2011年度高考数学①轮课件《对数与对数函数》.
- 格式:ppt
- 大小:912.00 KB
- 文档页数:19
第6讲对数与对数函数1.对数的定义如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作01x=log a N,其中a叫做对数的底数,N叫做真数.2.对数的运算法则如果a>0,且a≠1,M>0,N>0,那么(1)log a(MN)=02log a M+log a N,(2)log a MN=03log a M-log a N,(3)log a M n=n log a M(n∈R).3.对数函数的定义函数04y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量.4.对数函数的图象与性质a>10<a<1 图象定义域05(0,+∞)值域R定点过点06(1,0)单调性07增函数08减函数函数值正负当x>1时,y>0;当0<x<1时,y<0当x>1时,y<0;当0<x<1时,y>05.反函数指数函数y=a x(a>0且a≠1)与对数函数y=09log a x(a>0且a≠1)互为反函数,它们的图象关于直线10y=x对称.1.对数的性质(a>0且a≠1)(1)log a1=0;(2)log a a=1;(3)a log aN=N.2.换底公式及其推论(1)log a b=logcblogca(a,c均大于0且不等于1,b>0);(2)log a b·log b a=1,即log a b=1logba(a,b均大于0且不等于1);(3)log am b n=nm log a b;(4)log a b·log b c·log c d=log a d.3.对数函数的图象与底数大小的比较如图,作直线y=1,则该直线与四个函数图象交点的横坐标为相应的底数.故0<c<d<1<a<b.由此我们可得到以下规律:在第一象限内从左到右底数逐渐增大.1.(2020·全国卷Ⅰ)设a log 34=2,则4-a =( ) A .116B .19C .18D .16答案 B解析 由a log 34=2可得log 34a=2,所以4a=9,所以4-a=19,故选B .2.已知a >0,a ≠1,函数y =a x 与y =log a (-x )的图象可能是( )答案 B解析 若a >1,则y =a x 是增函数,y =log a (-x )是减函数;若0<a <1,则y =a x 是减函数,y =log a (-x )是增函数,故选B .3.函数f (x )=错误!的定义域是( ) A .(-∞,1)∪(3,+∞) B .(1,3) C .(-∞,2)∪(2,+∞) D .(1,2)∪(2,3)答案 D解析 由题意知⎩⎪⎨⎪⎧-x2+4x -3>0,-x2+4x -3≠1,即⎩⎪⎨⎪⎧1<x<3,x≠2,故函数f (x )的定义域为(1,2)∪(2,3).故选D .4.(2021·菏泽高三月考)已知x =log 52,y =log 25,z =3,则下列关系正确的是( )A .x <z <yB .x <y <zC .z <x <yD .z <y <x答案 A解析 ∵x =log 52<log 55=12,y =log 25>1,z =3=13∈⎝ ⎛⎭⎪⎪⎫12,1.∴x <z <y .故选A .5.函数f (x )=ln (x 2-2x -8)的单调递增区间是( ) A .(-∞,-2) B .(-∞,1) C .(1,+∞) D .(4,+∞)答案 D解析 由x 2-2x -8>0,得x >4或x <-2.设t =x 2-2x -8,∵y =ln t 为增函数,∴要求函数f (x )的单调递增区间,即求函数t =x 2-2x -8的单调递增区间.∵当x ∈(4,+∞)时,函数t =x 2-2x -8为增函数, ∴函数f (x )的单调递增区间为(4,+∞).故选D . 6.计算:log 23×log 34+(3)log 34=________.答案 4解析 log 23×log 34+(3)log 34=lg 3lg 2×2lg 2lg 3+3log 34=2+3log 32=2+2=4.考向一 对数的化简与求值例1 (1)(2020·海口模拟)《千字文》是我国传统的启蒙读物,相传是南北朝时期梁武帝命人从王羲之的书法作品中选取1000个不重复的汉字,让周兴嗣编纂而成的,全文为四字句,对仗工整,条理清晰,文采斐然.已知将1000个不同汉字任意排列,大约有4.02×102567种方法,设这个数为N ,则lg N 的整数部分为( )A .2566B .2567C.2568 D.2569答案 B解析由题可知,lg N=lg (4.02×102567)=2567+lg 4.02.因为1<4.02<10,所以0<lg 4.02<1,所以lg N的整数部分为2567.