分式综合专题6
- 格式:doc
- 大小:241.00 KB
- 文档页数:7
专题6 应用基本性质解决问题知识解读1.分式的基本性质分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变 2.分式的变号规律 (1)=A A B B --; (2)=A A B B --; (3)=A A B B --; (4)=A A B B----. 3.分子、分母的系数化整问题分式的系数化整问题,是利用分式的基本性质,将分子、分母都乘一个适当的不等于0的数,使分子、分母中的系数都化成整数.4.分子、分母扩大的倍数与分式扩大的倍数的关系 对于含未知数x ,y 的分式AB,当分式中x ,y 同时扩大2倍时,如果A ,B 同次,则分式会的值不变;如果A 是2次、B 是1次,则分式会扩大为原来的2倍;如果A 是1次、B 是2次,则分式会缩小为原来的12倍. 培优学案典例示范一、分式的性质是分式的变形依据例1 判断下列分式的变形是否正确,并说明理由. (1)1=1x x y y --; (2)22=b bc a a c ; (3)221=a b b a a b ---+; (4)221=a ba b b a --+-. 【提示】可从两个方面进行判定:①分子、分母乘或除以的是不是同一个整式;②这个整式是否一定不为零.【解答】【技巧点评】判定分式的变形是否正确可以从几个方面来考虑:①看分子、分母是不是同时进行了相同的运算; ②分子、分母只能同时乘除,不能同时加减;③分子、分母同时乘或除以的数或式必须不能为零.跟踪训练11.下列变形是否正确?为什么?(1)()()22221=x xy y x y x y x y ++-+- (2)()()22212=x xy y x y x y x y ++-+-(3)()()22222=x y x xy y x y x xy y ++++++ (4)()()22222=x y x xy y x y x xy y -++-++二、分子、分母系数化整问题例2 不改变分式的值,把下列各式的分子、分母中各项系数都化为整数.(1)0.30.50.2a b a b +-; (2)10.2310.32x y -+.【提示】(1)将分子、分母同时乘10;(2)将分子、分母同时乘30. 【解答】【技巧点评】解决这类问题只需根据分式的基本性质,将分式的分子、分母都乘分子、分母各项系数化整需要乘的数的最小公倍数.注意:分子、分母各项都要乘这个数,不能漏乘.跟踪训练22.不改变分式的值,把分式32241341123a a a a -+-+中的分子、分母的各项系数化为整数,并使次数最高项的系数为正数.三、分子、分母负号的处理例3 不改变分式的值,使下列分式分子、分母的第一项的系数为正. (1)3x y x y -+--= ; (2)23221x yx x ---+= .【提示】先将首项系数为负的分子或分母提取负号,然后利用分式的变号法则化简分式.【技巧点评】分式符号的变化是根据分式的基本性质进行的一种恒等变形,主要考查分子、分母所有负号个数.当负号的个数为奇数时,整个分式的符号为负;当负号的个数为偶数时,整个分式的符号为正.跟踪训练3 3.不改变分式23172x x x -+-+-的值,使分式的分子、分母中x 的最高次项的系数都是正数,应该是( )A . 23172x x x +-+B .23172x x x +++C .23172x x x ---D .23172x x x --+四、公式的变形运用 例4 将分式423xx y-中的x ,y 都扩大到原来的3倍,则分式的值( )A .不变B .扩大3倍C .扩大6倍D .缩小到原来的.【提示】思路1:将分式中的x ,y 换成3x ,3y ,然后化简;思路2:特殊值代入法. 【解答】【技巧点评】当分子、分母的次数相同时,如果x ,y 的值同时扩大和缩小相同倍数,分式的值不变.跟踪训练44. 若把分式2xyx y+中的x ,y 的值都扩大为原来的2倍,则分式的值( ) A.不变 B.扩大为原来的2倍 C.扩大为原来的4倍 D.扩大为原来的8倍拓展延伸例5已知2113x x x =++,则分式2421x x x ++的值为________. 【提示】思路1:21x x x ++的分子、分母同时除以x ,转化为x +1x =2;思路2:由2113x x x =++。
.分式专题一、分式定义,注意:判别分式的依据是分母中还有字母,分母不等于零。
1、在式子y x y x x c ab y a 109,87,65,43,20,13+++π中,分式的个数是( )个2.下列式子:x y a y x ab x 73),(51,89,97222++-,yx 2915-中,是分式的有( )个 二、分式基本性质1、填空:()yx xy ba -=---..............;2.在括号内填入适当的代数式,使下列等式成立:2xy =22()2ax y; 322()x xy x y --=()x x y -. 3、把分式xyyx -中的x 、y 的值都扩大2倍,则分式的值( )A 不变B 扩大2倍C 扩大4倍D 缩小一半4、已知31=b a ,分式ba ba 52-+的值为 ;5、若32,234a b c a b ca b c-+==++则=_______. 6、不改变分式52223x y x y -+的值,把分子、分母中各项系数化为整数,结果是( ) 三、分式无意义与有意义,1、当x 时,分式3213+-x x 无意义;2.在分式2242x x x ---中,当x ______时有意义.3.当x____时,分式||2x x -有意义.4.2(3)--x 的取值范围是_______.5. 当x_____________时,式子23+x x ÷322--x x 有意义 四、分式值为零,1、当x 时,分式392--x x 的值为0;2.使分式234x ax +-的值等于零的条件是x____.3.在分式2242x x x ---中,当x ____时分式值为零..__01||87.42=---x x x x ,则的值为若分式五、分式约分1.约分:34522748a bx a b x , 532164abc bc a - 22923a a a ---, xx x 52522--2.分式:①223a a ++,②22a b a b --,③412()a a b -,④12x -中,最简分式有( )个六、通分 1、分式222439xx x x --与的最简公分母是___ ___________. 2、分式yx 21,323x y,232xy x +的最简公分母是( ) 3、把下列各组分式通分 (1)243,2bac bd c (2),412-a 21-a七、分式运算 1、化简xy x x 1⋅÷的结果是( ) 2、22332p mn p n nm÷⎪⎪⎭⎫ ⎝⎛⋅; 3、aa a -+-21422; 4、112---x x x ; 5、⎪⎪⎭⎫ ⎝⎛--÷-x y xy x x y x 2222, 6.339322++--m m m m7 、先化简,再对a 取一个你喜欢的数,代入求值.221369324a a a a a a a +--+-÷-+-.8、先化简:⎪⎭⎫ ⎝⎛--÷-aa a aa 121 并任选一个你喜欢的数a 代入求值.9、先化简,再求值:1312-÷+x xx x ,其中31+=x .10、已知220x -=,求代数式222(1)11x x x x -+-+的值.11、 先化简,再求值: 3x +3 x ·⎝ ⎛⎭⎪⎫ 1 x -1 + 1 x +1 ÷ 6x ,其中x =1.12、先化简,再求值:232224xx x x x x ⎛⎫-÷ ⎪-+-⎝⎭,其中3x =.八、分式方程,易错点:分式方程检验 1、解方程: (1)256x x x x -=--. (2)21411x x x +---=1. (3)12212+=++-x xxx x ,(4)6122x x x +=-+. (5)14143=-+--x x x ,(6)22333x x x -+=--,2、已知23(1)(2)12x A Bx x x x -=+-+-+,求A ,B 的值.3、已知分式方程21x ax +-=1的解为非负数,求a 的范围.4、已知关于x 的方程12-=-+x ax 的根是正数,求a 的取值范围。
专题六一元二次方程,分式方程实际问题1、(2016乌鲁木齐,19,10分)某商场用24000元购入一批空调,然后以每台3000元的价格销售,因天气炎热,空调很快售完,商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.(1)商场第一次购入的空调每台进价是多少元?(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?2、(2015乌鲁木齐,18,10分)某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元的利润,应将销售单价定位多少元?3、(2014乌鲁木齐,18,9分)某工厂使用旧设备生产,每月生产收入是90万元,每月另需支付设备维护费5万元,从2017年1月份起使用新设备,生产收入提高且无设备维护费,使用当月生产收入达100万元,1至3月份生产收入以相同的百分率逐月增长,累计达364万元,3月份后,每月生产收入稳定在3月份的水平.(1)求使用新设备后,2月、3月生产收入的月增长率;(2)购进新设备需一次性支付640万元,使用新设备几个月后,该厂所得累计利润不低于使用旧设备的累计利润?(累计利润是指累计生产收入减去就设备维护费或新设备购进费)4、(2012乌鲁木齐,19,12分)水果店第一次用500元购进某种水果,由于销售状况良好,该店又用1650元购时该品种水果,所购数量是第一次购进数量的3倍,但进货价每千克多了0.5元.(1)第一次所购水果的进货价是每千克多少元?(2)水果店以每千克8元销售这些水果,在销售中,第一次购进的水果有5%的损耗,第二次购进的水果有2%的损耗.该水果店售完这些水果可获利多少元?5、某地大力发展经济作物,其中果树种植已初具规模。
