复变函数7.1
- 格式:ppt
- 大小:637.00 KB
- 文档页数:28
复变函数课程标准课程目标h学生掌握复变函数中的基本概念、基础知识与基本理论,并会对概念进行举例、区分和判断。
学生需要熟练掌握复数与复变函数的基本概念、定理和思想方法,提升学生的专业知识素质,进一步培养学生的分析学功底,为后续课程及其它相关学科的学习奠定知识基础。
课程目标2,学生能够理解复变函数课程中重要性质和定理的结论和证明思路,并且可以综合应用更变函数中的性质和定理到实际计算中来解决问题。
结合数学分析帮助学生理解第变函数中的部分证明、计算与结论,同时也通过学习复变函数进一步巩固和深入理解、掌握一些数学分析的内容。
培养学生严密的数学语言表达能力、抽象的逻辑思维能力、严谨的推理论证能力以及熟练的运算能力,为后续课程的学习和深造打下坚实的分析基础。
课程目标3:了解复变函数课程的相关历史背景以及国内外最新发展状况,并具有一定的数学文化素养。
了解复变函数课程在近(现)代数学中的基础地位和作用,以及与相关学科(如概率统计、拓扑学、热力学、电学等)的联系。
课程目标4:具有终身学习与持续发展的意识和能力,能够利用复变的相关理论指导中学数学中复数方面的教,学实践,以便能够高屋建领地掌握和处理中学数学教材,并能够在中学教学教学实践中客观、真实地介绍蔻函数相关的现代数学学科。
三、课程目标与毕业要求的关系定理证明及应用,最大(小)模原理证明及应用,双边塞级数收敛的概念、运算及性质、收敛域,求出一些简单函数的洛朗展式,孤立奇点的定义与分类,零点与极点关系,极点阶数的判别,判断无穷远点作为解析函数的奇点的类型,整函数与亚纯函数的概念,孤立奇点(包含无穷远点)留数的定义、留数定理,留数的求法,用留数计算闭曲线积分,计算6fr H (8B,歹曲曲型积分,计算窗KX )/典)成型积分,计算窗[PG )∕9(χ)kE 成型积分,对数留数,辐角原理,鲁歇定理,解析变换的保域性、保角性、单叶解析变换的共形性,分式线性变换的概念与分解、共形性、保交比性、保圆周(圆)性、保对称性,辱函数、根式函数、指数函数与对数函数构成的共形映射,由圆弧构成的两角形区域的共性映射等。
复变函数知识点总结复变函数是数学中的一个重要分支,它主要研究的是具有复数变量和复数值的函数。
复变函数的研究不仅在理论上有着重要的意义,而且在实际应用中也有着广泛的应用。
本文将对复变函数的一些重要知识点进行总结,以便读者更好地理解和掌握这一领域的知识。
首先,我们来看一下复数的定义和性质。
复数是由实数和虚数单位i组成的数,通常表示为z = x + yi,其中x和y分别是实部和虚部。
复数可以进行加减乘除等基本运算,并且满足交换律、结合律和分配律。
此外,复数还可以表示为极坐标形式z = r(cosθ + isinθ),其中r为复数的模,θ为复数的幅角。
接下来,我们介绍复变函数的概念和性质。
复变函数是将复数域上的一个集合映射到另一个复数域上的函数,通常表示为f(z)。
复变函数可以进行加减乘除、求导、积分等运算,并且满足柯西—黎曼方程等一些重要的性质。
复变函数的导数也具有柯西—黎曼方程的性质,这是复变函数理论中的一个重要定理。
在复变函数中,解析函数是一个重要的概念。
解析函数是指在某个区域内可导的函数,并且在该区域内具有泰勒级数展开式。
解析函数具有许多重要的性质,比如在其定义域内是无穷次可微的,且导数也是解析函数。
解析函数在物理学、工程学、金融学等领域都有着广泛的应用。
复变函数中的积分也是一个重要的概念。
复变函数的积分可以分为定积分和不定积分两种。
定积分在复变函数中的计算通常采用路径积分的方法,而不定积分则可以通过换元法、分部积分法等方法进行计算。