(2)化简12lg3249-43lg 8+lg 245=________.答案1 2解析12lg3249-43lg 8+lg 245=12×(5lg 2-2lg 7)-43×32lg 2+12(lg 5+2lg 7)=52lg 2-lg 7-2lg 2+12lg 5+lg 7=12lg 2+12lg 5=12lg (2×5)=12.(3)设2a=5b=m,且1a+1b=2,则m=________.答案10解析因为2a=5b=m>0,所以a=log2m,b=log5m,所以1a+1b=1log2m+1log5m=log m2+log m5=log m10=2.所以m2=10,所以m=10.对数运算的一般思路(1)拆:把底数或真数进行变形,将对数式化为同底数对数的和、差、倍数运算.(2)合:逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.对数的运算性质以及有关公式都是在式子中所有的对数有意义的前提下才成立的,不能出现log212=log2[(-3)×(-4)]=log2(-3)+log2(-4)的错误.1.(2020·青岛质检)已知函数f (x )=⎩⎪⎨⎪⎧3x ,x≤0,-⎝ ⎛⎭⎪⎪⎫12x ,x>0,则f (f (log 23))=( )A .-9B .-1C .-13D .-127 答案 B解析 f (log 23)=-⎝ ⎛⎭⎪⎪⎫12log 23=-2log 23-1=-13<0,∴f (f (log 23))=f ⎝ ⎛⎭⎪⎪⎫-13=3×⎝ ⎛⎭⎪⎪⎫-13=-1.2.lg 52+23lg 8+lg 5×lg 20+(lg 2)2的值为________. 答案 3解析 原式=2lg 5+2lg 2+lg 5(1+lg 2)+(lg 2)2=2(lg 5+lg 2)+lg 5+lg 2(lg 2+lg 5)=2+lg 5+lg 2=3.3.若log 147=a,14b =5,则用a ,b 表示log 3528=________. 答案2-a a +b解析 ∵a =log 147,b =log 145,∴a +b =log 1435.又log 1428=log 141427=2-log 147=2-a ,∴log 3528=log1428log1435=2-a a +b.考向二 对数函数的图象及其应用例2 (1)(2020·泰安模拟)对数函数y =log a x (a >0且a ≠1)与二次函数y =(a -1)x 2-x 在同一坐标系内的图象可能是( )答案 A解析 由对数函数y =log a x (a >0且a ≠1)与二次函数y =(a -1)x 2-x 可知,①当0<a <1时,此时a -1<0,对数函数y =log a x 为减函数,而二次函数y =(a -1)x 2-x 的图象开口向下,且其对称轴为x =错误!<0,故排除C ,D ;②当a >1时,此时a -1>0,对数函数y =log a x 为增函数,而二次函数y =(a -1)x 2-x 的图象开口向上,且其对称轴为x =错误!>0,故B 错误,而A 符合题意.故选A .(2)若方程4x =log a x 在⎝ ⎛⎦⎥⎥⎤0,12内有解,则实数a 的取值范围为________.答案 ⎝ ⎛⎦⎥⎥⎤0,22 解析 构造函数f (x )=4x 和g (x )=log a x .当a >1时不满足条件,当0<a <1时,画出两个函数的大致图象,如图所示.可知,只需两图象在⎝ ⎛⎦⎥⎥⎤0,12上有交点即可,则f ⎝ ⎛⎭⎪⎪⎫12≥g ⎝ ⎛⎭⎪⎪⎫12,即2≥log a 12,则0<a ≤22,所以实数a 的取值范围为⎝⎛⎦⎥⎥⎤0,22.利用对数函数的图象可求解的两类热点问题(1)对一些可通过平移、对称变换作出其对数型函数的图象,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想求解.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.4.函数f (x )=log a |x |+1(0<a <1)的图象大致是( )答案 A解析 由于函数f (x )=log a |x |+1(0<a <1)是偶函数,故其图象关于y 轴对称.当x >0时,f (x )=log a |x |+1(0<a <1)是减函数;当x <0时,f (x )=log a |x |+1(0<a <1)是增函数.再由图象过点(1,1),(-1,1),可知应选A .5.