功放制作——胆前级
- 格式:doc
- 大小:262.00 KB
- 文档页数:6
6J1和6N3制作的胆前级提起细胆,笔者想起早年曾装过一部用TA系列直流直热胆的三灯收音机,甲电源1.5V(阴极灯丝)使用手摇电话机用的“巨型”干电池供电,乙电源9V (阳极)用六节一号电池,这堆电池的底部锌壳上都被我打了三个孔,灌入氯化钠来延长使用寿命。
而6J1又是笔者玩过的另一种细胆,它与1A2胆体积相同,其美英型号为6AK5、5654、6BC5,欧洲型号为EF40、6F32。
70年代初,6J1是早期的V系统爱好者们(早年的AV发烧友)推崇的靓胆之一,凡焊机派几乎无人不囤积它几十枚留做备用。
6J1在电视机中的作用与6N11和6N3并驾齐驱,作为五极管这种结构来说,6J1的工作频率能达到VHF频段的80MHz实在是难能可贵。
早年的电子管高级收音机“东方红”802-Y与胆录音机“鹦鹉”102、“钟声”601、以及各种声频系统测试仪中都能找到它的踪影。
尤其是在高级收音机中,更多用6J1来做第一级高放,尔后才是6A2或6U1等做第二级高放与本振,因此使用6J1做电视接收机时,无须另设高放与本振的高频头即可直接接收VHFf频段的2~6频道的电视节目,但在外差式电视接收机中,由于高频头中有6N11或6N3担任高放与本振,6J1就用来担任中放(6N3美英型号为2C51、 5670。
6N11美英型号为6DJ8、6922、欧洲为ECC88)。
上述三种胆管中,6Nll是最早被发现用于音频放大时非常靓声的所谓贵族胆,如今已被人为地炒成了天价,使发烧友望而生畏。
后来6N3又被发现在音频放大时有靓声表现,部分商品胆机也开始用它,由于在国内6N3电子管量大货广,完全可以使国产胆机跨越本世纪到2000年以后,堪称国产电子管器材产业中较为可靠的材料资源与后。
6J1的三极管接法特性曲线的特性与另一靓声管6N10(美12AU7、5814)的曲线非常接近,不同的仅是两者的基本电压应用参数各异而已;附表是厂方给出的6J1参数。
我们按6J1的三极管接法特性曲线来设计前级就很容易做到放大器要求的动态特性曲线的最佳工作点,从而达到最低失真和最有效的线性放大状态。
6J1和6N3制作的胆前级提起细胆,笔者想起早年曾装过一部用TA系列直流直热胆的三灯收音机,甲电源1.5V(阴极灯丝)使用手摇电话机用的“巨型”干电池供电,乙电源9V(阳极)用六节一号电池,这堆电池的底部锌壳上都被我打了三个孔,灌入氯化钠来延长使用寿命。
而6J1又是笔者玩过的另一种细胆,它与1A2胆体积相同,其美英型号为6AK5、5654、6BC5,欧洲型号为EF40、6F32。
70年代初,6J1是早期的V系统爱好者们(早年的AV发烧友)推崇的靓胆之一,凡焊机派几乎无人不囤积它几十枚留做备用。
6J1在电视机中的作用与6N11和6N3并驾齐驱,作为五极管这种结构来说,6J1的工作频率能达到VHF频段的80MHz实在是难能可贵。
早年的电子管高级收音机“东方红”802-Y与胆录音机“鹦鹉”102、“钟声”601、以及各种声频系统测试仪中都能找到它的踪影。
尤其是在高级收音机中,更多用6J1来做第一级高放,尔后才是6A2或6U1等做第二级高放与本振,因此使用6J1做电视接收机时,无须另设高放与本振的高频头即可直接接收VHFf频段的2~6频道的电视节目,但在外差式电视接收机中,由于高频头中有6N11或6N3担任高放与本振,6J1就用来担任中放(6N3美英型号为2C51、 5670。
6N11美英型号为6DJ8、6922、欧洲为ECC88)。
上述三种胆管中,6Nll是最早被发现用于音频放大时非常靓声的所谓贵族胆,如今已被人为地炒成了天价,使发烧友望而生畏。
后来6N3又被发现在音频放大时有靓声表现,部分商品胆机也开始用它,由于在国内6N3电子管量大货广,完全可以使国产胆机跨越本世纪到2000年以后,堪称国产电子管器材产业中较为可靠的材料资源与后。
