八年级数学上册第2章课外拓展:立方根与平方根的故事(北师大版)
- 格式:doc
- 大小:23.00 KB
- 文档页数:2
2.2.2 平方根教材分析《平方根》是北师版初中数学八年级上第二章第二节。
在此之前,学生已经学习了有理数、有理数的乘方、用字母表示数等知识,这为过渡到本节起着铺垫作用。
本节主要学习平方根和算术平方根的概念和性质,在运算方面,引入了开方运算,使学生掌握的代数运算由原来的加、减、乘、除、乘方五种扩展到六种,建立起较完善的代数运算体系。
本节内容既是对前面所学知识的深化和发展,也是今后学习二次根式、实数的预备知识,还是用直接开平方法、公式法解一元二次方程的重要依据。
因此,本节处于非常重要的地位,起着承前启后的作用。
学生分析八年级的学生已经能从具体事例中归纳问题的本质,通过观察、类比等活动抽象出问题的规律,同时学生在前面的学习中已经熟练掌握算术平方根的知识,具备了用所学知识来分析平方根性质的基础。
教学目标【知识与技能】掌握平方根与算术平方根的概念,能及时通过开方运算求一个非负数的平方根及算术平方根,理解平方与开平方互为逆运算。
【过程与方法】通过对平方根概念及性质的探究,渗透分类讨论和数形结合的数学思想方法,提高数学探究能力和归纳表达能力。
【情感、态度与价值观】鼓励学生积极主动地参与教与学的整个过程,激发学生求知的欲望,增加学生学习数学的兴趣与信心。
教学重、难点本节课的重点是平方根与算术平方根的概念和性质。
因为平方根与算术平方根的概念和性质始终贯穿本章,正确理解这两个概念是学好本章的关键。
本节课的难点是平方根与算术平方根的区别与联系。
因为平方根与算术平方根这两个概念容易引起学生理解上的偏差和意义上的混淆,如处理不当将直接影响以后的学习。
说教法与学法【教法】学生在七年级学过乘方运算,但由于间隔时间长,他们会有不同程度的遗忘,为了实现新旧教学方式和学习方式的接轨,我利用情景教学激发学生的兴趣,利用对比教学让学生掌握概念的本质,完善学生的知识结构。
【学法】学生才是学习的主人,教师应该把过程还给学生,让过程与结果并重。
根号的由来现在,我们都习以为常地使用根号(如 等等),并感到它使用起来既简明又方便.那么,根号是怎样产生和演变成现在这种样子的呢?古时候,埃及人用记号“┌”表示平方根.印度人在开平方时,在被开方数的前面写上ka .阿拉伯人用 表示 .1840年前后,德国人用一个点“.”来表示平方根,两点“..”表示4次方根,三个点“...”表示立方根(稍细一些的点),比如, .3、..3、...3就分别表示3的平方根、4次方根、立方根.到十六世纪初,可能是书写快的缘故,小点上带了一条细长的尾巴,变成“”.1525年,路多尔夫在他的代数著作中,首先采用了根号,比如他写4是2, 9是3,并用 8, 8表示 , .但是这种写法未得到普遍的认可与采纳. 与此同时,有人采用“根”字的拉丁文radix 中第一个字母的大写R 来表示开方运算,并且后面跟着拉丁文“平方”一字的第一个字母q ,或“立方”的第一个字母c 来表示开的是多少次方.例如,现在的,当时有人写成R.q.4352.现在的 ,用数学家邦别利(1526—1572年)的符号可以写成R.c.?7p.R.q.14╜,其中“?╜”相当于今天用的括号,P 相当于今天用的加号(那时候,连加减号“+”“-”还没有通用).直到十七世纪,法国数学家笛卡尔(1596—1650年)第一个使用了现今用的根号“ ”.在一本书中,笛卡尔写道:“如果想求的平方根,就写作 ,如果想求 的立方根,则写作 abb b a c +-33..” 这是出于什么考虑呢?有时候被开方数的项数较多,为了避免混淆,笛卡尔就用一条横线把这几项连起来,前面放上根号√(不过,它比路多尔夫的根号多了一个小钩)就为现在的根号形式.现在的立方根符号出现得很晚,一直到十八世纪,才在一书中看到符号3,的使用,比如25的立方根用325表示.54由此可见,一种符号的普遍采用是多么地艰难,它是人们在悠久的岁月中,经过不断改良、选择和淘汰的结果,它是数家们集体智慧的结晶,而不是某一个人凭空臆造出来的,不是从天上掉下来的.。
关于立方根和平方根的小故事
数学家--毕达哥拉斯认为:世界上只存在整数和分数,除此以外,没有别的什么数了.可是不久就出现了一个问题:当一个正方形的边长是1的时候,对角线的长m等于多少?是整数呢,还是分数?毕达哥拉斯和他的门徒费了九牛二虎之力,也不知道这个m究竟是什么数.世界上除了整数和分数以外还有没有别的数?这
个问题引起了学派成员希伯斯的兴趣,他花费了很多的时间去钻研,最终希伯斯断言:m既不是整数也不是分数,是当时人们还没有认识的新数. 从希伯斯的发现中,人们知道了除了整数和分数以外,还存在着一种新数,就是一个新数.给新发现的数起个什么名字呢?当时人们觉得,整数和分数是容易理解的,就把整数和分数合称“有理数”,而希伯斯发现的这种新数不好理解,就取名为“无理数”. 希伯斯的发现,推翻了毕达哥拉斯学派的理论,动摇了这个学派的基础,为此引起了他们的恐慌.为了维护学派的威信,他们严密封锁希伯斯的发现,如果有人胆敢泄露出去,就处以极刑--活埋.然而真理是封锁不住的,尽管毕达哥拉斯学派规矩森严,希伯斯的发现还是被许多人知道了.他们追查泄密的人,追查的结果,发现泄密的不是别人,正是希伯斯本人!这还了得!希伯斯竟背叛老师,背叛自己的学派.毕达哥拉斯学派按着规矩,要活埋希伯斯.希伯斯听到风声逃跑了. 希伯斯在国外流浪了好几年,由于思念家乡,他偷偷地返回希腊.在地中海的一条海船上,毕达哥拉斯的忠实门徒发现了希伯斯,他们残忍地将希伯斯扔进地中海.之后它被称为无理数之父,为无理数的一切奠定了基础.
倍立方问题
很久很久以前,在古希腊的某个地方发生大旱,地里的庄稼都干死了,人们找不到水喝,于是大家一起到神庙里祈求.神说,我之所以不给你们降水,因为你们给我做的正方体祭坛太小了,如果你们做一个比它大1倍的祭坛放在我面前,我就给你们降下雨水.大家觉得这好办,很快做好一个祭坛送到神那儿,新祭坛的边长是原祭坛边长的2倍,于是神更加发火,他说,你们竟敢愚弄我!这个祭坛的体积根本不是原来祭坛的2倍,我要进一步惩罚你们!
请你想一想,要做一个体积是原来祭坛的2倍的新祭坛,它的边长应是原来的多少倍?
实际上,这就要求作出一个正方体,使它是已知正方体体积的2倍,或者说作出一条边是已知边长的32倍,这就是数学史上有名的倍立方问题.
许多数学家试图用尺规作图作出它,均告失败,最后才发现这是一尺规作图不能成功的问题.。