专题06:分式-2021年广东地区中考数学真题与模拟试题精选汇编一、单选题1.(2021·广州市第十六中学九年级二模)下列计算正确的是( ) A .()22239pq p q -=- B .22a ab b-=-C 0=D .933b b b ÷=【答案】C【解析】A 、根据积的乘方运算法则判断;B 、根据分式的基本性质判断;C 、根据二次根式的性质判断;D 、根据同底数幂的除法法则判断.【解答】解:A 、222(3)9pq p q -=,故本选项不合题意;B 、当a b 时,22a ab b-≠-,故本选项不合题意;C 、由题意可得0a =0=,故本选项符合题意;D 、936b b b ÷=,故本选项不合题意; 故选:C .【点评】本题考查了积的乘方,分式的基本性质,二次根式的性质以及同底数幂的除法,掌握相关定义与运算法则是解答本题的关键.2.(2021·广东惠州市·x 应满足的条件是( )A .2x ≥B .2x >C .2x ≠D .2x -≤【答案】B【解析】根据二次根式有意义的条件即可求出答案. 【解答】解:由题意可知:20x ->,2x ∴>,故选:B .【点评】本题考查二次根式,解题的关键是熟练运用二次根式有意义的条件,本题属于基础题型. 3.(2021·广东惠州市·)随着科技不断发展,芯片的集成度越来越高,我国企业中芯国际已经实现14纳米量产,14纳米0000014=.毫米,0.000014用科学记数法表示为( ) A .-61410⨯ B .-51.410⨯C .-71.410⨯D .-40.1410⨯【答案】B【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【解答】解:将0.000014用科学记数法表示为51.410-⨯. 故选:B .【点评】本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中1||10a <,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.(2021·广东华侨中学九年级二模)下列分式中,最简分式是( )A .211x x +-B .2211x x -+C .2222x xy y x xy-+- D .21628x x -+【答案】B【解析】根据最简分式的定义逐项判断即可得. 【解答】A 、21111(1)(1)1x x x x x x ++==-+--,此项不是最简分式,不符题意; B 、2211x x -+是最简分式,符合题意;C 、22222()()x xy y x y x yx xy x x y x-+--==--,此项不是最简分式,不符题意;D 、216(4)(4)4282(4)2x x x x x x -+--==++,此项不是最简分式,不符题意;故选:B .【点评】本题考查了最简分式,熟记定义是解题关键. 5.(2021·广东肇庆市·九年级一模)分式22x -在实数范围内有意义,则x 的取值范围是( ) A .2x > B .2x <C .2x =D .2x ≠【答案】D【解析】根据分式分母不为零,计算即可【解答】解:根据分式有意义的条件为分母不为零得:20x -≠∴2x ≠ 故选:D【点评】本题考查分时有意义的条件,正确理解分式的定义是关键 6.(2021·广东深圳市·九年级一模)下列运算正确的是( )A .(﹣2a 2b ﹣1)2=424a bB .(a +b )2=a 2+b 2C 2D .222a a b -+222b b a-=2a b - 【答案】A【解析】直接利用积的乘方运算法则以及完全平方公式、二次根式的加减、分式的加减运算法则分别计算得出答案.【解答】解:A 、(﹣2a 2b ﹣1)2=424a b,故此选项正确;B 、(a +b )2=a 2+2ab +b 2,故此选项错误;C D 、222222a b a b b a +--=222a a b -﹣222ba b -=2a b+,故此选项错误; 故选:A .【点评】此题主要考查了积的乘方运算以及完全平方公式、二次根式的加减、分式的加减运算,正确掌握相关运算法则是解题关键.7.(2021·广东广州市·九年级一模)若分式2545x x x ---的值为0,则x 的值为( ) A .-5 B .5C .-5和5D .无法确定【答案】A【解析】根据分式值为0的条件:分子为0,分母不为0列方程或不等式即可. 【解答】解:∵分式2545x x x ---的值为0, ∴5x -=0且245x x --≠0, 解方程得,5x =±; 解不等式得,1,5x x ≠-≠; 故5x =-, 故选:A .【点评】本题考查了分式值为0和解一元二次方程,解题关键是根据已知列出方程和不等式,准确求解. 8.(2021·广东惠州市·九年级二模)某种冠状病毒的直径120纳米,1纳米910-=米,则这种冠状病毒的直径(单位是米)用科学记数法表示为( ) A .912010-⨯米 B .81.210-⨯米C .71.210-⨯米D .61.210-⨯米【答案】C【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【解答】120纳米=120×10-9米=1.2×10-7米,故选:C .【点评】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.9.(2021·广东广州市·西关外国语学校九年级一模)一次抽奖活动特等奖的中奖率为150000,把150000用科学记数法表示为( ) A .4510⨯﹣ B .5510⨯﹣ C .4210⨯﹣ D .5210⨯﹣【答案】D【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【解答】150000=0.00002=2×10﹣5.故选D .【点评】本题考查了用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.10.(2021·广东广州市·九年级一模)下列运算正确的是( ) A .222()a b a b +=+ B .55a a -= C .2122a a a+=-- D .2363(2)6a b a b -=-【答案】C【解析】根据完全平方公式判断A ;根据合并同类项的法则判断B ;根据分式的加法运算法则判断C ;根据幂的乘方与积的乘方法则判断D .【解答】A 、222()2a b a ab b +=++,故错误;B 、54a a a -=,故错误;C 、2212222a a a a a a +=-=----,正确; D 、()326328a ba b -=-,故错误.【点评】此题主要考查了整式和分式的运算等知识,正确运用运算法则是解题关键.二、填空题11.(2021·广东汕头市·九年级一模)新型冠状病毒也叫2019-nCOV ,该病毒比细胞小得多,大小约为150nm (纳米),即为0.00000015米,约为一根头发丝直径的千分之一,数据0.00000015米用科学记数法表示为______米.【答案】1.5×10-7 【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【解答】解:0.00000015=1.5×10-7, 故答案为:1.5×10-7. 【点评】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定. 12.(2021·广东东莞市·九年级其他模拟)分式261x x -+有意义的条件是________. 【答案】1x ≠-【解析】根据分式的分母不为0列出不等式,解不等式得到答案. 【解答】解:要使分式261x x -+有意义,必须x +1≠0, 解得,x ≠﹣1, 故答案是:x ≠﹣1.【点评】此题主要考查分式有意义的条件,解题的关键是熟知分式的分母不为0. 13.(2021·有意义,则x 的取值范围是______.【答案】3x <.【解析】直接根据二次根式有意义的条件为根号下的数大于等于0,分式有意义的条件为分母不为0;有意义,则30x -> , ∴ 3x < , 故答案为:3x <.【点评】本题考查了二次根式有意义的条件和分式有意义的条件,正确掌握知识点是解题的关键 . 14.(2021·广东广州市·九年级一模)已知xx 可取__________(只需填满足条件的一个自然数). 【答案】1(答案不唯一)【解析】根据分式的分母不能为0、二次根式的定义即可得. 【解答】解:由题意得:40x ->, 解得4x <,x 为自然数,x 可取1,故答案为:1(答案不唯一).【点评】本题考查了分式的分母不能为0、二次根式,熟练掌握分式和二次根式有意义的条件是解题关键.15.(2021·广东东莞市·九年级一模)计算:20210+1213-⎛⎫- ⎪⎝⎭=_____.【答案】﹣2.【解析】利用零指数幂、负指数幂及乘方的运算法则进行计算即可. 【解答】原式=1+3﹣6=﹣2. 故答案为:﹣2.【点评】本题考查了实数的相关运算,解题关键是熟练运用零指数幂、负指数幂及乘方的运算法则. 16.(2021·广东肇庆市·九年级一模)011(2021)()2π---=_____________.【答案】-1;【解析】根据零指数幂和负整数指数幂的意义计算即可. 【解答】原式121=-=-. 故答案为:1-.【点评】本题考查了零指数幂和负整数指数幂,关键是掌握零指数幂和负整数指数幂的意义. 17.(2021·广东汕头市·π﹣3)0=_____. 【答案】5【解析】首先计算二次根式的乘法、零指数幂,再计算减法即可解答.﹣(π﹣3)0 =6﹣1 =5. 故答案为:5.【点评】本题考查了二次根式的乘法及零指数幂的性质,解题的关键是熟练运用所学知识.18.(2021·广东九年级一模)当x =_____时,分式293x x -+的值为零.【答案】3【解析】分式的值为零的条件:分子为0,分母不为0,据此即可求出x 的值.【解答】∵分式293x x -+的值为零,∴x 2-9=0,且x+3≠0, 解得:x=3, 故答案为:3【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.19.(2021·广东深圳市·九年级其他模拟)若代数式14x -有意义,则实数x 的取值范围是____. 【答案】4x ≠【解析】根据分式有意义的条件,分母不能等于0,列不等式求解即可. 【解答】因为分式有意义的条件是分母不能等于0, 所以40x -≠, 所以4x ≠. 故答案为: 4x ≠.【点评】本题主要考查分式有意义的条件,解决本题的关键是要熟练掌握分式有意义的条件.20.(2021·内蒙古赤峰市·中考真题)在函数21y x =-中,自变量x 的取值范围是_____. 【答案】x≥-1且x≠12【解析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.