6J1的三极管接法特性曲线的特性与另一靓声管6N10(美12AU7、5814)的曲线非常接近,不同的仅是两者的基本电压应用参数各异而已;附表是厂方给出的6J1参数。
我们按6J1的三极管接法特性曲线来设计前级就很容易做到放大器要求的动态特性曲线的最佳工作点,从而达到最低失真和最有效的线性放大状态。
经典马蒂斯胆前级制作流程和注意事项下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!一、准备材料1. 马蒂斯胆前级PCB板2. 电阻、电容、晶体管等元器件3. 焊接工具4. 螺丝、螺母等固定元件5. 热缩管6. 绝缘材料二、安装元器件1. 按照PCB板上的元器件位置图,将电阻、电容、晶体管等元器件安装到PCB板上。
功放制作——胆前级今天终于把毕业论文交出了。
两周前开始画功放的电路图,心里一直想着这件事情,已经拖了不少时间了。
主要原因是一直没有找到漂亮的电路图绘制工具。
总觉得 Protel、Visio 画出来的电路不好看。
Protel 元件比例不协调,Visio 有些格点自动捕捉功能太霸道了,而且在两条导线交叉时会自动加上难看的桥形跳线符号(可能是我不会用)。
也试过SmartDraw,觉得也是自动捕捉功能太要命,鼠标一靠近元件就被捕捉过去了,得非常小心才行。
后来,还是决定使用 Johns Hopkins University 开发的 Xcircuit。
它必须在 Linux、Unix 下用,所以为此还学了 Linux。
从而也就改变了以前觉得 Linux 特费事的观点,装一个 ubuntu 比装 windows 还省事,office、播放器什么都不用单独装,系统装完就完全可以用了。
杀毒软件也免了。
使用后发现,用 Xcircuit 可以直接画出 ps 的文档,全都是矢量图,缩放没有失真,而且自己觉得看上去和国家半导体、德州仪器元件数据手册上的电路图风格有些相似了,嘿嘿。
言归正传,上次介绍的功放采用了如下的电子管前级电路。
该电路事实上是一个SRPP电路和阴极输出器的级联,两者之间直接耦合。
对于我们这一代人来说,晶体管电路已经先入为主,一下子可能还不能接受电子管电路。
实际上,电子管电路实现的是和晶体管电路同样的功能。
下图是实现同样功能的电子管共阴极放大器和晶体管共射极放大器。
而下图是实现同样功能的电子管阴极跟随器和射级跟随器。
虽然说功能相同,但是电路上还是有很多不同。
首先,电子管的工作电压比晶体管高得多,前者为数百伏,后者仅需几伏。
显然两者不能直接替换。
第二,电子管依靠阴极受热后发射电子,屏极(阳极)加有高正电压,可以收集这些电子。
如果屏极相对阴极加负电压则屏极排斥电子,没有电流产生,这就是电子管二极管的整流原理。
所以,电子管要工作需要加热,这一般通过给靠近阴极的灯丝通电来实现,否则电子管不能工作。
轻松制作极品胆前级2007-03-12 15:39:09 来源:秦福忠《电子报》近几年,胆机又逐渐被人们认可和接受,在发烧圈也掀起了一股胆机制作热潮。
而在粗机中,胆前级因线路简单,调试容易,因而制作成功率相对较高。
由于发烧友大多敷巳拥有性能不错的晶体管后圾,搭配—台极品胆前级,可以帮助你迅速进入发烧境界。
“前胆后石”组合成许更适合大多数发烧友的口味。
这里推荐几款极前级电路供发烧友参考,以下电路均为双声道设计,仅给出一个声道的主体电路,另一声道图略。
1.马蹄斯胆前级:原理图如图1所示。
该电路仿英国马蹄斯“Reference”电子管前级,马蹄斯胆前级是以其卓尔不群的设计观念,至纯至真一尘不染的透明音质闻名于世。
其线路是胆前级中性价比较高,也是最易装配的一种。
其用12AX7与12AT7作两级放大,具有输出电流大、全频表现平均、分析力高,音质感强等特点。
发烧友还可采用并连的方法来摩此电路(可参考后面介绍的JADIS电路),这时左右声道各用一只12AX7与12AT7放大(外围电阻稍作调整),其声道分离度更高,音色更美。
2.改进型马兰士7胆前级:原理如图2所示。