(2020·河南洛阳高三阶段性测试)已知正实数a ,b ,c 满足⎝ ⎛⎭⎪⎪⎫12a =log 3a ,⎝ ⎛⎭⎪⎪⎫14b =log 3b ,c =log 32,则( )A .a <b <cB .c <b <aC .b <c <aD .c <a <b答案 B解析 在坐标系里画出y =⎝ ⎛⎭⎪⎪⎫12x ,y =⎝ ⎛⎭⎪⎪⎫14x 与y =log 3x 的图象,可得a >b >1.而c =log 32<1,故c <b <a .多角度探究突破考向三 对数函数的性质及其应用 角度1 比较对数值的大小例3 (1)(2020·聊城二模)已知a =π,b =ln π,c =log πe ,则a ,b ,c 的大小关系为( )A .a >c >bB .b >a >cC .c >a >bD .a >b >c答案 D解析 因为a =π>π0=1,b =lnπ=ln (π)=12ln π,c =log πe =log π(e )=12log πe ,又log π1<log πe<log ππ,即c ∈⎝ ⎛⎭⎪⎪⎫0,12,ln e<ln π<ln e 2,即b ∈⎝ ⎛⎭⎪⎪⎫12,1,所以a >b >c ,故选D .(2)(多选)若实数a ,b ,c 满足log a 2<log b 2<log c 2,则下列关系中可能成立的是( )A .a <b <cB .b <a <cC .c <b <aD .a <c <b答案 BCD解析 由log a 2<log b 2<log c 2的大小关系,可知a ,b ,c 有如下四种可能:①1<c <b <a ;②0<a <1<c <b ;③0<b <a <1<c ;④0<c <b <a <1.作出函数的图象(如图所示).由图象可知选项B ,C ,D 可能成立.(3)(2020·全国卷Ⅲ)已知55<84,134<85.设a=log53,b=log85,c=log138,则() A.a<b<c B.b<a<cC.b<c<a D.c<a<b答案 A解析∵a,b,c∈(0,1),ab=log53log85=lg 3lg 5·lg 8lg 5<错误!·错误!2=错误!2=错误!2<1,∴a<b.由b=log85,得8b=5,由55<84,得85b<84,∴5b<4,可得b<45.由c=log138,得13c=8,由134<85,得134<135c,∴5c>4,可得c>45.综上所述,a<b<c.故选A.比较对数值大小的方法6.(2021·长郡中学高三月考)已知实数a,b,c满足lg a=10b=1c,则下列关系式中不可能成立的是()A.a>b>c B.a>c>b C.c>a>b D.c>b>a 答案 D解析设lg a=10b=1c=t,t>0,则a=10t,b=lg t,c=1t,在同一坐标系中分别画出函数y=10x,y=lg x,y=1x的图象,如图,当t=x3时,a>b>c;当t=x2时,a>c >b ;当t =x 1时,c >a >b .故选D .7.(2020·全国卷Ⅱ)若2x -2y <3-x -3-y ,则( ) A .ln (y -x +1)>0 B .ln (y -x +1)<0 C .ln |x -y |>0 D .ln |x -y |<0答案 A解析 由2x -2y <3-x -3-y ,得2x -3-x <2y -3-y .令f (t )=2t -3-t ,∵y =2x 为R 上的增函数,y =3-x 为R 上的减函数,∴f (t )为R 上的增函数.∴x <y ,∴y -x >0,∴y -x +1>1,∴ln (y -x +1)>0,故A 正确,B 错误.∵|x -y |与1的大小关系不确定,故C ,D 无法确定.故选A .角度2 解简单的对数不等式例4 (1)设函数f (x )=错误!若f (a )>f (-a ),则实数a 的取值范围是( ) A .(-1,0)∪(0,1) B .(-∞,-1)∪(1,+∞) C .(-1,0)∪(1,+∞) D .(-∞,-1)∪(0,1) 答案 C解析 由题意可得⎩⎪⎨⎪⎧a>0,log2a>-log2a或错误!解得a >1或-1<a <0.故选C .(2)(2020·泰安四模)已知函数f (x )是定义在R 上的奇函数,当x ∈(-∞,0]时,f (x )=-x 2+2x ,若实数m 满足f (log 2m )≤3,则m 的取值范围是( )A .(0,2]B .12,2C .(0,8]D .18,8答案 A解析 根据题意,当x ∈(-∞,0]时,f (x )=-x 2+2x =-(x -1)2+1,则f (x )在区间(-∞,0]上为增函数,且f (-1)=(-1)+2×(-1)=-3,又f (x )为奇函数,则f (x )在区间[0,+∞)上为增函数,且f (1)=-f (-1)=3,故f (x )在R 上为增函数,f (log 2m )≤3⇒f (log 2m )≤f (1)⇒log 2m ≤1,解得0<m ≤2,即m 的取值范围为(0,2].故选A .