【解答】解:根据题意得:x 10{2x 10,+≥-≠ 解得:x≥-1且x≠12故答案为:x≥-1且x≠12. 【点评】本题考查函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.三、解答题21.(2021·广东中考真题)已知m n A n m ⎛⎫=- ⎪⎝⎭(1)化简A ;(2)若0m n +-=,求A 的值.【答案】(1)m n +;(2)6.【解析】(1)先通分合并后,因式分解,然后约分化简即可;(2)先把式子移项求m n +=,然后整体代入,进行二次根式乘法运算即可.【解答】解:(1)()())22m n m n m n A m n mn nm mn +-⎛⎫=-==+ ⎪⎝⎭;(2)∵0m n +-=,∴m n +=∴)A m n =+.【点评】本题考查分式化简计算,会通分因式分解与约分,二次根式的乘法运算,掌握分式化简计算,会通分因式分解与约分,二次根式的乘法运算是解题关键.22.(2021·广东梅州市·九年级二模)先化简,再求值:22111211x x x x x x -+÷+-+-,其中1x =.【答案】11x x +-,1 【解析】先根据分式运算法则进行化简,再代入求值即可. 【解答】解:原式()()()2111111x x x x x x +-=⋅++-- 111x x x =+-- 11x x +=-将1x =+代入上式得原式==1=. 【点评】本题考查了分式化简求值和二次根式计算,解题关键是熟练运用相关法则进行准确计算.23.(2021·广东广州市·九年级二模)已知直线3y =-与x 轴的交点横坐标为m ,求214242m m m m ⎛⎫+÷ ⎪+--⎝⎭的值.【解析】令解析式中的0y =,求出x 的值,则m 的值确定,再化简原式,最后代入m 的值,结论可求.【解答】解:令0y =30-=.解得:x =33y x =-与x 轴的交点横坐标为m ,m x ∴==原式1422(2)(2)m m m m m ⎡⎤-=+⨯⎢⎥++-⎣⎦242(2)(2)m m m m m-+-=⨯+-1m=. 把m =代入得:原式==. 【点评】本题考查了一次函数与坐标轴的交点,因式分解,分式的化简求值,熟练求函数与坐标轴的交点,合理进行因式分解,分式的化简是解题的关键.24.(2021·广东广州市第二中学九年级二模)已知关于x 的方程220x x a -+=有两个不相等的实数根,请化简2111a a a++--【答案】2【解析】先根据220x x a -+= 有两个不相等的实数根可知△>0,即可得出a 的取值范围;然后再将原式化简求值即可;【解答】∵220x x a -+=有两个不相等的实数根, ∴ 2=4440b ac a ∆-=-> , ∴ 1a < ,原式=211a a--=1a ++()=11a a ++-=2∴ 原式=2.【点评】本题考查了一元二次方程根的判别式以及分式和二次根式的化简求值,正确掌握运算方法是解题的关键.25.(2021·广东肇庆市·九年级一模)先化简,再求值:211111a a a a -⎛⎫-⋅ ⎪-+⎝⎭,其中a =【答案】2a【解析】根据分式的混合运算顺序,先算括号里的减法,再算乘法,化简即可,把a 的值代入化简后的式子中计算可求得结果的值.【解答】211111a a a a -⎛⎫-⋅ ⎪-+⎝⎭ 22211a a a -=⋅- 2a=当a ===【点评】本题是分式的化简求值题,考查了分式的混合运算及实数的运算,注意运算顺序不能出错,本题也可用乘法的分配律计算.26.(2021·广东佛山市·九年级一模)先化简,再求值:224442x xx x x --+++,其中2x =.【答案】22x -+,. 【解析】根据分式的运算法则进行化简,然后将x 的值代入原式即可求出答案. 【解答】原式()()()2222222222x x x x x x x x x x +--=-=-=-+++++当2x =时,原式===.【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.27.(2021·广东佛山市·九年级二模)先化简,后求值:2111224x x x x +⎛⎫+÷ ⎪-+-⎝⎭,其中2x =.【答案】21xx +,-【解析】利用通分和约分,进行化简,再代入求值,即可求解. 【解答】解:原式=222221444x x x x x x +-+⎛⎫+÷ ⎪---⎝⎭ =222144x x x x +÷-- =222441x x x x -⋅-+ =21xx +,当2x=时,原式() 4141==-.【点评】本题主要考查分式化简求值,二次根式的化简,熟练掌握通分和约分,分母有理化,是解题的关键.28.(2021·广东惠州市·九年级三模)先化简,再求值.2211121a aa a a,其中1a=+【答案】11a--;2-.【解析】根据分式的运算法则进行化简,然后将1a=代入原式即可求出答案.【解答】解:原式2111111a aa aa a a211111a a aa a a211111aa aa a a211111aa aa11a=--.当1a=时,原式2===-.【点评】本题考查分式的化简求值,熟悉相关运算法则是解题的关键.29.(2021·广东深圳市·九年级二模)计算:02114sin60320213-⎛⎫⎛⎫-++⎪ ⎪⎝⎭⎝⎭︒【答案】13【解析】先分别化简锐角三角函数,绝对值,零指数幂和负整数指数幂,然后再计算.【解答】解:02114sin60320213-⎛⎫⎛⎫-++⎪ ⎪⎝⎭⎝⎭︒=43192-+⨯-+=()4319-++=4192⨯-++=19++=13.【点评】本题考查锐角三角函数,绝对值,零指数幂和负整数指数幂,掌握运算顺序和计算法则准确计算是解题关键.30.(2021·广东广州市·九年级一模)已知()2211202a ab b H a b b a ab -+⎛⎫=-÷≠≠ ⎪⎝⎭. (1)化简H ;(2)若点(),P a b 在直线2y x =-上,求H 的值.【答案】(1)2H a b=-;(2)1H =. 【解析】(1)根据分式的减法和除法可以化简题目中的式子;(2)根据点P (a ,b )在直线y =x ﹣2上,可以得到a ﹣b 的值,然后代入(1)中化简后的式子即可解答本题.【解答】解:(1)H 221122a ab b b a ab -+⎛⎫=-÷ ⎪⎝⎭ 22()a b ab ab a b -=⋅- 2a b=-; (2)∵点P (a ,b )在直线y =x ﹣2上,∴b =a ﹣2,∴a ﹣b =2,当a ﹣b =2时,原式22==1, 即H 的值是1.【点评】本题考查分式的化简求值和一次函数图象上点的坐标特点,解答本题的关键是明确分式化简求值的方法.。
分式方程一、单选题1.(2022·江苏无锡)方程213x x=-的解是( ) A .3x =-B .1x =-C .3x =D .1x =2.(2022·内蒙古通辽)若关于x 的分式方程:121222k x x--=--的解为正数,则k 的取值范围为( ) A .2k < B .2k <且0k ≠ C .1k >-D .1k >-且0k ≠3.(2022·辽宁营口)分式方程322xx =-的解是( ) A .2x =B .6x =-C .6x =D .2x =-4.(2022·湖北恩施)一艘轮船在静水中的速度为30km/h ,它沿江顺流航行144km 与逆流航行96km 所用时间相等,江水的流速为多少?设江水流速为v km/h ,则符合题意的方程是( ) A .144963030v v =+- B .1449630v v =- C .144963030v v=-+ D .1449630v v=+ 5.(2022·海南)分式方程2101x -=-的解是( ) A .1x =B .2x =-C .3x =D .3x =-6.(2022·黑龙江哈尔滨)方程233x x=-的解为( ) A .3x =B .9x =-C .9x =D .3x =-7.(2022·黑龙江)已知关于x 的分式方程23111x m x x--=--的解是正数,则m 的取值范围是( ) A .4m >B .4m <C .4m >且5m ≠D .4m <且1m ≠8.(2022·山东潍坊)观察我国原油进口月度走势图,2022年4月原油进口量比2021年4月增加267万吨,当月增速为6.6%(计算方法:267100% 6.6%4036⨯≈).2022年3月当月增速为14.0%-,设2021年3月原油进口量为x 万吨,下列算法正确的是( )A .4271100%14.0%4271x -⨯=- B .4271100%14.0%4271x-⨯=- C .4271100%14.0%x x -⨯=- D .4271100%14.0%xx-⨯=- 9.(2021·四川巴中)关于x 的分式方程2m xx+--3=0有解,则实数m 应满足的条件是( ) A .m =﹣2B .m ≠﹣2C .m =2D .m ≠210.(2021·内蒙古呼伦贝尔)若关于x 的分式方程2233x a x x++=--无解,则a 的值为( ) A .3B .0C .1-D .0或311.(2021·四川宜宾)若关于x 的分式方程322x mx x -=--有增根,则m 的值是( ) A .1B .﹣1C .2D .﹣212.(2021·广西贺州)若关于x 的分式方程43233m xx x +=+--有增根,则m 的值为( ) A .2B .3C .4D .513.(2021·黑龙江)已知关于x 的分式方程3121m x +=-的解为非负数,则m 的取值范围是( ) A .4m ≥-B .4m ≥-且3m ≠-C .4m >-D .4m >-且3m ≠-14.(2020·黑龙江鹤岗)已知关于x 的分式方程433x kx x-=--的解为非正数,则k 的取值范围是( ) A .12k ≤-B .12k -≥C .12k >-D .12k <-15.(2020·湖北荆门)已知关于x 的分式方程2322(2)(3)x kx x x +=+--+的解满足41x -<<-,且k 为整数,则符合条件的所有k 值的乘积为( )A .正数B .负数C .零D .无法确定16.(2020·黑龙江牡丹江)若关于x 的方程201m x x-=+的解为正数,则m 的取值范围是( ) A .2m <B .2m <且0m ≠C .2m >D .2m >且4m ≠17.(2020·四川泸州)已知关于x 的分式方程3211m x x+=---的解为非负数,则正整数m 的所有个数为( ) A .3B .4C .5D .618.