数值计算方法设计论文
- 格式:doc
- 大小:169.00 KB
- 文档页数:9
Runge-Kutta 法的历史发展与应用摘要Runge-Kutta 法是极其重要的常微分方程数值解法,本文仅就其起源及发展脉络加以简要研究。
对Runge 、Heun 以及Kutta 等人的贡献做出适当评述,指出Runge-Kutta 方法起源于Euler 折线法。
同时对Runge-Kutta 法的应用做简要研究。
关键词 Euler 折线法 标准四阶Runge-Kutta 法 应用一、发展历史[1]1.1 Euler 折线法在微分方程研究之初,瑞士数学家L.Euler(1707.4—1783.9)做出了开创性的工作。
他和其他一些数学家在解决力学、物理学问题的过程中创立了微分方程这门学科。
在常微分方程方面,Euler 在1743年发表的论文中,用代换kx y e =给出了任意阶常系数线性微分方程的古典解法,最早引入了“通解”和“特解”的概念。
1768年,Euler 在其有关月球运行理论的著作中,创立了广泛用于求初值问题00(,), (1.1)() (1.2)y f x y x x X y x a '=<≤⎧⎨=⎩ 的数值解的方法,次年又把它推广到二阶方程。
欧拉的想法如下:我们选择0h >,然后在00x x x h ≤≤+情况下用解函数的切线0000()()(,)l x y x x f x y =+-代替解函数。
这样对于点10x x h =+就得到1000(,)y y hf x y =+。
在11(,)x y 重复如上的程序再次计算新的方向就会得到所谓的递推公式:11, (,),m m m m m m x x h y y hf x y ++=+=+这就是Euler 方法。
通过连接所有这些切线得到的函数被称为Euler 折线。
如果我们令0h →, 这些折线就会越来越接近解函数。
Euler 折线法是最早出现的,虽然它亦是常微分方程初值问题的最简单的数值解法, 但它的一些特性和研究方法对于更复杂的方法却具有普遍意义。
数值计算方法在流体力学中的应用研究流体力学是研究流体运动规律的学科,主要是研究流体内部的动力学性质,例如流速、压力、密度等物理参数。
数值计算方法是求解流体力学方程组的常用工具之一,其主要作用是通过数学模型和计算机程序,预测或模拟流体流动的过程,为实际工程和科学研究提供可靠的计算结果。
1. 数值计算方法的基本原理在流体力学中,流体的运动规律可以用连续性方程、动量方程和能量方程来描述。
其中,连续性方程表示物质守恒定律,动量方程表示牛顿第二定律,能量方程表示热力学第一定律。
这三个方程组成了流体力学的基本方程,也被称为Navier-Stokes方程。
Navier-Stokes方程由于其非线性和复杂性,无法通过解析方法得到简单的解析解,因此需要采用数值计算方法来求解。
常用的数值计算方法包括有限差分法、有限元法、边界元法等。
其中,有限差分法是最为常用的方法之一,其基本原理是将求解区域划分为若干个格子,然后通过差分逼近求出方程的数值解。
2. 数值计算方法的应用实例数值计算方法在流体力学中应用广泛,下面以CFD(计算流体动力学)为例,简单介绍数值计算方法在流体力学中的应用。
2.1 空气动力学空气动力学是研究空气流动规律的学科,其主要应用于航空航天、汽车、高速列车等领域。
数值计算方法在空气动力学中具有很高的应用价值,因为实验和计算都十分困难,而CFD方法可以通过计算机模拟得到准确的结果。
2.2 船舶水动力学船舶水动力学是研究水体中船舶的运动规律的学科,其主要应用于船舶的设计和性能分析。
CFD方法在船舶水动力学中的应用比较成熟,可以计算船舶在不同航速、吃水、载荷等情况下的流线、流速、阻力等。
2.3 建筑物风洞试验建筑物风洞试验是为了研究建筑物在风力作用下的力学特性而进行的实验,其主要应用于建筑物的设计和结构分析。
CFD方法可以取代传统的风洞试验,通过计算机模拟得到建筑物在不同风速、风向下的压强分布、荷载、振动等信息,从而提高计算精度和效率。
机械工程中的数值计算方法及应用问题研究在机械工程领域,数值计算方法是一种常用的工具,用于解决各种与机械系统相关的数学问题。
通过应用数值计算方法,我们可以更好地理解和预测机械系统的行为,优化设计,提高效率和性能。
本文将探讨机械工程中数值计算方法的原理和应用,并讨论其中的一些常见问题。
一、数值计算方法的原理数值计算方法是一种通过近似计算数学问题的方法。
相对于解析解,数值计算方法可以更灵活地处理复杂的机械系统问题。
其基本原理包括以下几个方面:1.数值离散化:机械系统通常由一系列的微分方程或积分方程描述。
为了进行计算,我们需要将连续的物理量转化为离散的数值。
这可以通过将系统分割成一系列小的部分来实现。
2.数值逼近:数值方法通过使用逼近技术,将实际问题转化为一系列代数方程的求解。
逼近技术可以是插值、拟合或优化等数学方法。
通过选择适当的逼近技术,我们可以准确地近似原始物理问题。
3.数值求解:一旦问题被转化为代数方程,我们可以使用各种数值求解方法来获得近似解。
常见的数值求解方法包括迭代法、高斯消元法和牛顿法等。
这些方法用于求解线性和非线性方程组,以及求解积分和微分方程。
二、数值计算方法的应用数值计算方法在机械工程中有广泛的应用。
以下是一些常见的应用领域:1.结构分析:数值计算方法可以用于分析和优化机械结构的强度、刚度和振动特性。
通过使用有限元分析法(Finite Element Analysis, FEA),我们可以对结构进行离散化,并通过求解代数方程获得结构的应力、应变和模态等信息。
2.流体力学:数值计算方法在流体力学中起着重要作用。