解对数不等式的类型及方法(1)形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论.(2)形如log a x >b 的不等式,需先将b 化为以a 为底的对数式的形式.8.设函数f (x )=⎩⎪⎨⎪⎧21-x ,x≤1,1-log2x ,x>1,则满足f (x )≤2的x 的取值范围是( )A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞)答案 D解析 当x ≤1时,由21-x ≤2得1-x ≤1,∴0≤x ≤1.当x >1时,由1-log 2x ≤2得x ≥12,∴x >1.综上,x 的取值范围为[0,+∞).故选D .9.(2020·北京模拟)已知定义域为R 的偶函数f (x )在[0,+∞)上是增函数,且f ⎝ ⎛⎭⎪⎪⎫12=0,则“不等式f (log 4x )>0的解集”是“⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|0<x <12”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件答案 C解析 ∵定义域为R 的偶函数f (x )在[0,+∞)上是增函数,且f ⎝ ⎛⎭⎪⎪⎫12=0,∴f (log 4x )>0,即f (log 4x )>f ⎝ ⎛⎭⎪⎪⎫12,即f (|log 4x |)>f ⎝ ⎛⎭⎪⎪⎫12,即|log 4x |>12,即log 4x >12或log 4x <-12,解得x >2或0<x <12.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|x >2或0<x <12是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|0<x <12的必要不充分条件.故选C .考向四 与对数有关的复合函数问题例5 (1)已知函数f (x )=log a (8-ax )(a >0,且a ≠1),若f (x )>1在区间[1,2]上恒成立,则实数a 的取值范围是________.答案 ⎝⎛⎭⎪⎪⎫1,83解析 当a >1时,f (x )=log a (8-ax )在[1,2]上是减函数,由f (x )>1在区间[1,2]上恒成立,得f (x )min =log a (8-2a )>1,解得1<a <83.当0<a <1时,f (x )在[1,2]上是增函数, 由f (x )>1在区间[1,2]上恒成立,得f (x )min =log a (8-a )>1,得8-2a <0,a >4.a 不存在. 综上可知,实数a 的取值范围是⎝⎛⎭⎪⎪⎫1,83.(2)(2020·海南省高三第一次联考)已知函数f (x )=3+log 2x ,x ∈[1,16],若函数g (x )=[f (x )]2+2f (x 2).①求函数g (x )的定义域; ②求函数g (x )的最值.解 ①函数g (x )=[f (x )]2+2f (x 2)满足⎩⎪⎨⎪⎧1≤x≤16,1≤x2≤16,解得1≤x ≤4,即函数g (x )=[f (x )]2+2f (x 2)的定义域为[1,4].②因为x ∈[1,4],所以log 2x ∈[0,2]. g (x )=[f (x )]2+2f (x 2) =(3+log 2x )2+6+2log 2x 2=(log 2x )2+10×log 2x +15=(log 2x +5)2-10, 当log 2x =0时,g (x )min =15, 当log 2x =2时,g (x )max =39,即函数g (x )的最大值为39,最小值为15.利用对数函数的性质,求与对数函数有关的函数值域和复合函数的单调性问题,必须弄清三方面的问题:一是定义域,所有问题都必须在定义域内讨论;二是底数与1的大小关系;三是复合函数的构成,即它是由哪些基本初等函数复合而成的.另外,解题时要注意数形结合、分类讨论、转化与化归思想的使用.10.若f (x )=lg (x 2-2ax +1+a )在区间(-∞,1]上单调递减,则a 的取值范围为( )A .[1,2)B .[1,2]C .[1,+∞)D .[2,+∞)答案 A解析 令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为直线x =a ,要使函数在(-∞,1]上单调递减,则有错误!即错误!解得1≤a <2,即a ∈[1,2).故选A .11.已知函数f (x )=log a (x +2)+log a (4-x )(a >0且a ≠1). (1)求函数f (x )的定义域;(2)若函数f (x )在区间[0,3]上的最小值为-2,求实数a 的值.