(2020·重庆)若关于x 的一元一次不等式组()213212x x x a ⎧-≤-⎪⎨->⎪⎩的解集为x ≥5,且关于y 的分式方程122+=---y ay y 有非负整数解,则符合条件的所有整数a 的和为( ) A .-1B .-2C .-3D .019.(2020·重庆)若关于x 的一元一次不等式结3132x x x a-⎧≤+⎪⎨⎪≤⎩的解集为x a ≤;且关于y 的分式方程34122y ay y y --+=--有正整数解,则所有满足条件的整数a 的值之积是( ) A .7B .-14C .28D .-5620.(2022·重庆)关于x 的分式方程31133x a x x x-++=--的解为正数,且关于y 的不等式组92(2)213y y y a +≤+⎧⎪-⎨>⎪⎩的解集为5y ≥,则所有满足条件的整数a 的值之和是( )A .13B .15C .18D .2021.(2022·四川遂宁)若关于x 的方程221mxx =+无解,则m 的值为( ) A .0B .4或6C .6D .0或422.(2022·重庆)若关于x 的一元一次不等式组411351x x x a-⎧-≥⎪⎨⎪-⎩<的解集为2x -≤,且关于y 的分式方程1211y ay y -=-++的解是负整数,则所有满足条件的整数a 的值之和是( ) A .-26B .-24C .-15D .-1323.(2022·四川德阳)关于x 的方程211x ax +=-的解是正数,则a 的取值范围是( ) A .a >-1B .a >-1且a ≠0C .a <-1D .a <-1且a ≠-224.(2020·云南昆明)某校举行“停课不停学,名师陪你在家学”活动,计划投资8000元建设几间直播教室,为了保证教学质量,实际每间建设费用增加了20%,并比原计划多建设了一间直播教室,总投资追加了4000元.根据题意,求出原计划每间直播教室的建设费用是( ) A .1600元B .1800元C .2000元D .2400元25.(2020·黑龙江齐齐哈尔)若关于x 的分式方程32x x -=2mx-+5的解为正数,则m 的取值范围为( )A .m <﹣10B .m ≤﹣10C .m ≥﹣10且m ≠﹣6D .m >﹣10且m ≠﹣626.(2020·黑龙江牡丹江)若关于x 的分式方程21mx x=-有正整数解,则整数m 的值是( ) A .3B .5C .3或5D .3或427.(2020·黑龙江黑龙江)已知关于x 的分式方程422x kx x-=--的解为正数,则x 的取值范围是( ) A .80k -<< B .8k >-且2k ≠- C .8k >-D .4k <且2k ≠-28.(2020·山东枣庄)对于实数a 、b ,定义一种新运算“⊗”为:21a b a b ⊗=-,这里等式右边是实数运算.例如:21113138⊗==--.则方程()2214⊗-=--x x 的解是( ) A .4x = B .5x = C .6x = D .7x =二、填空题29.(2022·21=的解是_______. 30.(2022·湖南永州)解分式方程2101xx -=+去分母时,方程两边同乘的最简公分母是______.31.(2021·湖北黄石)分式方程11322-+=--xx x 的解是______. 32.(2020·山东济南)代数式31x -与代数式23x -的值相等,则x =_____.33.(2020·山东潍坊)若关于x 的分式方程33122x m x x +-=--有增根,则m 的值为_____.34.(2022·广东广州)分式方程3221x x =+的解是________ 35.(2022·黑龙江齐齐哈尔)若关于x 的分式方程2122224x m x x x ++=-+-的解大于1,则m 的取值范围是______________.36.(2021·湖北湖北)关于x 的方程2220x mx m m -+-=有两个实数根,αβ.且111αβ+=.则m =_______.37.(2021·湖南常德)分式方程1121(1)x x x x x ++=--的解为__________. 38.(2021·四川凉山)若关于x 的分式方程2311x mx x-=--的解为正数,则m 的取值范围是_________.39.(2020·四川巴中)若关于x 的分式方程31(1)x mx x x +=--有增根,则m =_________. 40.(2022·重庆)为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5:6:7,需香樟数量之比为4:3:9,并且甲、乙两山需红枫数量之比为2:3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为_________. 41.(2021·山东潍坊)若x <2,且12102x x x +-+-=-,则x =_______. 42.(2021·四川雅安)若关于x 的分式方程11222k x x --=--的解是正数,则k 的取值范围是______.43.(2021·辽宁本溪)为了弘扬我国书法艺术,培养学生良好的书写能力,某校举办了书法比赛,学校准备为获奖同学颁奖.在购买奖品时发现,A 种奖品的单价比B 种奖品的单价多10元,用300元购买A 种奖品的数量与用240元购买B 种奖品的数量相同.设B 种奖品的单价是x 元,则可列分式方程为________. 44.(2021·河北)用绘图软件绘制双曲线m :60y x=与动直线l :y a =,且交于一点,图1为8a =时的视窗情形.(1)当15a =时,l 与m 的交点坐标为__________;(2)视窗的大小不变,但其可视范围可以变化,且变化前后原点O 始终在视窗中心.例如,为在视窗中看到(1)中的交点,可将图1中坐标系的单位长度变为原来的12,其可视范围就由1515x -≤≤及1010y -≤≤变成了3030x -≤≤及2020y -≤≤(如图2).当 1.2a =-和 1.5a =-时,l 与m 的交点分别是点A 和B ,为能看到m 在A 和B 之间的一整段图象,需要将图1中坐标系的单位长度至少变为原来的1k,则整数k =__________. 45.(2020·四川眉山)关于x 的分式方程11222kx x-+=--的解为正实数,则k 的取值范围是________.46.(2020·内蒙古呼和浩特)分式22x x -与282x x -的最简公分母是_______,方程228122-=--x x x x的解是____________. 47.(2020·四川内江)若数a 使关于x 的分式方程2311x ax x++=--的解为非负数,且使关于y 的不等式组()3113431220y y y a -+⎧-≥-⎪⎨⎪-<⎩的解集为0y ≤,则符合条件的所有整数a的积为_____________48.(2020·甘肃金昌)在一个不透明的袋中装有若干个红球,为了估计袋中红球的个数,小明在袋中放入3个黑球(每个球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,则袋中红球约有_____个. 三、解答题49.(2022·青海西宁)解方程:22430x x x x-=+-.50.(2022·广西梧州)解方程:24133x x -=--51.(2022·广西贺州)解方程:3144x x x-=--.52.(2022·山西)2022年我国已成为全球最大的电动汽车市场,电动汽车在保障能源安全,改善空气质量等方面较传统汽车都有明显优势,经过对某款电动汽车和某款燃油车的对比调查发现,电动汽车平均每公里的充电费比燃油车平均每公里的加油费少0.6元.若充电费和加油费均为200元时,电动汽车可行驶的总路程是燃油车的4倍,求这款电动汽车平均每公里的充电费.53.(2022·广西桂林)今年,某市举办了一届主题为“强国复兴有我”的中小学课本剧比赛.某队伍为参赛需租用一批服装,经了解,在甲商店租用服装比在乙商店租用服装每套多10元,用500元在甲商店租用服装的数量与用400元在乙商店租用服装的数量相等.(1)求在甲,乙两个商店租用的服装每套各多少元?(2)若租用10套以上服装,甲商店给以每套九折优惠.该参赛队伍准备租用20套服装,请问在哪家商店租用服装的费用较少,并说明理由.54.(2022·贵州铜仁)科学规范戴口罩是阻断遵守病毒传播的有效措施之一,某口罩生产厂家接到一公司的订单,生产一段时间后,还剩280万个口罩未生产,厂家因更换设备,生产效率比更换设备前提高了40%.结果刚好提前2天完成订单任务.求该厂家更换设备前和更换设备后每天各生产多少万个口罩?55.(2022·辽宁)2022年3月23日“天官课堂”第二课在中国空间站开讲了,精彩的直播激发了学生探索科学奥秘的兴趣.某中学为满足学生的需求,充实物理兴趣小组的实验项目,决定购入A、B两款物理实验套装,其中A款套装单价是B款套装单价的1.2倍,用9900元购买的A款套装数量比用7500元购买的B款套装数量多5套.求A、B两款套装的单价分别是多少元.56.(2022·吉林长春)为了让学生崇尚劳动,尊重劳动,在劳动中提升综合素质,某校定期开展劳动实践活动.甲、乙两班在一次体验挖土豆的活动中,甲班挖1500千克土豆与乙班挖1200千克土豆所用的时间相同.已知甲班平均每小时比乙班多挖100千克土豆,问乙班平均每小时挖多少千克土豆?57.(2022·山东烟台)扫地机器人具备敏捷的转弯、制动能力和强大的自主感知、规划能力,深受人们喜爱.某商场根据市场需求,采购了A,B两种型号扫地机器人.已知B型每个进价比A型的2倍少400元.采购相同数量的A,B两种型号扫地机器人,分别用了96000元和168000元.请问A,B两种型号扫地机器人每个进价分别为多少元?58.(2020·广西)某学校为丰富同学们的课余生活,购买了一批数量相等的象棋和围棋供兴趣小组使用,其中购买象棋用了420元,购买围棋用了756元,已知每副围棋比每副象棋贵8元.(1)求每副围棋和象棋各是多少元?(2)若该校决定再次购买同种围棋和象棋共40副,且再次购买的费用不超过600元,则该校最多可再购买多少副围棋?59.(2020·贵州黔南)新冠肺炎疫情期间,某小区计划购买甲、乙两种品牌的消毒剂,乙品牌消毒剂每瓶的价格比甲品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲品牌消毒剂的数量与用400元购买乙品牌消毒剂的数量相同.(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该小区从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙品牌消毒剂?60.