通过采用有限体积法(Finite Volume Method, FVM)或有限差分法(Finite Difference Method, FDM),我们可以模拟流体的流动、传热和传质等过程。
这在液压机械、风力涡轮机和喷气发动机等领域具有广泛的应用。
3.优化设计:数值计算方法可以与优化算法结合,用于优化机械系统的设计参数。
数值计算方法的课堂教学论文数值计算方法的课堂教学论文一、引言数学是科学之母。
一门学科之是否成为科学,决定于该学科的问题描述是否能化归为数学。
工程技术属于应用科学范畴,工程技术问题通过建立数学模型与数学产生直接联系。
数学问题的分析解通常是极难得到的,因此必须归结为数值计算问题。
例如:人造飞船的轨道研究、汽车耐撞性问题研究、大型桥梁设计、天气预报等都必须数值求解。
数值计算方法作为研究数学问题的近似求解方法的课程,既有一般类数学课程理论上的抽象性和严谨性,又有工科类课程的实用性和实验性特征,是一门理论性和实践性都很强的学科。
该课程理论涉及面广、方法应用性强、内容丰富,再加上随着计算机技术的飞速发展,优秀数学软件层出不穷,数值计算方法更能与计算机相结合,适应科学发展的需要,现已成为各高校大部分理工科专业的必修课程。
在数值计算方法的教学过程中,笔者发现了很多问题。
本文对其中的部分问题进行了分析,并提出了几点教学改革建议。
二、教学过程中存在的问题以笔者所在的机械工程专业为例,起初该课程为学科选修课,选课学生少,且其中大部分是为了凑学分而来的,学习兴趣不高在所难免。
后来学科培养计划改变,该课程归入专业必修课,选课学生数量增加了,但是学习热情还是不高。
究其原因,主要有以下几点:1.课程对数学基础要求较高。
本课程主要解决以下几大类问题:非线性方程求根、线性代数方程组求解、矩阵特征值与特征向量的数值解法、插值与拟合、函数最佳逼近、数值微分与积分、常微分方程初值问题的求解等。
需要先修的数学课程包括高等数学、线性代数等。
学生只有掌握这些课程中的基本内容,才能学好数值计算方法课程。
而这几门课程均是难度较大的数学课程,学生的掌握程度本来就不好,甚至学过后已经忘记。
由于同时要学习其他机械专业课程,学生不愿再花大量的时间和精力去学习或复习相关的数学知识,特别是本来就对数学不感兴趣的学生。
所以在课程学习中,学生就会陷入“听不懂,听不懂就没兴趣,没兴趣就不想听课,不听课就不懂”这样一个死循环。
牛顿迭代法及其应用[摘要]本文研究应用泰勒展开式构造出牛顿迭代法,论证了它的局部收敛性和收敛阶。
分别讨论了单根情形和重根情形,给出了实例应用。
最后给出了离散牛顿法的具体做法。
[关键词] 关键词:泰勒展开式,牛顿迭代法及其收敛性,重根,离散牛顿法。
1.牛顿法及其收敛性求方程f(x)=0的根,如果已知它的一个近似,可利用Taylor展开式求出f(x)在附近的线性近似,即,ξ在x与之间忽略余项,则得方程的近似右端为x的线性方程,若,则解,记作,它可作为的解的新近似,即(2.4.1)称为解方程的牛顿法.在几何上求方程的解,即求曲线y=f(x)与x轴交点.若已知的一个近似,通过点(,f())作曲线y=f(x)的切线,它与x轴交点为,作为的新近似,如图1所示图1关于牛顿法收敛性有以下的局部收敛定理.定理1设是f(x)=0的一个根,f(x)在附近二阶导数连续,且,则牛顿法(2.4.1)具有二阶收敛,且(2.4.2)证明由式(2.4.1)知迭代函数,,,而,由定理可知,牛顿迭代(2.4.1)具有二阶收敛,由式可得到式(2.4.2).证毕.定理表明牛顿法收敛很快,但在附近时才能保证迭代序列收敛.有关牛顿法半局部收敛性与全局收敛定理.此处不再讨论.例1用牛顿法求方程的根.,牛顿迭代为取即为根的近似,它表明牛顿法收敛很快.例2设>0,求平方根的过程可化为解方程.若用牛顿法求解,由式(2.4.1)得(2.4.3)这是在计算机上作开方运算的一个实际有效的方法,它每步迭代只做一次除法和一次加法再做一次移位即可,计算量少,又收敛很快,对牛顿法我们已证明了它的局部收敛性,对式(2.4.3)可证明对任何迭代法都是收敛的,因为当时有即,而对任意,也可验证,即从k=1开始,且所以{}从k=1起是一个单调递减有下界的序列,{}有极限.在式(2.4.3)中令k→∞可得,这就说明了只要,迭代(2.4.3)总收敛到,且是二阶收敛.在例2.4的迭代法(3)中,用式(2.4.3)求只迭代3次就得到=1.732 051,具有7位有效数字.求非线性方程f(x)=0的根x*,几何上就是求曲线y=f(x)与x轴交点x*,若已知曲线上一点过此点作它的切线。
数值分析方法在实际问题中的应用摘要:数值分析方法是现代科学计算中常用的数值计算方法,其研究并解决数值问题的近似解,是数学理论与计算机同实际问题的有机结合;本文对拉格朗日插值法和数值积分法的基本原理做了简要阐述;从实际问题出发,分别探究了拉格朗日插值法在油罐储油量中的应用、数值积分法在预测森林伐量中的应用。
关键词:拉格朗日插值法、数值积分法、原理、应用1. 拉格朗日插值法原理介绍及应用拉格朗日插值法是一种多项式插值法,在很多实际问题中都用函数来表示某种内在联系或规律,而不少函数都只能通过实验和观测来了解。
如对实践中的某个物理量进行观测,在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值。
这样的多项式称为拉格朗日(插值)多项式。
1.1 拉格朗日插值多项式 (1)问题提出已知函数()y f x =在n+1个不同的点,,,01x x xn 上的函数值分别为01,,,n y y y , 求一个次数不超过n 的多项式()n P x , 使其满足()n i i P x y =,()0,1,,i n =即n+1个不同的点可以唯一决定一个n 次多项式。