解 (1)依题意得⎩⎪⎨⎪⎧x +2>0,4-x>0,解得-2<x <4,∴f (x )的定义域为(-2,4).(2)f (x )=log a (x +2)+log a (4-x ) =log a [(x +2)(4-x )],令t =(x +2)(4-x ),则变形得t =-(x -1)2+9, ∵0≤x ≤3,∴5≤t ≤9.若a >1,则log a 5≤log a t ≤log a 9,∴f (x )min =log a 5=-2,则a 2=15<1(舍去),若0<a <1,则log a 9≤log a t ≤log a 5, ∴f (x )min =log a 9=-2, 则a 2=19,又0<a <1,∴a =13.综上,a =13.一、单项选择题1.函数f (x )=错误!的定义域是( ) A .(-3,0)B .(-3,0]C .(-∞,-3)∪(0,+∞)D .(-∞,-3)∪(-3,0)答案 A解析 因为f (x )=错误!,所以要使函数f (x )有意义,需使错误!即-3<x <0. 2.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=()A.log2x B.1 2xC.log12x D.2x-2答案 A解析由题意知f(x)=log a x(x>0).∵f(2)=1,∴log a2=1.∴a=2.∴f(x)=log2x.3.(2020·北京市平谷区二模)溶液酸碱度是通过pH计算的,pH的计算公式为pH =-lg [H+],其中[H+]表示溶液中氢离子的浓度,单位是摩尔/升,若人体胃酸中氢离子的浓度为2.5×10-2摩尔/升,则胃酸的pH是(参考数据:lg 2≈0.3010)() A.1.398 B.1.204C.1.602 D.2.602答案 C解析由题意可得,pH=-lg (2.5×10-2)=-(lg 2.5+lg 10-2)=-(1-2lg 2-2)=1+2lg 2≈1.6020.故选C.4.(2020·滨州二模)设a=0.30.1,b=log 15,c=log526,则a,b,c的大小关系是()A.a>b>c B.c>a>b C.b>a>c D.c>b>a 答案 D解析∵0<0.30.1<0.30=1,∴0<a<1,∵b=log 15=log35,log33<log35<log39,∴1<b<2,∵c=log526>log525=2,∴c>2,∴c>b>a.故选D.5.在同一直角坐标系中,函数f(x)=2-ax,g(x)=log a(x+2)(a>0,且a≠1)的图象大致为()答案 A解析 由题意,知函数f (x )=2-ax (a >0,且a ≠1)为单调递减函数,当0<a <1时,函数f (x )=2-ax 的零点x =2a >2,且函数g (x )=log a (x +2)在(-2,+∞)上为单调递减函数;当a >1时,函数f (x )=2-ax 的零点x =2a <2,且x =2a >0,又g (x )=log a (x+2)在(-2,+∞)上是增函数.综上只有A 满足.6.若log a 23<1(a >0且a ≠1),则实数a 的取值范围是( )A .⎝⎛⎭⎪⎪⎫0,23B .⎝ ⎛⎭⎪⎪⎫23,+∞C .⎝ ⎛⎭⎪⎪⎫23,1∪(1,+∞)D .⎝⎛⎭⎪⎪⎫0,23∪(1,+∞)答案 D解析 因为log a 23<1,所以log a 23<log a a .若a >1,则上式显然成立;若0<a <1,则应满足0<a <23.所以实数a 的取值范围是⎝⎛⎭⎪⎪⎫0,23∪(1,+∞).故选D .7.(2020·泰安一模)已知定义在R 上的函数f (x )的周期为4,当x ∈[-2,2)时,f (x )=⎝ ⎛⎭⎪⎪⎫13x -x -4,则f (-log 36)+f (log 354)=( ) A .32B .32-log 32C .-12D .23+log 32答案 A解析 因为函数f (x )的周期为4,当x ∈[-2,2)时,f (x )=⎝ ⎛⎭⎪⎪⎫13x -x -4,∴f (-log 36)=f ⎝ ⎛⎭⎪⎪⎫log316=⎝ ⎛⎭⎪⎪⎫13log 3-log 316-4=2+log 36,f (log 354)=f (3+log 32)=f (log 32-1)=f ⎝ ⎛⎭⎪⎪⎫log323=⎝ ⎛⎭⎪⎪⎫13log 3-log 323-4=32-log 32+1-4=-32-log 32,∴f (-log 36)+f (log 354)=2+log 36-32-log 32=32.故选A .8.(2020·枣庄模拟)已知a >b >0,若log a b +log b a =52,a b=b a,则ab=( )A .2B .2C .22D .4答案 B解析 对a b =b a 两边取以a 为底的对数,得log a a b =log a b a ,即b =a log a b ,同理有a =b log b a ,代入log a b +log b a =52,得ba +ab =52,因为a >b >0,所以ab >1,所以ab =2,ba =12,故选B .9.