(2022·广东深圳)某学校打算购买甲乙两种不同类型的笔记本.已知甲种类型的电脑的单价比乙种类型的要便宜10元,且用110元购买的甲种类型的数量与用120元购买的乙种类型的数量一样.(1)求甲乙两种类型笔记本的单价.(2)该学校打算购买甲乙两种类型笔记本共100件,且购买的乙的数量不超过甲的3倍,则购买的最低费用是多少?61.(2022·广西柳州)习近平总书记在主持召开中央农村工作会议中指出:“坚持中国人的饭碗任何时候都要牢牢端在自己手中,饭碗主要装中国粮.”某粮食生产基地为了落实习近平总书记的重要讲话精神,积极扩大粮食生产规模,计划投入一笔资金购买甲、乙两种农机具,已知1件甲种农机具比1件乙种农机具多1万元,用15万元购买甲种农机具的数量和用10万元购买乙种农机具的数量相同.(1)求购买1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购买甲、乙两种农机具共20件,且购买的总费用不超过46万元,则甲种农机具最多能购买多少件?62.(2022·山东聊城)为了解决雨季时城市内涝的难题,我市决定对部分老街道的地下管网进行改造.在改造一段长3600米的街道地下管网时,每天的施工效率比原计划提高了20%,按这样的进度可以比原计划提前10天完成任务.(1)求实际施工时,每天改造管网的长度;(2)施工进行20天后,为了减少对交通的影响,施工单位决定再次加快施工进度,以确保总工期不超过40天,那么以后每天改造管网至少还要增加多少米?63.(2022·内蒙古呼和浩特)今年我市某公司分两次采购了一批土豆,第一次花费30万元,第二次花费50万元,已知第一次采购时每吨土豆的价格比去年的平均价格上涨了200元,第二次采购时每吨土豆的价格比去年的平均价格下降了200元,第二次的采购数量是第一次采购数量的2倍.(1)问去年每吨土豆的平均价格是多少元?(2)该公司可将土豆加工成薯片或淀粉,因设备原因,两种产品不能同时加工,若单独加工成薯片,每天可加工5吨土豆,每吨土豆获利700元;若单独加工成淀粉,每天可加工8吨土豆,每吨土豆获利400元.由于出口需要,所有采购的土豆必须全部加工完且用时不超过60天,其中加工成薯片的土豆数量不少于加工成淀粉的土豆数量的2,为获得最大利润,应将多少吨土豆加工成薯片?最大3利润是多少?64.(2022·广西)金鷹酒店有140间客房需安装空调,承包给甲、乙两个工程队合作安装,每间客房都安装同一品牌同样规格的一台空调,已知甲工程队每天比乙工程队多安装5台,甲工程队的安装任务有80台,两队同时安装.问:(1)甲,乙两个工程队每天各安装多少台空调,才能同时完成任务?(2)金鹰酒店响应“縁色环保”要求,空调的最低温度设定不低于26℃,每台空调每小时耗电1.5度:据预估,每天至少有100间客房有旅客住宿,旅客住宿时平均每天开空调约8小时,若电费0.8元/度,请你估计该酒店毎天所有客房空调所用电费W(单位:元)的范围?65.(2022·贵州遵义)遵义市开展信息技术与教学深度融合的精准化教学某实验学校计划购买A,B两种型号教学设备,已知A型设备价格比B型设备价格每台高20%,用30000元购买A型设备的数量比用15000元购买B型设备的数量多4台.(1)求A,B型设备单价分别是多少元?(2)该校计划购买两种设备共50台,要求A型设备数量不少于B型设备数量的1.设购买a台A型设备,购买总费用为w元,求w与a的函数关系式,并求出最3少购买费用.66.(2021·山东青岛)某超市经销甲、乙两种品牌的洗衣液,进货时发现,甲品牌洗衣液每瓶的进价比乙品牌高6元,用1800元购进甲品牌洗衣液的数量是用1800元购进乙品牌洗衣液数量的4.销售时,甲品牌洗衣液的售价为36元/瓶,5乙品牌洗衣液的售价为28元/瓶.(1)求两种品牌洗衣液的进价;(2)若超市需要购进甲、乙两种品牌的洗衣液共120瓶,且购进两种洗衣液的总成本不超过3120元,超市应购进甲、乙两种品牌洗衣液各多少瓶,才能在两种洗衣液完全售出后所获利润最大?最大利润是多少元?67.(2021·内蒙古呼和浩特)为了促进学生加强体育锻炼,某中学从去年开始,每周除体育课外,又开展了“足球俱乐部1小时”活动,去年学校通过采购平台在某体育用品店购买A品牌足球共花费2880元,B品牌足球共花费2400元,且购买A品牌足球数量是B品牌数量的1.5倍,每个足球的售价,A品牌比B品牌便宜12元.今年由于参加俱乐部人数增加,需要从该店再购买A、B两种足球共50个,已知该店对每个足球的售价,今年进行了调整,A品牌比去年提高了5%,B品牌比去年降低了10%,如果今年购买A、B两种足球的总费用不超过去年总费用的一半,那么学校最多可购买多少个B品牌足球?68.(2021·内蒙古通辽)为做好新冠疫情的防控工作,某单位需购买甲、乙两种消毒液经了解每桶甲种消毒液的零售价比乙种消毒液的零售价多6元,该单位以零售价分别用900元和720元采购了相同桶数的甲、乙两种消毒液.(1)求甲、乙两种消毒液的零售价分别是每桶多少元?(2)由于疫情防控进入常态化,该单位需再次购买两种消毒液共300桶,且甲种消毒液的桶数不少于乙种消毒液桶数的13,由于购买量大,甲、乙两种消毒液分别获得了20元/桶,15元/桶的批发价.求甲种消毒液购买多少桶时,所需资金总额最少?最少总金额是多少元?69.(2021·广东)端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.市场上豆沙粽的进价比猪肉粽的进价每盒便宜10元,某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价50元时,每天可售出100盒;每盒售价提高1元时,每天少售出2盒.(1)求猪肉粽和豆沙粽每盒的进价;(2)设猪肉粽每盒售价x 元()0,565x y ≤≤表示该商家每天销售猪肉粽的利润(单位:元),求y 关于x 的函数解析式并求最大利润.70.(2021·山东济宁)某商场购进甲、乙两种商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元. (1)求甲、乙两种商品每箱各盈利多少元?(2)甲、乙两种商品全部售完后,该商场又购进一批甲商品,在原每箱盈利不变的前提下,平均每天可卖出100箱.如调整价格,每降价1元,平均每天可以多卖出20箱,那么当降价多少元时,该商场利润最大?最大利润是多少?71.(2021·湖北武汉)在“乡村振兴”行动中,某村办企业以A ,B 两种农作物为原料开发了一种有机产品,A 原料的单价是B 原料单价的1.5倍,若用900元收购A 原料会比用900元收购B 原料少100kg .生产该产品每盒需要A 原料2kg 和B 原料4kg ,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒.(1)求每盒产品的成本(成本=原料费+其他成本);(2)设每盒产品的售价是x元(x是整数),每天的利润是w元,求w关于x的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过a元(a是大于60的常数,且是整数),直接写出每天的最大利润.72.(2020·黑龙江牡丹江)某商场准备购进A,B两种书包,每个A种书包比B 种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:(1)A,B两种书包每个进价各是多少元?(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,A种,B种书包各有几个?73.(2020·四川攀枝花)实验学校某班开展数学“综合与实践”测量活动.有两座垂直于水平地面且高度不一的圆柱,两座圆柱后面有一斜坡,且圆柱底部到坡脚水平线MN的距离皆为100cm.王诗嬑观测到高度90cm矮圆柱的影子落在地面上,其长为72cm;而高圆柱的部分影子落在坡上,如图所示.已知落在地面上的影子皆与坡脚水平线MN互相垂直,并视太阳光为平行光,测得斜坡坡度1:0.75i ,在不计圆柱厚度与影子宽度的情况下,请解答下列问题:(1)若王诗嬑的身高为150cm,且此刻她的影子完全落在地面上,则影子长为多少cm?(2)猜想:此刻高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内.请直接回答这个猜想是否正确?(3)若同一时间量得高圆柱落在坡面上的影子长为100cm,则高圆柱的高度为多少cm?。
专题6 分式及其运算考点一、分式的概念和性质1.(2022·云南·昆明中考模拟)要使12022x +有意义,则x 的取值范围为( )A .0x ≠B .2022x >-C .2022x ≠D .2022x ≠-2.(2022·湖南怀化·中考真题)代数式25x ,1π,224x +,x 2﹣23,1x ,12x x ++中,属于分式的有( )A .2个B .3个C .4个D .5个3.(2022·广东·中考三模)若分式55m m --的值为零,则m =( ) A .5-B .5C .5±D .04.(2022·云南·中考三模)下列函数中,自变量x 的取值范围错误的是( ) A .11212y x x ⎛⎫=≠ ⎪-⎝⎭B .)1y x =≥C .)1y x =≤D .21y x =-(x 为任意实数)5.(2022·湖北黄石·中考真题)函数11y x =-的自变量x 的取值范围是( ) A .3x ≠-且1x ≠B .3x >-且1x ≠C .3x >-D .3x ≥-且1x ≠6.(2022·广西·中考真题)当x =______时,分式22xx +的值为零. 7.(2022·湖南邵阳·x 的取值范围是_________. 8.(2022·湖南·长沙市中考二模)若分式11x x --的值为零,则x 的值为______. 考点二、分式化简9.(2022·四川绵阳·中考二模)下列分式属于最简分式的是( ) A .265xy xB .x y y x--C .22x y x y++D .2293x y x y-+10.(2022·四川眉山·中考真题)化简422a a +-+的结果是( ) A .1 B .22a a +C .224a a - D .2a a +11.(2022·辽宁沈阳·中考真题)化简:21111x x x -⎛⎫-⋅= ⎪+⎝⎭______.12.(2022·四川自贡·中考真题)化简:22a3a42a3a2a4a4--⋅+-+++=____________.13.