(2)插值基函数过n+1个不同的点分别决定n+1个n 次插值基函数01(),(),,()n l x l x l x 。
每个插值基本多项式()i l x 满足:(i).()i l x 是n 次多项式;(ii).()1i i l x =,而在其它n 个()()0,i k l x k i =≠。
由于()()0,i k l x k i =≠,故()il x 有因子:011()()()()i i n x x x x x x x x -+----因其已经是n 次多项式,故而仅相差一个常数因子。
令:011()()()()()i i i n l x a x x x x x x x x -+=----由()1i i l x =,可以定出a ,进而得到:011011()()()()()()()()()i i n i i i i i i i n x x x x x x x x l x x x x x x x x x -+-+----=----,,(3)n 次拉格朗日型插值多项式()n P x()n P x 是n+1个n 次插值基本多项式01(),(),,()n l x l x l x 的线性组合,相应的组合系数是01,,,ny y y 。
数值计算方法数值计算方法是一种通过数学模型和计算机算法来解决实际问题的方法。
它包括了数值分析、数值逼近、数值代数、数值微分方程等多个领域。
数值计算方法在科学工程领域有着广泛的应用,例如在物理学、化学、生物学、经济学和工程学等领域都有着重要的地位。
本文将介绍数值计算方法的基本原理和常用技术,并探讨其在实际问题中的应用。
一、数值计算方法的基本原理。
数值计算方法的基本原理是将实际问题转化为数学模型,然后通过计算机算法来求解这个数学模型。
在实际问题中,往往会遇到一些复杂的方程或者函数,无法通过解析方法求解。
这时就需要借助数值计算方法来进行近似求解。
数值计算方法主要包括了离散化、逼近和求解三个步骤。
1. 离散化。
离散化是将连续的问题转化为离散的问题。
在实际问题中,往往会遇到一些连续的函数或者方程,无法直接求解。
这时就需要将连续的问题转化为离散的问题,然后通过计算机算法来求解。
离散化的方法有很多种,比如有限差分法、有限元法、谱方法等。
2. 逼近。
逼近是指通过一些简单的函数或者多项式来近似表示复杂的函数或者方程。
在实际问题中,往往会遇到一些复杂的函数或者方程,无法直接求解。
这时就需要通过逼近的方法来近似表示这个函数或者方程,然后通过计算机算法来求解。
逼近的方法有很多种,比如插值法、拟合法、最小二乘法等。
3. 求解。
求解是指通过计算机算法来求解离散化的问题或者逼近的问题。
在实际问题中,往往会遇到一些复杂的离散化问题或者逼近问题,无法直接求解。
这时就需要通过计算机算法来求解这个离散化问题或者逼近问题。
求解的方法有很多种,比如迭代法、直接法、迭代法等。
二、数值计算方法的常用技术。
数值计算方法有很多种常用技术,下面将介绍一些常用的技术。
1. 有限差分法。
有限差分法是一种常用的离散化方法,它将微分方程转化为差分方程,然后通过计算机算法来求解。
有限差分法的基本思想是将函数在一些离散点上进行逼近,然后通过差分近似来求解微分方程。
毕业设计(论文)设计(论文)题目:数值积分算法与MATLAB实现摘要在求一些函数的定积分时,由于原函数十分复杂难以求出或用初等函数表达,导致积分很难精确求出,只能设法求其近似值,因此能够直接借助牛顿-莱布尼兹公式计算定积分的情形是不多的。
数值积分就是解决此类问题的一种行之有效的方法。
积分的数值计算是数值分析的一个重要分支;因此,探讨近似计算的数值积分方法是有着明显的实际意义的。
本文从数值积分问题的产生出发,详细介绍了一些数值积分的重要方法。
本文较详细地介绍了牛顿-科特斯求积公式,以及为了提高积分计算精度的高精度数值积分公式,即龙贝格求积公式和高斯-勒让德求积公式。
除了研究这些数值积分算法的理论外,本文还将这些数值积分算法在计算机上通过MATLAB软件编程实现,并通过实例用各种求积公式进行运算,分析比较了各种求积公式的计算误差。
【关键词】数值积分牛顿-科特斯求积公式高精度求积公式MATLAB软件ABSTRACTWhen the solution of the definite integral of some function values,because the original function is very complex and difficult to find the elementary function expression, the integral is difficult to accurately calculate, only managed to find the approximate value, and the case is small that allows to direct interface with the Newton - Leibniz formula to calculate the definite integral. Numerical integration is an effective method to solve such problems. The numerical integration is an important branch of numerical analysis; therefore, exploring the approximate calculation of the numerical