不等式可得a 的取值范围;(2)由A ⊆(A∩B )得A ⊆B ,分类讨论,A =∅与A≠∅,分别建立不等式,即可求实数a 的取值范围【详解】(1)若A =∅,则A∩B =∅成立.此时2a +1>3a -5,即a <6. 若A≠∅,则2135{2113516a a a a +≤-+≥--≤解得6≤a≤7.综上,满足条件A∩B =∅的实数a 的取值范围是{a|a≤7}.(2)因为A ⊆(A∩B ),且(A∩B )⊆A , 所以A∩B =A ,即A ⊆B . 显然A =∅满足条件,此时a <6.若A≠∅,则2135{351a a a +≤--<-或2135{2116a a a +≤-+> 由2135{351a a a +≤--<-解得a ∈∅;由2135{2116a a a +≤-+>解得a >152.综上,满足条件A ⊆(A∩B )的实数a 的取值范围是{a|a <6或a >152}. 考点:1.集合关系中的参数取值问题;2.集合的包含关系判断及应用 24.(1)R (2)106m <≤或413m ≤≤ 【分析】(1)求出集合A ,B ,根据集合的并集运算即可;(2){|3},C x m x m =<<1{|02A B x x ⋂=<<或14}x <≤,利用()C A B ⊆,列出不等式组,求出实数m 的取值范围.【详解】由2()lg(231)f x x x =-+可得:22310x x -+>, 所以1{|2A x x =<或1}x >, 因为()2(],,2x g x x =∈-∞,所以{|04}B x x =<,所以A B R =.(2){|3}C x m x m =<<,1{|02A B x x ⋂=<<或14}x <≤, 因为()C A B ⊆, 所以0132m m <⎧⎪⎨≤⎪⎩或134m m ≤⎧⎨≤⎩, 解得106m <≤或413m ≤≤, 故实数m 的取值范围106m <≤或413m ≤≤. 【点睛】本题考查并集、交集、子集定义等基础知识,考查运算求解能力,属于中档题. 25.(1)()[)4,1U AB =--(2)[)3,-+∞ 【分析】(1)先化简集合A ,再求()U A B ∩;(2)先求出[)4,A B =-+∞,得14a -≥-,解不等式即得解.【详解】(1)由题得[]4,2A =-,[)1,B =-+∞,(,1)U B =-∞-, 所以()[)4,1U A B =--;(2)由题得[)4,A B =-+∞,若C A B ⊆⋃,则14a -≥-,所以3a ≥-. 所以a 的取值范围是[)3,-+∞.【点睛】本题主要考查集合的运算和关系,意在考查学生对这些知识的理解掌握水平.26.(1)U B A =[35,3].(2)02m << 【分析】(1)先解不等式得集合A ,再根据单调性求分式函数值域得集合B ,最后根据补集以及并集概念求结果;(2)根据充要关系确定两集合之间包含关系,结合数轴列不等式解得结果.【详解】(1)由2430+x x ->,解得1x <或3x >,所以1[]3U A =,, 又函数31y x =+在区间[0]m ,上单调递减,所以3[3]1y m ∈+,,即3[3]1B m =+,, 当4m =时,3[3]5B =,,所以[3]35U B A =,. (2)首先要求0m >,而“U x A ∈”是“x B ∈”的必要不充分条件,所以,即3[3]1m +,[1]3,, 从而311m >+, 解得02m <<【点睛】本题考查函数定义域、值域,集合补集与并集以及根据充要关系求参数,考查基本分析求解能力,属基础题.。
题习集合练1.设集合A={x|2 ≤x<4} ,B={x|3x -7≥8-2x} ,则A∪B 等于( )A.{x|x ≥3} B.{x|x ≥2} C .{x|2 ≤x<3} D .{x|x ≥4}2.已知集合A={1,3,5,7,9} ,B={0,3,6,9,12} ,则A∩B=( )A.{3,5} B .{3,6} C .{3,7} D .{3,9}3. 已知集合A={x|x>0} ,B={x| -1≤x≤2} ,则A∪B=( )A.{x|x ≥-1} B .{x|x ≤2 } C .{x|0<x ≤2} D .{x| -1≤x≤2} 4. 满足M?{ ,,,} ,且M∩{ ,,} ={ ,} 的集合M的个数是( ) A.1 B .2 C .3 D .45.集合A={0,2 ,a} ,B={1 ,} .若A∪B={0,1,2,4,16} ,则 a 的值为()A.0 B .1 C .2 D .46.设S={x|2x +1>0} ,T={x|3x -5<0} ,则S∩T=( )A.? B .{x|x< -1/2} C .