(2022·西藏·中考真题)计算:222242a a aa a a+⋅---.14.(2022·辽宁大连·中考真题)计算2224214424x x xx x x x-+÷--+-.15.(2022·湖北十堰·中考真题)计算:2222a b b abaa a⎛⎫--÷+⎪⎝⎭.16.(2022·四川泸州·中考真题)化简:22311 (1). m m mm m-+-+÷17.(2022·湖南常德·中考真题)化简:231 122a aaa a+-⎛⎫-+÷⎪++⎝⎭18.(2022·甘肃武威·中考真题)化简:()2233322x x xx x x++÷-++.考点三、分式化简求值19.(2022·山东济南·中考真题)若m-n=2,则代数式222m n mm m n-⋅+的值是()A.-2B.2C.-4D.420.(2022·山东菏泽·中考真题)若22150a a --=,则代数式2442a a a a a -⎛⎫-⋅⎪-⎝⎭的值是________. 21.(2022·四川成都·中考真题)已知2272a a -=,则代数式2211a a a a a --⎛⎫-÷⎪⎝⎭的值为_________. 22.(2022·四川广安·中考真题)先化简:2242(2)244x xx x x x -++÷--+,再从0、1、2、3中选择一个适合的数代人求值.23.(2022·内蒙古内蒙古·中考真题)先化简,再求值:2344111x x x x x -+⎛⎫--÷ ⎪--⎝⎭,其中3x =.24.(2022·山东聊城·中考真题)先化简,再求值:244422a a a a a a --⎛⎫÷-- ⎪-⎝⎭,其中112sin 452a -⎛⎫=︒+ ⎪⎝⎭.25.(2022·辽宁锦州·中考真题)先化简,再求值:2233111211x x x x x x --⎛⎫÷-+ ⎪-++-⎝⎭,其中|1x =+.26.(2022·辽宁营口·中考真题)先化简,再求值:25244111a a a a a a +++⎛⎫+-÷⎪++⎝⎭,其中11|2|2a -⎛⎫=-- ⎪⎝⎭.27.(2022·湖北荆州·中考真题)先化简,再求值:222212a b a b a b a ab b ⎛⎫-÷ ⎪-+-+⎝⎭,其中113a -⎛⎫= ⎪⎝⎭,()02022b =-.28.(2022·四川广元·中考真题)先化简,再求值:22x x +÷(1﹣211x x --),其中x 是不等式组()211532x x x x ⎧-<+⎨+≥⎩的整数解.29.(2022·新疆·中考真题)先化简,再求值:22931121112a a a a a a a ⎛⎫--÷-⋅⎪-+--+⎝⎭,其中2a =.30.(2022·山东滨州·中考真题)先化简,再求值:2344111a a a a a ++⎛⎫+-÷⎪--⎝⎭,其中10(1tan 45π2)a -=︒+-答案与解析考点一、分式的概念和性质1.(2022·云南·昆明中考模拟)要使12022x +有意义,则x 的取值范围为( )A .0x ≠B .2022x >-C .2022x ≠D .2022x ≠-【答案】D【分析】根据分式有意义的条件列不等式求解即可.【详解】解:根据分式有意义即分母不为0,得到20220x +≠,即2022x ≠-,故D 正确. 故选:D .【点睛】本题主要考查了分式有意义的条件,理解分式有意义的条件(分母不能为零)是解题关键.2.(2022·湖南怀化·中考真题)代数式25x ,1π,224x +,x 2﹣23,1x ,12x x ++中,属于分式的有( )A .2个B .3个C .4个D .5个A .5-B .5C .5±D .0【答案】A【分析】根据分式的值为零的条件列式计算即可. 【详解】解:由题意得:|m |−5=0且m −5≠0, 解得:m =−5, 故选:A .【点睛】本题考查的是分式的值为零的条件,掌握分式值为零的条件是分子等于零且分母不等于零是解题的关键.4.(2022·云南·云大附中三模)下列函数中,自变量x 的取值范围错误的是( ) A .11212y x x ⎛⎫=≠ ⎪-⎝⎭B .)1y x =≥C .)1y x =≤D .21y x =-(x 为任意实数)5.(2022·湖北黄石·中考真题)函数1y x =-的自变量x 的取值范围是( ) A .3x ≠-且1x ≠ B .3x >-且1x ≠C .3x >-D .3x ≥-且1x ≠6.(2022·广西·中考真题)当x =______时,分式22xx +的值为零. 【答案】0【分析】根据分式值为零,分子等于零,分母不为零得2x =0,x +2≠0求解即可. 【详解】解:由题意,得2x =0,且x +2≠0,解得:x =0, 故答案为:0.【点睛】本题考查分式值为零的条件,熟练掌握分式值为零的条件“分子为零,分母不为零”是解题的关键.7.(2022·湖南邵阳·x 的取值范围是_________.【答案】x >2##2<x【分析】根据二次根式有意义的条件:被开方数是非负数和分式有意义的条件:分母不为0即可求出结论.【详解】解:由题意可得x-2>0, 解得:x >2, 故答案为:x >2.【点睛】本题考查的是分式及二次根式有意义的条件,掌握二次根式的被开方数是非负数、分式分母不为0解题的关键.8.(2022·湖南·长沙市开福区青竹湖湘一外国语学校二模)若分式11x x --的值为零,则x 的值为______.考点二、分式化简9.(2022·四川绵阳·二模)下列分式属于最简分式的是( ) A .265xy xB .x y y x--C .22x y x y ++D .2293x y x y-+10.(2022·四川眉山·中考真题)化简422a a +-+的结果是( ) A .1 B .22a a +C .224a a -D .2aa +11.(2022·辽宁沈阳·中考真题)化简:1111x x x -⎛⎫-⋅= ⎪+⎝⎭______. 【答案】1x -##1x -+12.(2022·四川自贡·中考真题)化简:2a 3a 42a 3a 2a 4a 4--⋅+-+++ =____________.【点睛】本题考查了分式的混合运算,熟练掌握约分,通分,因式分解的技巧是解题的关键.13.(2022·西藏·中考真题)计算:222242a a a a a a +⋅---. 24a a a a --2)(2)(2)a a a a -+-22a - 【点睛】本题考查了分式的化简,理解并掌握分式的计算法则,注意在解题过程中需注意的事项,仔细计算是本题的解题关键.14.(2022·辽宁大连·中考真题)计算2224214424x x x x x x x-+÷--+-.22222122x x x x x xx 211.xxx【点睛】本题考查的是分式的混合运算,掌握15.(2022·湖北十堰·中考真题)计算:2222a b b ab a a a ⎛⎫--÷+ ⎪⎝⎭.16.(2022·四川泸州·中考真题)化简:22311 (1). m m mm m-+-+÷17.(2022·湖南常德·中考真题)化简:231 122a aaa a+-⎛⎫-+÷⎪++⎝⎭18.(2022·甘肃武威·中考真题)化简:()2233322x x xx x x++÷-++.考点三、分式化简求值19.(2022·山东济南·中考真题)若m-n=2,则代数式222m n mm m n-⋅+的值是()A.-2B.2C.-4D.420.(2022·山东菏泽·中考真题)若22150a a--=,则代数式2442a aaa a-⎛⎫-⋅⎪-⎝⎭的值是________.【答案】15【分析】先按分式混合运算法则化简分式,再把已知变形为a2-2a=15,整体代入即可.21.(2022·四川成都·中考真题)已知2272a a -=,则代数式2211a a a a a--⎛⎫-÷ ⎪⎝⎭的值为_________. 【答案】72##3.5##312 【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简22.(2022·四川广安·中考真题)先化简:2242(2)244x xxx x x-++÷--+,再从0、1、2、3中选择一个适合的数代人求值.23.(2022·内蒙古内蒙古·中考真题)先化简,再求值:344111x xxx x-+⎛⎫--÷⎪--⎝⎭,其中3x=.24.(2022·山东聊城·中考真题)先化简,再求值:244422a a a a a a --⎛⎫÷-- ⎪-⎝⎭,其中112sin 452a -⎛⎫=︒+ ⎪⎝⎭.25.(2022·辽宁锦州·中考真题)先化简,再求值:2233111211x x x x x x --⎛⎫÷-+ ⎪-++-,其中|1x =+.x 26.(2022·辽宁营口·中考真题)先化简,再求值:25244111a a a a a a +++⎛⎫+-÷ ⎪++⎝⎭,其中11|2|2a -⎛⎫=-- ⎪⎝⎭.27.(2022·湖北荆州·中考真题)先化简,再求值:222212a b a b a b a ab b ⎛⎫-÷ ⎪-+-+⎝⎭,其中113a -⎛⎫= ⎪⎝⎭,()02022b =-.28.(2022·四川广元·中考真题)先化简,再求值:22x x +÷(1﹣211x x --),其中x 是不等式组()211532x x x x ⎧-<+⎨+≥⎩的整数解.29.(2022·新疆·中考真题)先化简,再求值:22931121112a a a a a a a ⎛⎫--÷-⋅ ⎪-+--+⎝⎭,其中2a =.30.(2022·山东滨州·中考真题)先化简,再求值:344111a a a a a ++⎛⎫+-÷ ⎪--⎝⎭,其中10(1tan 45π2)a -=︒+-。
—————————— 教育资源共享 步入知识海洋 ————————
专题6 分式方程
1.2018·德州分式方程x
x -1-1=3(x -1)(x +2)的解为( ) A .x =1 B .x =2 C .x =-1 D .无解
2.2017·泰安分式7x -2与x 2-x
的和为4,则x 的值为________. 3.2017·攀枝花若关于x 的分式方程
7x -1+3=mx x -1无解,则实数m =________. 4.2017·泰州解方程:x +1x -1+41-x 2
=1.
5.2018·菏泽为顺利通过国家义务教育均衡发展验收,我市某中学配备了两个多媒体教室,购买了笔记本电脑和台式电脑共120台,购买笔记本电脑用了7.2万元,购买台式电脑用了24万元,已知笔记本电脑单价是台式电脑单价的1.5倍,那么笔记本电脑和台式电脑的单价各是多少?