integration method has obvious practical significance. This article departure from the numerical integration problem, described in detail some important numerical integration methods.This paper has introduced detail the Newton - Coates quadrature formula, and in order to improve the calculation accuracy of numerical integration formulas, More precise formulas have Romberg quadrature formulas and the Gauss - Legendre quadrature formula. In addition to the study of these numerical integration algorithm theory, the article also involve what these numerical integration algorithm be programmed by matlab software on the computer, and an example is calculated with a variety of quadrature formulas, finally analysis and comparison to various quadrature formulas calculation error.【Key words】Numerical integration Newton-Cotes quadratureformula High-precisionquadrature formula Matlab software目录前言 ..................................................................第一章牛顿-科特斯求积公式..............................................第一节数值求积公式的构造...........................................第二节复化求积公式.................................................第三节本章小结.....................................................第二章高精度数值积分算法...............................................第一节梯形法的递推.................................................第二节龙贝格求积公式...............................................第三节高斯求积公式.................................................第四节高斯-勒让德求积公式..........................................第五节复化两点高斯-勒让德求积公式 ..................................第六节本章小结.....................................................第三章各种求积公式的MATLAB编程实现与应用 ...........................第一节几个低次牛顿-科特斯求积公式的MATLAB实现...................第二节复化求积公式的MATLAB实现..................................第三节龙贝格求积公式的MATLAB实现................................第三节高斯-勒让德求积公式的MATLAB实现...........................第五节各种求积算法的分析比较 .......................................第六节本章小结.....................................................结论 ..................................................................致谢 ..................................................................参考文献 ................................................................附录 ..................................................................一、英文原文......................................................二、英文翻译......................................................前言对于定积分,在求某函数的定积分时,在一定条件下,虽然有牛顿-莱布里茨公式可以计算定积分的值,但在很多情况下的原函数不易求出或非常复杂。