(2020·海南模拟)函数f (x )=log 2x4·log 4(4x 2)的最小值为( )A .-94B .-2C .-32D .0答案 A解析 由题意知f (x )的定义域为(0,+∞).所以f (x )=(-2+log 2x )(1+log 2x )=(log 2x )2-log 2x -2=⎝⎛⎭⎪⎪⎫log2x -122-94≥-94.当x =2时,函数取得最小值.故选A .10.(2020·全国卷Ⅱ)设函数f (x )=ln |2x +1|-ln |2x -1|,则f (x )( ) A .是偶函数,且在⎝ ⎛⎭⎪⎪⎫12,+∞单调递增B .是奇函数,且在⎝ ⎛⎭⎪⎪⎫-12,12单调递减C .是偶函数,且在⎝ ⎛⎭⎪⎪⎫-∞,-12单调递增D .是奇函数,且在⎝ ⎛⎭⎪⎪⎫-∞,-12单调递减答案 D解析 f (x )=ln |2x +1|-ln |2x -1|的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|x≠±12,关于坐标原点对称,又f (-x )=ln |1-2x |-ln |-2x -1|=ln |2x -1|-ln |2x +1|=-f (x ),∴f (x )为定义域上的奇函数,可排除A ,C ;当x ∈⎝ ⎛⎭⎪⎪⎫-12,12时,f (x )=ln (2x +1)-ln (1-2x ),∵y =ln (2x +1)在⎝ ⎛⎭⎪⎪⎫-12,12上单调递增,y =ln (1-2x )在⎝ ⎛⎭⎪⎪⎫-12,12上单调递减,∴f (x )在⎝ ⎛⎭⎪⎪⎫-12,12上单调递增,排除B ;当x ∈⎝⎛⎭⎪⎪⎫-∞,-12时,f (x )=ln (-2x -1)-ln (1-2x )=ln 2x +12x -1=ln⎝ ⎛⎭⎪⎪⎫1+22x -1,∵μ=1+22x -1在⎝ ⎛⎭⎪⎪⎫-∞,-12上单调递减,f (μ)=ln μ在定义域内单调递增,∴根据复合函数单调性可知f (x )在⎝⎛⎭⎪⎪⎫-∞,-12上单调递减,D 正确.故选D .二、多项选择题11.(2020·海南省普通高中高考调研测试)若10a =4,10b =25,则( ) A .a +b =2 B .b -a =1 C .ab >8(lg 2)2 D .b -a >lg 6答案 ACD解析 由10a =4,10b =25,得a =lg 4,b =lg 25,∴a +b =lg 4+lg 25=lg 100=2,∴b -a =lg 25-lg 4=lg254,∵b -a =lg254>lg 6,∴b -a >lg 6,∴ab =4lg 2×lg 5>4lg 2×lg 4=8(lg 2)2.故选ACD .12.(2020·泰安三模)已知直线y =-x +2分别与函数y =e x 和y =ln x 的图象交于点A (x 1,y 1),B (x 2,y 2),则下列结论正确的是( )A .x 1+x 2=2B .e x 1+e x 2>2eC .x 1ln x 2+x 2ln x 1<0D .x 1x 2>e 2答案 ABC解析 函数y =e x 与y =ln x 互为反函数,则y =e x 与y =ln x 的图象关于y =x 对称,将y =-x +2与y =x 联立,得x =1,y =1,由直线y =-x +2分别与函数y =e x 和y =ln x 的图象交于点A (x 1,y 1),B (x 2,y 2),作出函数图象如图:则A (x 1,y 1),B (x 2,y 2)的中点坐标为(1,1),对于A ,由x1+x22=1,解得x 1+x 2=2,故A 正确;对于B ,e x 1+e x 2≥2ex1·ex2=2ex1+x2=2e2=2e ,因为x 1≠x 2,即等号不成立,所以e x 1+e x 2>2e ,故B 正确;对于C ,将y =-x +2与y =e x 联立可得-x +2=e x ,即e x +x -2=0,设f (x )=e x +x -2,则函数为单调递增函数,因为f (0)=1+0-2=-1<0,f ⎝ ⎛⎭⎪⎪⎫12=e +12-2=e -32>0,故函数的零点在⎝ ⎛⎭⎪⎪⎫0,12上,即0<x 1<12,由x 1+x 2=2,则32<x 2<2,x 1ln x 2+x 2ln x 1=x 1ln x 2-x 2ln 1x1<x 1ln x 2-x 2ln x 2=(x 1-x 2)ln x 2<0,故C 正确;对于D ,x 1x 2=x 1(2-x 1)=2x 1-x 21,又x 1∈⎝ ⎛⎭⎪⎪⎫0,12,所以x 1x 2∈⎝⎛⎭⎪⎪⎫0,34,故D 错误.