详解详析
1.D
2.3 3.7或3
4.解:去分母,得(x +1)2-4=x 2-1.
去括号,得x 2+2x +1-4=x 2-1.
移项、合并同类项,得2x =2.
系数化为1,得x =1.
经检验,x =1是分式方程的增根,故原分式方程无解.
5.解:设台式电脑的单价为x 元/台,则笔记本电脑的单价为1.5x 元/台,
由题意得720001.5x +240000x
=120, 解得x =2400,
经检验x =2400是原分式方程的解.
∴1.5x =3600.
答:笔记本电脑的单价为3600元/台,台式电脑的单价为2400元/台.。
分式的乘除乘方运算1.约分把一个分式的分子与分母的公因式约去,叫做约分.约分的依据是分式的基本性质. 若分式的分子、分母是多项式,必须先把分子、分母分解因式,然后才能约去公因式.分子与分母没有公因式的分式,叫做最简分式,又叫做既约分式.分式的运算结果一定要化为最简分式.2.分式的乘法3.分式的除法4.分式的乘方求n 个相同分式的积的运算就是分式的乘方,用式子表示就是(ba )n . 分式的乘方,是把分子、分母各自乘方.用式子表示为:例1、下列分式abc 1215,a b b a --2)(3,)(222b a b a ++,b a b a +-22中最简分式的个数是( ).A.1B.2C.3D.4例2.计算:3234)1(x y y x • aa a a 2122)2(2+⋅-+ x y xy 2263)3(÷41441)4(222--÷+--a a a a a 例3、 若432zy x ==,求222z y x zx yz xy ++++的值.例4、计算(1)3322)(c b a - (2)43222)()()(x y x y y x -÷-⋅-(3)2332)3()2(cb a bc a -÷- (4)232222)()()(x y xy xy x y y x -⋅+÷-例5计算:1814121111842+-+-+-+--x x x x x练习:1.计算:8874432284211xa x x a x x a x x a x a --+-+-+--例6.计算:2018119171531421311⨯+⨯++⨯+⨯+⨯ 练习1、()()()()()()()()1011001431321211++++++++++++x x x x x x x x例7、已知21)2)(1(12++-=+-+x Bx A x x x ,求A. B 的值。
计算下列各题:(1)2222223223x y yx y x y x y x y x ----+--+ (2)1111322+-+--+a a a a .(3)29631a a --+ (4) 21x x --x -1 (5)3a a --263a a a +-+3a,(6)x y yy x x y x xy --++-222 ⑺b a b b a ++-22 ⑻293261623xx x -+--+⑼xy y x y x y x 2211-⋅⎪⎪⎭⎫ ⎝⎛+-- ⑽ 222x x x +--2144x x x --+(11)a a a a a a 4)22(2-⋅+--.2.已知x 为整数,且918232322-++-++x x x x 为整数,求所有的符合条件的x 的值的和.3、混合运算:⑴2239(1)x x x x ---÷ ⑵232224xx x x x x ⎛⎫-÷ ⎪+--⎝⎭⑶ a a a a a a 112112÷+---+⑷ 444)1225(222++-÷+++-a a a a a a ⑸)1x 3x 1(1x 1x 2x 22+-+÷-+- ⑹ )252(23--+÷--x x x x ⑺221111121x x x x x +-÷+--+⑻2224421142x x x x x x x -+-÷-+-+ ⑼2211xy x y x y x y ⎛⎫÷- ⎪--+⎝⎭⑽ (ab b a 22++2)÷b a b a --22 ⑾22321113x x x x x x x +++-⨯--+⑿ xx x x x x x x x 416)44122(2222+-÷+----+ (13)、22234()()()x y y y x x -⋅-÷-(14)、)252(423--+÷--m m m m (15)、x x x x x x x --+⋅+÷+--36)3(446222(16)、 ()3212221221------⎪⎭⎫ ⎝⎛b a c b b a (17)、⎪⎭⎫ ⎝⎛---÷⎪⎪⎭⎫ ⎝⎛+--x x x x x 23441823224.计算:x xx x x x x x -÷+----+4)44122(22,并求当3-=x 时原式的值.5、先化简,x x x x x x11132-⋅⎪⎭⎫ ⎝⎛+--再取一个你喜欢的数代入求值:6、有这样一道题:“计算22211x x x -+-÷21x x x-+-x 的值,其中x=2 004”甲同学把“x=2 004”错抄成“x=2 040”,但他的计算结果也正确,你说这是怎么回事?7、计算、)1(1+a a +)2)(1(1++a a +)3)(2(1++a a +…+)2006)(2005(1++a a 。
分式专题复习(一) 分式基础 导学案学习目标1、经历知识梳理、类比与整合的过程,体验自主学习,感受成功的喜悦。
2、通过复习,进一步了解分式的意义与性质;掌握分式有意义、值为零的条件;一、分式的意义A 、B 是整式,并且 ,那么BA 就叫做分式。
例1. 下列各式:43a ,n m a -8,11-2+x x ,π5-x ,a 34,1-5π,其中分式是二、分式有意义的条件分式B A 有意义的条件是 ; 分式BA 无意义的条件是 例2. 当x 时,分式21+-x x 有意义; 若分式122-+x x 无意义,则x三、分式值为零的条件分式BA 值为零的条件是 例3.(1)当x 时,分式21-+x x 的值为0 (2)当x 时,分式33--x x =0; 若分式242--a a 的值为0,则a四、分式的基本性质:分式的基本性质是 例4. 填空: (1)b a ab b a 2)(=+ (2))()(222y x y x y x -=+-五、复习成果检验1、代数式13+x x 、212+-x 、1+πa 、112--x x 、πa 中,分式有( ) A 、1个 B 、2个 C 、3个 D 、4个2、如果把分式yx xy +2中的x 和y 的值都扩大2倍,那么分式的值( ) A 、扩大两倍 B 、不变 C 、缩小两倍 D 、无法确定3、分式)1)(32()1(4+-+x x x x 有意义的条件是( ) A 、x ≠23 B 、x ≠-1 C 、x ≠23或x ≠-1 D 、x ≠23且x ≠-1 4、当x___________时,分式43x x --有意义; 当x____________时,分式||99x x -+的值为零; 当x 时,分式422--x x 无意义。
5、(1)ba ab a 22)(2=-; (2)2)(22-=-x x x x 八、本节课小结教学反思:。
【母题来源一】2016年福建龙岩中考第18题【母题原题】先化简再求值:21131--⋅⎪⎭⎫ ⎝⎛--+x x x x ,其中22+=x . 【答案】x+2,24+.考点:分式化简求值. 【名师点睛】本题考查了分式的化简求值,解题的关键是要对分子分母进行因式分解,再按照分式的混合运算顺序进行计算.【母题来源二】2016黑龙江大庆中考第22题【母题原题】某车间计划加工360个零件,由于技术上的改进,提高了工作效率,每天比原计划多加工20%,结果提前10天完成任务,求原计划每天能加工多少个零件?【答案】原计划每天能加工6个零件.【解析】试题分析:此题等量关系为:原计划天数=实际生产天数+10.据此等量关系列方程求解即可.试题解析:设原计划每天能加工x 个零件,由题意得:1012360360+=xx ,解得:x=6,经检验:x=6是原方程的解,答:原计划每天能加工6个零件.考点:分式方程的应用.【名师点睛】本题考查了分式方程的应用,根据题意找出等量关系“原计划天数=实际生产天数+10”,根据等量关系列出方程求解即可,注意解分式方程一定要验根.【命题意图】母题1考查了分式的化简求值,解题的关键是要对分子分母进行因式分解,再按照分工的混合运算顺序进行计算。
意在考察基本的运算能力.母题2考查了分式方程的应用,意在考察学生分析问题、解决问题的能力以及建模能力.【方法、技巧、规律】1.分式的化简首先将括号里面的分式进行通分,然后将除法改成乘法进行约分化简,注意瞄准目标,抓住条件,还要根据题目来调整目标,最后将x 和y 根据三角函数的计算法则求出x 和y 的值,最后代入进行计算.分式化简求值有时也可以恰当引入参数,整体代入,取倒数或用倒数关系,也可利用比例关系等来考查应用所学知识解决问题的能力等.2.由于列方程解应用题手段独特,方法灵活,因而常出现在中考试卷中,事实上,列分式方程解应用题的方法可以简单地分为:设、找、列、解、检、答六个步骤,具体就是:(1)设:弄清题意和题目中的数量关系,用字母表示题目中的未知数;(2)找:找到能够表示应用题全部含义的等量关系;(3)列:根据这个等量关系,列出所需的代数式,从而列出方程;(4)解:解这个所列出的方程,求出未知数的解;(5)检:检验所解得未知数的值是不是方程的根;(5)答:根据所得结果作出回答.【母题1】计算(1﹣1x +1)(x+1)的结果是 .【答案】x.考点:分式的混合运算.【母题2】解分式方程1x -1+1=0,正确的结果是( )A .x=0B .x=1C .x=2D .无解【答案】A.【解析】试题分析:1x -1+1=0,1+x-1=0,x=0,经检验:x=0是原方程的根,故选A.考点:解分式方程.【母题3】若关于x 的方程333x mmx x ++--=3的解为正数,则m 的取值范围是() A .m <92B .m <92且m ≠C .m >﹣D .m >﹣且m ≠﹣34【答案】B.考点:分式方程的解.【母题4】两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组的步行速度是第二组的1.2倍,并且比第二组早15分钟到达乙地.设第二组的步行速度为x 千米/小时,根据题意可列方程是( )A . 152.175007500=-x xB .412.175007500=-x xC .152.15.75.7=-x x D .412.15.75.7=-x x 【答案】D.【解析】试题分析: 此题应注意单位换算.本题等量关系为:第二组时间-第一组时间=14小时.据此可得方程:412.15.75.7=-x x .故选D.考点:分式方程的应用.【母题5】张家界到长沙的距离约为320km ,小明开着大货车,小华开着小轿车,都从张家界同时去长沙,已知小轿车的速度是大货车的1.25倍,小华比小明提前1小时到达长沙.试问:大货车和小轿车的速度各是多少?【答案】大货车的速度是64千米/时,小轿车的速度是80千米/时.【解析】试题分析:此题等量关系是:小明用时-小华用时=1小时.根据此等量关系列方程即可解决此问题.试题解析:设大货车的速度是x 千米/时,则小轿车的速度是1.25x/时,由题意,得320x - 3201.25x=1, 解得:x=64;经检验,x=64是原方程的解,∴1.25 x=1.25×64=80.答:大货车的速度是64千米/时,小轿车的速度是80千米/时.考点:分式方程的应用.【母题6】先化简,再求值:⎪⎪⎭⎫ ⎝⎛+-÷++-1211222x x x x x ,其中x=3. 【答案】x -1x ,333-.考点:分式化简求值.【母题7】先化简,再求代数式11132122+÷⎪⎭⎫ ⎝⎛---+a a a a 的值,其中a=2sin60°+tan45°. 【答案】11-a .33. 【解析】 试题分析:先化简,再根据特殊角三角函数值求出a 得值,代入求值即可. 试题解析:()()()()1113222111321211132122-=-+--=+⋅-++--=+÷⎪⎭⎫ ⎝⎛---+a a a a a a a a a a a a a .当a=2sin60°+tan45°=131232+=+⨯时,原式=331131=-+. 考点:1分式化简求值;2特殊角三角函数.【母题8】早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?【答案】(1)60;(2)240.考点:1分式方程的应用;2一元一次方程的应用.【母题9】先化简,再求值:121)1(222++-÷-+x x x x x x ,其中x 的值从不等式组⎩⎨⎧<-≤-4121x x 的整数解中选取。
龙文教育
个性化辅导教案讲义
(6)
任教科目:数学
授课题目:分式綜合专题
年级:八年级
任课教师:胡国东
授课对象:柳成林
武汉龙文个性化教育
常青二校区
教研组组长签字:
教学主任签名:
日期:
武汉龙文教育学科辅导讲义
授课对象 柳成林 授课教师 胡国东 授课时间 授课题目 分式綜合专题
课 型
专题复习
使用教具
教学目标
1.切实掌握分式的概念,分式的基本性质,能熟练地进行分式变形及约分通分.