该线路用12AX7作两级放大,后接12AU7阴极跟随器作为信号缓冲。
众所周知,马兰士7胆前级以其中频甜美而著称,但其分析力及高低顿延伸度欠佳。
针对传统马兰士7胆前级的不足,对耦合电容容量的选取以及负反馈环路的选取作了一些调整。
改进后的马兰士7胆前级,高、低频重放有了一定的延伸度和力度感,但中频更佳,该胆前级最适合听人声与弦乐。
3.和田茂氏胆前级:原理图如图3所示,针对传统马兰士7电路的一些不足,日本人和田茂在马兰士7电路基础上进行改进,改进后的电路称之为和田茂氏电路。
其主要特点是用SRPP电路代替了马兰士7电路的阴极跟随器。
由于SRPP输出级并没有任何电压放大作用,只是作为一个缓冲器使用,比起普通的阴极输出器来说其驱动负载能力更强,在音色方面,它保持了马兰士7线路中频甜润的特色,其分析力与高低频响应比马兰士7较佳,信噪比相对较高,该电路所用的电子管也可全部改用12AT7。
电子管前级的打造简单,花费又不高,而且用其与电子管功放或晶体管功放搭配能柔化数码声的“硬度”而得到较为通透的效果。
本人在打造胆前级时,几经摩改最后定型于本刊97-3期上,在摩改中用料一次次提高。
较老的西门子金脚E88CC都借来参加较试,历经6N8P(6SN7GT)、6N10(12AU7)、6N1、6N2(12AX7)、6N3(5670)等,都各具特色。
但从解析力上而讲,用6Nll搭配6N10最好,声音也最为柔滑,G2和G3都用6N10,并把其跟随范围作调整,算是此电路应用的最佳状态,通透度、力度感,在较试过的管子中表现最好,可以说是一素质较高的前级。
胆管前级的电路是很多的,但照方配药不一定会得到满意的结果,我们要注意一些问题:1.管子参数、形状的影响及特性曲线的应用管子的参数的影响已为我们共识,如跨导S大的声音要劲力一些,有的还有前冲情况,6J5就有此感觉。
6N2线性不太好,但却被认为是胆味浓烈的管子,对晶体管功放的柔化非常突出,听起来发酥,具体讲就是小提琴的松香味更浓,这些大家都可以感受得到。
屏流大一些,低频的厚度会增加,不管是功放还是前级,一些佳作的屏压用到了极限值或稍超过极限值,既增加了输出也增加了屏流值。
虽说是电压放大,但也不能一味地追求较高的增益而使管子处于欠流状态(低于推荐屏流值)。
管子形状对音色的影响,最初是听老烧友们谈到的EL34与KT88时所言,经一试,它们确实有些不同,后采又对6J1~6J5、FU-5~FU811、6P3P、6P1进行比较。
当然,这些只是大体上的比较,具体的细处还得慢慢地去晶。
听音乐,除了去感觉音乐的内涵外,用不同的管子去领略作品的音色味,这也是晶体管机所不及的(指换管子而言)。
电路中工作点还可以设计成机外可调方式,更可增加聆听比较的灵便性。
再从管子的屏极特性曲线来看,应取曲线平直和曲线的间隔均匀度高的管子,如6Nll、6N10等三级管和6J1等这些常见的管子,并且把工作点选在曲线的最佳区域,这主要是为了获得较低的失真,但实际应用中6N1、6N2、6F2等曲线并不好的管子却在很多名机上见到,McIntosh的MC-275上,新旧款电路中都有12AX7(6N2),这些从低失真率采说是不太行的,这可能是为了迎合一些特殊的音色要求吧!除此而外,应用中还应注意屏栅特性曲线以及跨导曲线。
自制胆前级用电子管测试仪
自从第一次听了6N4做的胆前级以后,本人就中了“胆毒”了,非常喜欢胆机哪特有的韵味,不过本人喜欢自制胆前级,因为制作胆后级需要考虑输出变压器的选择和购买,尤其是大功率高品质的胆机输出牛更是价高难寻,而胆前级制作的费用相对来讲要低些,如果再采用专业级的监听有源音箱,那幺调教起来也会容易些,否则音箱、音箱线、功放变数太多了。
制作胆前级现在国产的管子,进口管子可以选择的余地很大,而且网络上也经常有各类二手的各种管子出售,要想准确的了解管子的参数,需要采用专业的电子管测试仪,而作为大部分胆机业余爱好者来讲,很难有这样的条件。
所以笔者就萌发了自己制作电子管测试仪的念头。
要求应该有如下功能:
1. 能测试电子管的正常与否、新旧程度、可以用来配对。
2. 基本可以测试制作胆前级常用的大部分电子管。
通过查阅一些成品电子管测试仪的电路和一些制作电子管测试仪的文章,笔者最后设计了如下的。
6N11电子管前级放大器2018年2月21日17:066N11电子管前级放大器电子管放大器的音色是发烧友们所喜好的,下面介绍一个用6N11制作的胆前级。
放大器分前级和后级,我们常说的功放是将两者合二为一的机器。
前级主要作用是对输入的微弱信号进行电压放大,以推动后续的功率放大管。
一般情况下。
前级放大器因工作电流较小,元器件比较简单,材料容易购买而制作相对容易。
自制放大器时线路的选取很重要,考虑到业余条件的限制,DIY时选取简洁线路较容易取得成功。
在设计电压放大级时主要考虑是有足够的增益,频响和失真、噪声等特性。
在晶体管(俗称“石”)和电子管(俗称“胆”)放大器中,由于电子管的放大因数(μ)很大,往往用一个电子管就相当于用几个晶体管构成的电路,因此两者比较电子管功放制作的成功率远高于晶体管机。
用于前级电压放大的电子管,一般有6N1、6N3、6N11、12AX7、12AT7、12AU7、6SL7、6SN7、6SJ7和EF86等多种三极管和五极管。
由于等效输入噪声较大,6SJ7、EF86等五极管现在一般已不常采用。
了解一只电子管的特点和衡量它的性能,常用跨导(S)、内阻(Ri)、放大因数(μ)表示,其中跨导是电子管栅压对屏流的控制能力;内阻是当栅极电压为定值时,屏极电压的变化量与相应的屏极电流变化量之比,内阻越小,电子管的负载能力、频响方面要好些,应优先采用;放大因数是用来表示放大品质的量。
跨导、内阻、放大因数三者的关系是:μ=S×Ri。
前级电压放大用电子管,常常按它们的放大因数分成高μ、中μ、低μ类型。
μ值大于35的叫高μ管。
如以上列举的12AX7、12AT7、6SL7。
μ值大的管子,放大倍数较大,但输入范围较小。
适合做小信号前级和功放的第一级。
μ值在20-35之间的称为中μ管.如12AU7、6SN7、6N3、6N11等,它们的特点是输入范围要大一些,有相对较小的失真。
6N11(国外同类产品称为6DJ8或6922)是高频低噪声双三极九脚电子管。
6J1和6N3制作的胆前级提起细胆,笔者想起早年曾装过一部用TA系列直流直热胆的三灯收音机,甲电源1.5V(阴极灯丝)使用手摇电话机用的“巨型”干电池供电,乙电源9V (阳极)用六节一号电池,这堆电池的底部锌壳上都被我打了三个孔,灌入氯化钠来延长使用寿命。
而6J1又是笔者玩过的另一种细胆,它与1A2胆体积相同,其美英型号为6AK5、5654、6BC5,欧洲型号为EF40、6F32。
70年代初,6J1是早期的V系统爱好者们(早年的AV发烧友)推崇的靓胆之一,凡焊机派几乎无人不囤积它几十枚留做备用。
6J1在电视机中的作用与6N11和6N3并驾齐驱,作为五极管这种结构来说,6J1的工作频率能达到VHF频段的80MHz实在是难能可贵。
早年的电子管高级收音机“东方红”802-Y与胆录音机“鹦鹉”102、“钟声”601、以及各种声频系统测试仪中都能找到它的踪影。
尤其是在高级收音机中,更多用6J1来做第一级高放,尔后才是6A2或6U1等做第二级高放与本振,因此使用6J1做电视接收机时,无须另设高放与本振的高频头即可直接接收VHFf频段的2~6频道的电视节目,但在外差式电视接收机中,由于高频头中有6N11或6N3担任高放与本振,6J1就用来担任中放(6N3美英型号为2C51、 5670。
6N11美英型号为6DJ8、6922、欧洲为ECC88)。
上述三种胆管中,6Nll是最早被发现用于音频放大时非常靓声的所谓贵族胆,如今已被人为地炒成了天价,使发烧友望而生畏。
后来6N3又被发现在音频放大时有靓声表现,部分商品胆机也开始用它,由于在国内6N3电子管量大货广,完全可以使国产胆机跨越本世纪到2000年以后,堪称国产电子管器材产业中较为可靠的材料资源与后。