复变函数的积分在物理学中有着重要的应用,比如在电磁学中的麦克斯韦方程中就包含了路径积分的概念。
最后,我们来看一下复变函数在实际应用中的一些例子。
复变函数在电路分析、信号处理、图像处理等领域都有着广泛的应用。
比如在电路分析中,复变函数可以用来描述电路中的电压、电流等信号,从而进行电路的分析和设计。
在信号处理中,复变函数可以用来描述信号的频谱、相位等特性,从而进行信号的处理和分析。
复变函数与积分变换课程自学辅导资料二○○八年四月《复变函数与积分变换》课程自学进度表教材:《复变函数与积分变换》教材编者:徐大申等出版社:中国电力出版社出版时间:2005年8月给任课教师。
总成绩中,作业占15分。
参考教材:1 《复变函数》(第四版),西安交通大学高等数学教研室编,北京,高等教育出版社,19962 《复变函数与积分变换》(第二版),华中科技大学数学系编,北京,高等教育出版社,2003《复变函数与积分变换》课程自学指导书第一章复数及复变函数一、本章的核心、重点及前后联系(一)本章的核心复数及运算,区域,复变函数及映射理解复数、复变函数、极限及连续的概念;掌握复数运算及几何表示法;了解区域及有关定义。
(二)本章重点复数及运算,区域,复变函数及映射(三)本章前后联系本章介绍了复数的概念、运算及其表示和复变函数的概念及其极限、连续两部分内容。
是后续各章的基础。
二、本章的基本概念、难点及学习方法指导(一)本章的基本概念复数及运算,区域,复变函数及映射(二)本章难点及学习方法指导1.复数的概念、运算及其表示方法是学习复变函数的基础,通过学习复数,做到熟练掌握,灵活应用。
学习时要注意下边几点:(1)正确理解辅角的多值性,见(1-5)式;(2)熟悉两个复数乘积和商的辅角公式,见(2-3)和(2-4)式;(3)由于复数可以用平面上的点与向量表示,因此能用复数形式的方程(或不等式)表示一些平面图形,解决有关的几何问题,见例1.3及相关习题;(4)了解无穷远点和扩充复平面的概念,它们是为了用球面上的点来表示复数而引入。
无穷远点和无穷大∞这个复数相对应。
这里的无穷大∞是指模为正无穷大(辅角无意义)的唯一的一个复数;2.复变函数及其极限、连续等概念是《高等数学》中相应概念的推广,它们有相似之处,又有不同之点,在学习中要善于比较,深刻理解。
(1)平面曲线(特别是简单闭曲线、光滑或按段光滑曲线)和平面区域(包括单连通域与多连通域)是复变函数理论的几何基础,要求熟悉这些概念,会用复数表达式表示一些常见平面曲线与区域,或者根据给定的表达式画出它所表示的平面曲线或区域;(2) 认真体会复变函数的定义与一元实变函数的定义的异同;复变函数极限的定义与一元实变函数极限定义形式上相似,但实质却有很大差异,注意进行比较;复变函数有极限的等价条件是其实部和虚部同时极限存在;复变函数连续等价于其实部和虚部同时连续。
《复变函数》教案第一章:复数的概念与运算1.1 复数的基本概念介绍复数的定义:形如a + bi 的数,其中i 是虚数单位,i^2 = -1。
解释实部和虚部的概念。
强调复数是实数域的拓展。
1.2 复数的运算掌握复数加法、减法、乘法和除法的运算规则。
举例说明复数运算的实质:代数形式的运算。
1.3 复数的几何表示引入复平面(复数坐标系)。
讲解复数在复平面上的表示:点的坐标。
介绍共轭复数的概念及其在复平面上的表示。
第二章:复变函数的定义与基本性质2.1 复变函数的定义给出复变函数的定义:定义在复平面上的函数,输入为复数,输出也为复数。
强调函数的连续性和可导性。
2.2 复变函数的基本性质介绍复变函数的奇偶性、周期性和可积性等基本性质。
举例说明这些性质的应用和判定方法。
2.3 复变函数的极限与连续性讲解复变函数在一点或一点的邻域内的极限概念。
强调复变函数的连续性及其与实变函数连续性的联系。