故选ABC .三、填空题13.计算:lg 5(lg 8+lg 1000)+(lg 2)2+lg 16+lg 0.06=________. 答案 1解析 原式=lg 5(3lg 2+3)+3(lg 2)2+lg ⎝ ⎛⎭⎪⎪⎫16×0.06=3lg 5·lg 2+3lg 5+3(lg 2)2-2=3lg 2+3lg 5-2=1.14.(2020·南昌三模)已知函数f (x )=2|x |+x 2,m =f ⎝ ⎛⎭⎪⎪⎫log213,n =f (7-0.1),p =f (log 425),则m ,n ,p 的大小关系是________.答案 p >m >n解析 因为f (x )=2|x |+x 2,则f (-x )=2|-x |+(-x )2=f (x ),即f (x )为偶函数,当x >0时,f (x )=2x+x 2单调递增,m =f ⎝⎛⎭⎪⎪⎫log213=f (log 23),n =f (7-0.1),p =f (log 425)=f (log 25),又log 25>2>log 23>1>7-0.1>0,故p >m >n .15.函数y =log 0.6(-x 2+2x )的值域是________. 答案 [0,+∞)解析 -x 2+2x =-(x -1)2+1≤1,又-x 2+2x >0,则0<-x 2+2x ≤1.函数y =log 0.6x 为(0,+∞)上的减函数,则y =log 0.6(-x 2+2x )≥log 0.61=0,所以所求函数的值域为[0,+∞).16.如图,已知过原点O 的直线与函数y =log 8x 的图象交于A ,B 两点,分别过A ,B 作y 轴的平行线与函数y =log 2x 图象交于C ,D 两点,若BC ∥x 轴,则四边形ABDC 的面积为________.答案433log 23解析 设点A ,B 的横坐标分别为x 1,x 2,由题设知,x 1>1,x 2>1.则点A ,B 的纵坐标分别为log 8x 1,log 8x 2.因为A ,B 在过点O 的直线上,所以log8x1x1=log8x2x2,点C ,D 的坐标分别为(x 1,log 2x 1),(x 2,log 2x 2).由BC 平行于x 轴,知log 2x 1=log 8x 2,即log 2x 1=13log 2x 2,∴x 2=x 31.代入x 2log 8x 1=x 1log 8x 2得x 31log 8x 1=3x 1log 8x 1.由x 1>1知log 8x 1≠0,∴x 31=3x 1.考虑x 1>1,解得x 1=3.于是点A 的坐标为(3,log 83),即A ⎝⎛⎭⎪⎪⎫3,16log23,∴B ⎝⎛⎭⎪⎪⎫33,12log23,C ⎝⎛⎭⎪⎪⎫3,12log23,D ⎝⎛⎭⎪⎪⎫33,32log23.∴梯形ABDC 的面积为S =12(AC +BD )×BC =12×⎝ ⎛⎭⎪⎪⎫13log23+log23×23=433log 23.四、解答题17.已知f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=log a (x +1)(a >0,且a ≠1).(1)求函数f (x )的解析式;(2)若-1<f (1)<1,求实数a 的取值范围. 解 (1)当x <0时,-x >0, 由题意知f (-x )=log a (-x +1),又f (x )是定义在R 上的偶函数,∴f (-x )=f (x ). ∴当x <0时,f (x )=log a (-x +1), ∴函数f (x )的解析式为f (x )=错误! (2)∵-1<f (1)<1,∴-1<log a 2<1, ∴log a 1a<log a 2<log a a .①当a >1时,原不等式等价于⎩⎪⎨⎪⎧1a<2,a >2,解得a >2;②当0<a <1时,原不等式等价于⎩⎪⎨⎪⎧1a>2,a <2,解得0<a <12.综上,实数a 的取值范围为⎝ ⎛⎭⎪⎪⎫0,12∪(2,+∞).18.已知函数f (x )=log 2⎝ ⎛⎭⎪⎪⎫12x +a .(1)若函数f (x )是R 上的奇函数,求a 的值;(2)若函数f (x )的定义域是一切实数,求a 的取值范围;(3)若函数f (x )在区间[0,1]上的最大值与最小值的差不小于2,求实数a 的取值范围.解 (1)若函数f (x )是R 上的奇函数,则f (0)=0, ∴log 2(1+a )=0,∴a =0.当a =0时,f (x )=-x 是R 上的奇函数.所以a =0. (2)若函数f (x )的定义域是一切实数,则12x +a >0恒成立.即a >-12x 恒成立,由于-12x∈(-∞,0), 故只要a ≥0,则a 的取值范围是[0,+∞).