6J1的三极管接法特性曲线的特性与另一靓声管6N10(美12AU7、5814)的曲线非常接近,不同的仅是两者的基本电压应用参数各异而已;附表是厂方给出的6J1参数。
我们按6J1的三极管接法特性曲线来设计前级就很容易做到放大器要求的动态特性曲线的最佳工作点,从而达到最低失真和最有效的线性放大状态。
功放制作——胆前级
今天终于把毕业论文交出了。
两周前开始画功放的电路图,心里一直想着这件事情,已经拖了不少时间了。
主要原因是一直没有找到漂亮的电路图绘制工具。
总觉得 Protel、Visio 画出来的电路不好看。
Protel 元件比例不协调,Visio 有些格点自动捕捉功能太霸道了,而且在两条导线交叉时会自动加上难看的桥形跳线符号(可能是我不会用)。
也试过SmartDraw,觉得也是自动捕捉功能太要命,鼠标一靠近元件就被捕捉过去了,得非常小心才行。
后来,还是决定使用 Johns Hopkins University 开发的 Xcircuit。
它必须在 Linux、Unix 下用,所以为此还学了 Linux。
从而也就改变了以前觉得 Linux 特费事的观点,装一个 ubuntu 比装 windows 还省事,office、播放器什么都不用单独装,系统装完就完全可以用了。
杀毒软件也免了。
使用后发现,用 Xcircuit 可以直接画出 ps 的文档,全都是矢量图,缩放没有失真,而且自己觉得看上去和国家半导体、德州仪器元件数据手册上的电路图风格有些相似了,嘿嘿。
言归正传,上次介绍的功放采用了如下的电子管前级电路。
该电路事实上是一个SRPP电路和阴极输出器的级联,两者之间直接耦合。
对于我们这一代人来说,晶体管电路已经先入为主,一下子可能还不能接受电子管电路。
实际上,电子管电路实现的是和晶体管电路同样的功能。
下图是实现同样功能的电子管共阴极放大器和晶
体管共射极放大器。
而下图是实现同样功能的电子管阴极跟随器和射级跟随器。
虽然说功能相同,但是电路上还是有很多不同。
首先,电子管的工作电压比晶体管高得多,前者为数百伏,后者仅需几伏。
显然两者不能直接替换。
第二,电子管依靠阴极受热后发射电子,屏极(阳极)加有高正电压,可以收集这些电子。
如果屏极相对阴极加负电压则屏极排斥电子,没有电流产生,这就是电子管二极管的整流原理。
所以,电子管要工作需要加热,这一般通过给靠近阴极的灯丝通电来实现,否则电子管不能工作。
这也是电子管发热大的原因。
第三,三极管工作原理是是在阴极和屏极间用细金属丝网加了一个栅极,屏极加正高压时,栅极上加一个很小的负电压就能够使减小屏极电流,达到控制屏极电流的目的。
所以于NPN型晶体管放大电路需要在基极加正向偏置不同,电子管正常工作时栅极和阴极之间的电
压是负电压(负栅压)。
这使得电子管有一种非常方便的偏置方法——阴极自生偏压:
电路中 Rk 由于阴极电流,会产生几伏的压降。
由于栅极通过电阻接地,栅极就自然产生了相对于阴极的负栅压。
这种偏置方法还有自动稳定的作用。
例如某外界原因导致阴极电流(就是屏极电流,栅极电流为零)变大,则栅压自动变负,阴极电流又自动变小。
但是高档的电子管放大器是不这样偏置的,因为这样偏置不精确。
通常使用电阻分压网络实现。
当然没有了上述稳定性。
这个前级使用了一个SRPP(shunt regulated push-pull)电路。
这个电路的特点是高频相应好。
我们知道,晶体管共射放大器的上限频率由晶体管发射结分布电容和发射极负载电阻的乘积决定。
当晶体管确定时,分布电容就定了,那么要提高上限频率,只能增大负载电阻。
选用普通电阻自然不能增大太多,否则电路工作点就
不对了。
于是人们就用有源负载,比如用恒流源,交流电阻很大,整个电路增益高、频响好。
现在集成电路都是这么做的。
类似地,电子管电路也能这样变化。
例如将共阴放大器和阴极
跟随器的级联变成 SRPP 电路:
可以看出,通过 SRPP,取消了 V1 的屏极负载电阻 Ra,这使得 V1 的负载电阻变大了。