第三章:解析函数3.1 解析函数的定义引入解析函数的概念:在其定义域内具有无穷导数的复变函数。
解释解析函数的导数性质:解析函数是解析的,即在其定义域内每个点上都可以求导。
3.2 解析函数的例子举例说明常见解析函数:三角函数、指数函数、对数函数等。
强调解析函数在复平面上的图形特点:没有奇点。
3.3 解析函数的积分讲解解析函数的积分性质:解析函数在其定义域内积分路径无关。
介绍柯西积分定理和柯西积分公式。
第四章:积分变换4.1 傅里叶变换引入傅里叶变换的概念:将一个函数从时域转换到频域的积分变换。
讲解傅里叶变换的数学表达式及其物理意义。
4.2 拉普拉斯变换介绍拉普拉斯变换的概念:解决偏微分方程的积分变换方法。
强调拉普拉斯变换的应用领域:工程和物理学。
4.3 其他积分变换简要介绍希尔伯特变换、哈特莱变换等其他积分变换。
强调这些变换在信号处理等领域的应用。
第五章:复变函数在几何中的应用5.1 复数与几何的关系强调复变函数与复数几何的紧密联系。
第一章 复变函数1.1 复数与复数运算【1】下列式子在复数平面上各具有怎样的意义? 5,arg ,Re ,z a z b αβ<<<<(,,a αβ和b 为实常数)解:射线ϕα=与ϕβ=,直线x a =与x b =所围成的梯形。
7,111z z -≤+解:11111z z z z -≤⇒-≤++,令z x iy =+,则11z z -≤+即()()2222110x y x y x -+≤++⇒≥。
即复数平面的右半平面0x ≥。
【2】将下列复数用代数式,三角式和指数式几种形式表示出来。
3,1+解:代数式即:1z =+;2ρ=,且z 的辐角主值arg 3z π=,因此三角式:2cos2sin33z i ππ=+;指数式:232i k i z e eππϕρ⎛⎫+ ⎪⎝⎭==,k ∈ 。
7,1i 1i-+解:21i (1i)2i i 1i(1i)(1i)2---===-++-,因此,其代数式:i z =-,三角式:33cos sin22z i ππ=+;指数式:322i k i z e eππϕρ⎛⎫+ ⎪⎝⎭==,k ∈ 。
【3】计算下列数值。
(a ,b 和ϕ为实常数)2,解:将被开方的i 用指数式表示:22ei k i ππ⎛⎫+ ⎪⎝⎭=,k ∈ 。
那么2322eexp 63i k k i ππππ⎛⎫+ ⎪⎝⎭⎡⎤⎛⎫==+ ⎪⎢⎥⎝⎭⎣⎦,k ∈ 。
7,cos cos 2cos 3cos n ϕϕϕϕ++++ 解:因为,cos R e (1)ik k e k n ϕϕ=≤≤,因此()[]2323cos cos 2cos 3cos R e R e R e R e (1)R e R e 1cos cos(1)sin sin(1)R e 1cos sin 222sin sin cos 222R e 2sin sin 2i i i in i in i i i in i n e eeee e eeeee n i n i n n n i ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ++++=++++⎡⎤-=++++=⎢⎥-⎣⎦⎧⎫-++-+⎪⎪=⎨⎬--⎪⎪⎩⎭++⎛⎫- ⎪⎝⎭= 222(1)2sin 2R e sin cos 2221(1)sin sin sin sin cos 22222R e sin sin2sin222n i i n i n e i e n n n n e ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ++⎡⎤⎢⎥⎢⎥=⎛⎫⎢⎥- ⎪⎢⎥⎝⎭⎣⎦⎛⎫++- ⎪⎝⎭===1.2 复变函数【2】计算下列数值。