课程设计(论文)
题目: 三次样条插值问题
学院: ___ 理学院 _ 专业: __ _ 数学与应用数学
班级:数学08-2班
学生姓名: 魏建波
学生学号: 080524010219 指导教师:李文宇
2010年12月17日
课程设计任务书
目录
摘要………………………………………………………………………
一、前言…………………………………………………………………
(一)Lagrange插值的起源和发展过程………………………………………
(二)本文所要达到的目的………………………………………………………
二、插值函数……………………………………………………………
(一)函数插值的基本思想……………………………………………………
(二)Lagrange插值的构造方法………………………………………………
三、MATLAB程序…………………………………………………………
(一)Lagrange程序……………………………………………………………
(二)龙格程序…………………………………………………………………
四、理论证明……………………………………………………………
五、综述……………………………………………………………………谢辞………………………………………………………………………参考文献…………………………………………………………………
摘要
前言
要求:500字以上,宋体小四,行距20磅,主要内容写该算法的产生及发展、应用领域等。
题目
整体要求:报告页数,正文在8页以上
字体:宋体小四(行距20磅)
内容:1、理论依据
2、问题描述
3、问题分析
4、求解计算(程序)
5、结论
注:(1)页码编号从正文页开始
(2)标题可根据情况自己适当改动
示例见下:
2判别……………………
2.1 判………………
2.1.1 判别………………
所谓的判别分析,………………………………………………方法[3]。
2.1.2 判…………………………
常用的有四种判别方法:…………………………………………………步判别法[6]。
1. 马氏………………
距离判别法的基本思想是:…………………… (1)多………………
设有K 个总体k G G G 21,,……………………………………………则个的有四种判别方法……………………。
① 总………………
∑
=∑==∑=∑k 21
……………………………………………………………… ② 总……………………
待判样…………………………………………………………。
(2)判……………………:
当一个判别准则提出之后,…………………………………………………。
① 误………………
设1G ,2G 为两总体,………………………………………………。
② 误……………… 法),………………………………………………………具体步骤如下: a 、………………………………………………………………。
b 、……………………………………………………………………。
c 、……………………………………………………………。
d 、……………………………………………………………。
2. Fisher 判…………
(1)Fisher 判………………
Fisher 判别法于1936年提出,………………………………………………。
(2) Fisher 判………………
假设有k 个总体12,,k G G G ,…………………………………………。
3. Bayes 判…………
假定对所研究的对象(总体)…………………………………法。
4. 逐………………
逐步………………………………………………这量[8]。
2.2 聚……………………
2.2.1聚…………………
聚类分析就…………………………………………………………………… (样品或指标)分类问题的一种多元。
2.2.2 聚………………
聚类分析的内容非常丰富,有系统聚类法、有序样品聚类法、动态聚类法、模糊聚类法、图论聚类法、聚类预报法等。
在本论文中主要介绍系统聚类法和K -均值聚类法。
1. 距……………………
为了……………………………………………………………………。
2. 样……………………
在聚类之前,………………………………………………………………。
(1)闵……………………………………………………。
(2)马……………………
马氏距离…………………………………………………。
(3)兰……………………
它是…………………………………………………………。
3. K—均………………
系统…………………………………………………………。
(1)将所……………………………………;
(2)通………………………………………………………………;
(3)重……………………………………………………………………。
……………………………其结果作为K-均。
4. 系…………………
(1)系……………………
系统…………………………………………………………。
(2)8种系……………………
在进…………………………………………………………方便。
①最短………
定义…………………………
最短距离法聚类的步骤如下:
a、……………………………………………………………………。
b、…………………………………………………………………………。
c、………………………………………………………………………………。
②最………………………
定义…………………………………………………………………………。
③中………………………
定义……………………………………………………………………离法。
图2-1 中间距离法…………………………………………………………………………。
_____计算方法_____________课程设计评阅书。