(3)由已知得函数f (x )是减函数,故f (x )在区间[0,1]上的最大值是f (0)=log 2(1+a ),最小值是f (1)=log 2⎝ ⎛⎭⎪⎪⎫12+a .由题设得log 2(1+a )-log 2⎝ ⎛⎭⎪⎪⎫12+a ≥2,则log 2(1+a )≥log 2(4a +2). ∴⎩⎪⎨⎪⎧1+a≥4a+2,4a +2>0,解得-12<a ≤-13.故实数a 的取值范围是⎝ ⎛⎦⎥⎥⎤-12,-13.19.(2021·荆州月考)已知函数f (x )=log 13(x 2-2mx +5).(1)若f (x )的值域为R ,求实数m 的取值范围;(2)若f (x )在(-∞,2]内为增函数,求实数m 的取值范围.解 (1)由f (x )的值域为R ,可得u =x 2-2mx +5能取得(0,+∞)内的一切值, 故函数u =x 2-2mx +5的图象与x 轴有公共点, 所以Δ=4m 2-20≥0,解得m ≤-5或m ≥5.故实数m 的取值范围为(-∞,-5]∪[5,+∞).(2)因为f (x )在(-∞,2]内为增函数,所以u =x 2-2mx +5在(-∞,2]内单调递减且恒正, 所以⎩⎪⎨⎪⎧m≥2,9-4m>0,解得2≤m <94.故实数m 的取值范围为2,94.20.已知函数f (x )=log 4(ax 2+2x +3). (1)若f (1)=1,求f (x )的单调区间;(2)是否存在实数a ,使f (x )的最小值为0?若存在,求出a 的值;若不存在,说明理由.解 (1)因为f (1)=1,所以log 4(a +5)=1, 因此a +5=4,a =-1, 此时f (x )=log 4(-x 2+2x +3). 由-x 2+2x +3>0得-1<x <3, 即函数f (x )的定义域为(-1,3). 令t =-x 2+2x +3,则t =-x 2+2x +3在(-1,1]上单调递增,在(1,3)上单调递减. 又y =log 4t 在(0,+∞)上单调递增,所以f (x )的单调递增区间是(-1,1],单调递减区间是(1,3). (2)存在.令h (x )=ax 2+2x +3,则h (x )有最小值1,因此应有⎩⎪⎨⎪⎧a>0,12a -44a =1,解得a =12.。
函数第七课时 对数与对数函数 2010-09-14(一)对数(1)定义:如果)1,0(≠>=a a N a b ,那么b 叫做以a 为底N 的对数,记)1,0(log ≠>=a a N b a(2)对数性质:01log =a ; 1log =a a ;(3)对数恒等式:log a bab =(4)两个重要对数: ①常用对数:以10为底的对数N lg ;②自然对数:以无理数 71828.2=e 为底的对 数的对数N ln .(二)对数的运算性质如果0>a ,且1≠a ,0>M ,0>N ,那么:①M a (log ·=)N M a log +N a log ;② =NMalog M a log -N a log ; ③naM log n =M a log ()n R ∈. 换底公式abb c c a l o g l o g l o g =(0>a ,且1≠a ;0>c ,且1≠c ;0>b ).推论: (1)a b b a log 1log =.(2)b mn b a na m log log =;(三)对数函数1、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函数,其中x 是自变量, 注意: ① 对数函数的定义与指数函数类似,都是形式定义,注意辨别。
如:x y 2log 2=,5log 5x y = 都不是对数函数,而只能称其为对数型函数.②对数函数对底数的限制:0(>a ,且)1≠a . 学案P242.对数函数的图象与性质:3.反函数指数函数y=a x 与对数函数log a y x =互为反函数,它们的图象关于直线____y=x____对称.例:(2009·广东文,4)若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数, 且f (2)=1,则f (x ) = __________例:已知函数y=log 2x 的反函数是y=f —1(x ),则函数y= f —1(1-x )的图象是( )例: (2009·台州第一学期期末)已知0<a <b <1<c ,m =log a c ,n =log b c ,则m 与n 的大小关系是 ________.解析 ∵m <0,n <0,mn =log a c ·log c b =log a b <log a a =1,∴m >n . 答案 m >n题型一:对数的运算学案P 24 例1(1) 、 例1变式例1(2)变式:方程22log (1)2log (1)x x -=-+的解为 。