2.能准确、熟练地进行分式的乘除、加减以及混合运算.
3.会用科学记数法表示绝对值小于1的数,并能进行有关负整数指数幂的运算.
4.明确解分式方程的步骤,并能列出可化为一元一次方程的分式方程解决简单实际问题
教学重点和难点
重点:分式计算及解分式方程 难点:分式方程应用
参考教材
中考题库
教学流程及授课详案
【基础知识】 一、分式的概念
若A ,B 表示两个整式,且B 中含有 那么式子 就叫做公式 ①若 则分式
A B
无意义 ②若分式
A B
=0,则应 且
二、分式的基本性质
分式的分子分母都乘以(或除以)同一个 的整式,分式的值不变。
1、
a m a m
⋅⋅=
a m
b m ÷÷= (m≠0)
2、分式的变号法则b a
-=b
3、约分:根据 把一个分式分子和分母的 约去叫做分式的约分。
约分的关键是确保分式的分子和分母中的 约分的结果必须是 分式 4、通分:根据 把几个异分母的分式化为 分母分式的过程叫做分式的通分。
通分的关键是确定各分母的 三、分式的运算: 1、分式的乘除 ①分式的乘法:b
a .
d c
= ②分式的除法:
b a
÷
d c
= =
2、分式的加减
①用分母分式相加减:
b a
±c
a
= ②异分母分式相加减:
b a
±d
c
= =
3、分式的乘方:应把分子分母各自乘方:即(
b a
)m =
①分式的混合运算:应先算 再算 最后算 有括号的先算括号里面的。
②分式求值:①先化简,再求值。
②由值的形式直接化成所求整式的值
③式中字母表示的数隐含在方程的题目条件中 【重点考点例析】
考点一:分式有意义的条件
例1 (2012•宜昌)若分式
21
a +有意义,则a 的取值范围是( )
A .a=0
B .a=1
C .a≠-1
D .a≠0
对应训练
1.(2012•湖州)要使分式
1x
有意义,x 的取值范围满足( )
A .x=0
B .x≠0
C .x >0
D .x <0
考点二:分式的基本性质运用
例2 (2012•杭州)化简
2
16312
m m --得 ;当m=-1时,原式的值为 .
对应训练
2.(2011•遂宁)下列分式是最简分式的( )
A .
2
23a a b
B .
2
3a a a
- C .
2
2
a b a b
++ D .
2
2
2
a a
b a b
--
考点三:分式的化简与求值
例3 (2012•南昌)化简:
2
2
11 a a a
a a --÷
+. 例4 (2012•安徽)化简
2
1
1x
x
x x
+
-- 的结果是( )
A .x+1
B .x-1
C .-x
D .x 例5 (2012•天门)化简2
21(1)1
1
x x -
÷
+- 的结果是( )
A .2
1(1)
x + B .
2
1(1)
x - C .2
(1)x + D .2
(1)x -
对应训练
3.(2012•河北)化简
2
211
1
x x ÷
--的结果是( ) A .
21
x - B .
3
21
x - C .
21
x - D .2(x+1)
4.(2012•绍兴)化简11
1
x
x -
-可得( )
A .
2
1x x
- B .2
1x x -
- C .
2
21x x x
+- D .
2
21x x x
--
5.(2012•泰安)化简2
2(
)2
-2
4
m m
m
m m m -
÷
+-= .
6.(2012•资阳)先化简,再求值:2221(1)11
a a a a a --÷---+,其中a 是方程x 2
-x=6的根.
【聚焦中考】
一、选择题
1.(2012•潍坊)计算:2-2=( )
A .
14
B .2
C .14
-
D .4
2.(2012•德州)下列运算正确的是( )
A .
42= B .(-3)2
=-9
C .2-3=8
D .20=0 3.(2012•临沂)化简4(1)22
a a a +
÷
--的结果是( )
A .
2a a
+ B .
2
a
a + C .2a a
- D .
2
a a -
4.(2012•威海)化简的结果是( )
A .
B .
C .
D .
二、填空题 5.(2012•聊城)计算:2
4(1)42
a a a +÷=-- .
6.(2011•泰安)化简:2
2()2
2
4
x x x
x x x -
÷
+--的结果为 .
三、解答题
7.(2012·济南)化简:2
1212
24
a a a a a --+÷
--.8.(2012•烟台)化简:2
2
2
844(1)44
2a a a a a a
+--
÷
+++.
9.(2012•青岛)化简:2
2
11(1)12a
a a a
-+++ 。
10.(2012•德州)已知:31,31x y =+=
-,求
22
2
2
2x xy y x y
-+-的值.
11.(2012•莱芜)先化简,再求值:÷,其中a=﹣3.
考点四:分式方程与应用
例6 解方程1132
2
x x x -=
---.
13
321
-+=
+x x x x
例7(2012本题满分8分)在黄陂广场兴建工程中,拟由甲、乙两个工程队共同完成某项目,从两个工程队的资料可以知道:单独完成这项工程,甲工程队比乙工程队少用20天;若两个工程队合做18天后,再由甲工程队独做10天恰好完成。
(1)求甲、乙两个工程队单独完成该项目各需多少天?
(2)已知甲工程队每天的施工费为0.6元,乙工程队每天的施工费为0.35元。
要使该 项目总的施工费用不超过22万元,则乙工程队至少施工多少天?
对应训练 1).
1
233
2-=-x x 2).1
41
21
12
-=
-++x x x
3(2012)一项工程,若甲乙两队单独完成甲队比乙队多用5天;若甲乙两队合作6天可以完成。
(1)求两队单独完成各需多少天?
(2)若这项工程甲乙两队合作6天完成后,厂家付给他们5000元的报酬,两队商量按各自完成工作量分配这笔钱。
问甲乙两队各得多少钱?
【聚焦中考】\
(2012)某服装店用960元购进一批服装,并以每件46元价格全部售完,由于服装畅销,服装店又用了2220元再次以比第一次进价多5元的价格购进服装,数量是第一次购进服装的2倍仍以每件46元的价格出售,卖了部分后,为了加快资金周转,服装店将剩余20件以售价的九折全部出售,问:(1)服装店第一次购买了此种服装多少件?
(2)两次出售服装共盈利多少元?
【备考真题过关】
解答题(共9小题,共72分) 1、计算:(1))2
52(4
23--
+÷--x x x x (2)(-2m 2n -2)2·(3m -1n 3)-3
2、解方程: (2012•梅州).
3、(2012)先化简代数式1
121
1
12
-÷⎪⎭⎫
⎝⎛+-+
-+x x x x x x ,然后选取一个使你喜欢的x 的值代入求值.
4(2012重庆潼南县)某镇道路改造工程,由甲、乙两工程队合作20天可完成.甲工程队单独施工比乙工程队单独施工多用30天完成此项工程.
(1)求甲、乙两工程队单独完成此项工程各需要多少天?
(2)若甲工程队独做a 天后,再由甲、乙两工程队合作 天(用含a 的代数式表示)可完成此项工程;
(3)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?。