{x|x>5/3} D .{x| -1/2<x<5/3}7.50 名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30 名,参加乙项的学生有25 名,则仅参加了一项活动的学生人数为________.8.满足{1,3} ∪A={1,3,5} 的所有集合 A 的个数是________.9.已知集合A={x|x ≤1} ,B={x|x ≥a} ,且A∪B=R,则实数 a 的取值范围是________.10. 已知集合A={ -4,2a -1,} ,B={a -5,1 -a,9} ,若A∩B={9} ,求a 的值.11.已知集合A={1,3,5} ,B={1,2 ,-1} ,若A∪B={1,2,3,5} ,求x 及A∩B. 12.已知A={x|2a ≤x≤a+3} ,B={x|x< -1 或x>5} ,若A∩B=? ,求 a 的取值范围.13.(10 分) 某班有36 名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13 ,同时参加数学和物理小组人?的有 6 人,同时参加物理和化学小组的有 4 人,则同时参加数学和化学小组的有多少试集合测大题共10 小题,每小题 5 分,共50 分。
高中集合单元测试题及答案一、选择题(每题3分,共30分)1. 集合A={1,2,3},集合B={2,3,4},那么A∩B等于:A. {1}B. {2,3}C. {4}D. {1,2,3,4}2. 对于任意集合A和B,下列哪个表达式是正确的:A. A∪B = B∪AB. A∩B = B∩AC. A∪B = A∩BD. 所有选项都正确3. 如果集合C={x|x>5},那么C的补集C'等于:A. {x|x≤5}B. {x|x<5}C. {x|x≥5}D. {x|x=5}4. 集合{1,2,3}与{2,3,4}的并集是:A. {1,2,3}B. {2,3}C. {1,2,3,4}D. {4}5. 集合{1,2,3}与{2,3,4}的差集是:A. {1}C. {4}D. {1,4}6. 集合{1,2,3}的幂集包含多少个元素?A. 2^3B. 3^2C. 3^3D. 4^37. 集合{1,2,3}的子集个数是:A. 3B. 4C. 7D. 88. 集合{1,2,3}的真子集个数是:A. 3B. 4C. 6D. 79. 如果A={1,2},B={2,3},那么A∪B∩C={3},C可能是什么?A. {1,3}B. {2,3}C. {3}D. 所有选项都正确10. 集合{1,2,3}的对称差集与{2,3,4}是:A. {1,4}B. {1,2,3,4}D. {1,4,5}二、填空题(每题2分,共10分)11. 集合A={x|x是小于10的正整数},A的元素有________个。
12. 如果A={1,2,3},B={3,4,5},那么A∩B={________}。
13. 集合A={x|x是偶数},B={x|x是奇数},则A∪B=________。
14. 如果A={1,2,3},B={2,3,4},那么A⊆B是________(填“真”或“假”)。
15. 集合{1,2,3}的幂集的元素个数是________。
《集合》单元习题
1.
(1)超市两天一共进了()种蔬菜。
(2)昨天和今天都进了的蔬菜有()种。
2. 王芳做了一个饮食喜好的调查。
爱吃菜的有吕红、王倩、苏强、杨洋、刘杂、赵西、阮可欣,爱吃肉的有徐茜、吕红、王丽、苏强、李大红、杨洋、陈方、阮可欣。
(1)肉、菜都喜欢吃的有()人。
(2)王芳一共调查了()名同学。
(3)只爱吃菜的有()人,只爱吃肉的有()人。
3. 小小一家去菜园摘菜。
爸爸、妈妈、姑妈、姑父、小小、表弟、表姐7个人摘了黄瓜,爷爷、奶奶、妈妈、表姐4人摘了茄子,外公、外婆、爸爸、舅妈4人摘了辣椒。
(1)摘了黄瓜或茄子的共有多少人?
(2)摘了黄瓜或辣椒的共有多少人?
4.同学们参加课外活动小组。
参加音乐组的有20人,参加美术组的有26人,两个组都参加的有15人。
(1)填写下面的图。
(2)参加课外小组的一共有()人。
(3)你能提出其他数学问题并解答吗?
5. 三(1)班订阅《少年科学》的有25人,订阅《少年文艺》的有22人,两种刊物都订阅的有18人。
三(1)班订阅《少年科学》或《少年文艺》的有多少人?
6. 同学们举行知识竞赛。
李想做对了20道题,王刚做对了12道题,赵龙做对了14道题。
王刚做对的12道题理想都做对了,赵龙做对的题中有10道题李想也做对了。
(1)李想和王刚一共做对了多少道题?
(2)李想和赵龙一共做对了多少道题?。