也就拓宽了频响。
顺便说以下,这种共阴放大器的增益可以表示为 A = g R,其中 g 是跨导,R 是电子管阳极内阻和外部屏极负载电阻的并联值。
由于阳极内阻的存在,增大负载电阻并不能无限制地提高增益和拓宽频响。
功放制作——石后级
这个功放采用了集成电路的后级,也算是石后级吧。
主流的高保真音频功率放大器都采用互补全对称晶体管电路,通过精心配对元件,获得电路的对称性,所有的NPN管和PNP
管都是配对的。
这相当于是用分立元件搭出一个运算放大器来。
而且,这种分立元件放大器具有集成运放不具有的优势,分立元件的工艺可以造出集成工艺所无法制成的高频大功率晶体管来。
尤其是大功率PNP型管,集成工艺目前还达不到分立元件的水平。
所以集成功放芯片一般使用准互补输出,也就是以一个中功率PNP管推动一个大功率NPN管,来替代大功率PNP管。
这样导致电路不是完全对称,所以会有一些非线性失真。
但是,集成功放的增益可以很大(如100db),用深度负反馈能够补偿这种失真。
高保真发烧友们接受集成功放的不多。
但是它的成本低、制作容易、调试简单的优势吸引了我。
而且,前些年用LM3886装过一个2*50W合并式功放,对它的音质相当满意。
2004年,美国国家半导体又推出了大功率集成功放LM4780,又使我萌生了制作更大功率功放的
念头。
这个功放的后级电路如下图所示。
我们还是先介绍一些功放后级电路的基础。
事实上,功放前级关心的是增益,后级关心的则是带负载能力。
通常的扬声器阻抗都是8欧,若要产生10W的输出,后级的电流输出能力就必须大于1A。
就这一点,集成运算放大器就不能胜任。
所以必须加接电流放大级。
这些电流放大级的电压增益甚至不到1,一般都是使用射级跟随器。
功放后级的输出方式后变压器输出、OTL(Output TransformerLess,无输出变压器,下图(a))、OCL(Output CapacitorLess,无输出电容,下图(b))、BTL(Bridged TransformerLess,桥式,下图(c))等几种。
变压器输出一般用于电子管后级很少用于晶体管电路,后三种在晶体管和集成电路后级中广泛采用。
OTL电路采用单电源即可工作,所以在便携式功放中很常用,如果不加输出电容,则稳态时输出电压为0.5Vcc,所以输出电容不可省去。
但是输出电容也影响了电路的低频响应。
为了提高低频响应,OCL电路使用对称双电源供电,使稳态输出为0V,省去输出电容。
这时,加在负载上的最大电压为Vcc。
这样电源电压利用率偏低,因为整个电源电压为2Vcc。
提高利用率的方式是使用BTL电路,负载接在电桥中,两端的最大电压可达2Vcc,相同供电电压下输出功率是OCL的四倍,但是元件数量翻倍。
下图示出了BTL电路的原理。
每次都是电桥对侧桥臂上的管子同时导通和截止。
由于负载中点电压始终在0V,我们可以把BTL电路
看成是两个等效负载为0.5RL的OCL电路。
现在没有人会用分立元件组装BTL后级,因为与其消耗多一倍的元件搭建电路,不如把电源电压提高一倍来提高输出功率成本低廉。
但是,集成电路工艺限制了集成功放芯片供电电压的提升。
LM4780的极限工作电压为+-42V,已经是很高了,通常工作在+-35V,这时的输出功率在50W(8欧负载)。
要想获得100W以上的输出功率,只有考虑BTL电路了。
顺便说一句,现在的便携式设备如果有扬声器,也偏向于使用BTL,因为电池电压低,要提高功率,使用BTL是上策,因为在集成电路里多做一个放大器成本也增加不了多少。
用集成放大器实现BTL的方法可以有以下两种。
图(a)是比较直接的想法,两个增益互为相反数的功放推动一个负载。
但是这样做有一个缺点,我们知道运放接成反相放大器(A2)时输入阻抗很低,这就会对电子管前级造成比较重的负载引起失真。
如果前级是运放就没有问题。
因而我们用(b)电路,A1在放大的同时起到缓冲的作用,另外用一个增益为-1的缓冲器产生一个反相输出信号驱动负载,达到同样的效果。