第8讲 因子分析与对应分析
- 格式:ppt
- 大小:774.50 KB
- 文档页数:58
应用多元统计分析第8章 对应分析- 1-对应分析(Correspondence Analysis)是在因子分析的基础上发展起来的一种视觉化的数据分析方法,目的是通过定位点图直观地揭示样品和变量之间的内在联系。
R型因子分析是对变量(指标)进行因子分析,研究的是变量之间的相互关系;Q型因子分析是对样品作因子分析,研究的是样品之间的相互关系。
但无论是R型或Q型分析都不能很好地揭示变量和样品之间的双重关系。
而在许多领域错综复杂的多维数据分析中,经常需要同时考虑三种关系,即变量之间的关系、样品之间的关系以及变量与样品之间的交互关系。
法国学者苯参次(J.P.Benzecri)于1970年提出了对应分析方法,这个方法对原始数据采用适当的标度化处理,把R型和Q型分析结合起来,通过R型因子分析直接得到Q型因子分析的结果,同时把变量和样品反映到同一因子平面上,从而揭示所研究的样品和变量之间的内在联系。
在因子分析中,R型因子分析和Q型因子分析都是从分析观测数据矩阵出发的,它们是反映一个整体的不同侧面,因而它们之间一定存在内在联系。
对应分析就是通过某种特定的标准化变换后得到的对应变换矩阵Z将两者有机地结合起来。
具体地,就是首先给出变量的R型因子分析的协方差阵 和样品的Q型因子分析的协方差阵 。
由于矩阵 和 有相同的非零特征值,记为 ,如果 的对应于特征值 的标准化特征向量为 ,则容易证明, 的对应于同一特征值的标准化特征向量为当样本容量n很大时,直接计算矩阵 的特征向量会占用相当大的容量,也会大大降低计算速度。
利用上面关系式,很容易从 的特征向量得到 的特征向量。
并且由 的特征值和特征向量即可得到R 型因子分析的因子载荷阵A和Q型因子分析的因子载荷阵B,即有由于 和 具有相同的非零特征值,而这些特征值又是各个公因子的方差,因此设有p个变量的n个样品观测矩阵 ,这里要求所有元素 ,否则对所有数据同时加上一个适当的正数,以使它们满足以上要求。
第8讲因子分析与对应分析因子分析和对应分析是多元统计分析的两个重要方法,可以用于探索和解释多个变量之间的关系。
本文将详细介绍因子分析与对应分析的原理、应用以及在研究中的注意事项。
一、因子分析1.概念与原理因子分析是一种用于降维和检验构念的统计方法,通过分析变量之间的共同变异性,将一组相关变量归纳为几个相互独立的因子。
通过因子分析,可以减少变量的数量,提取出变量集合的共同因素,并进一步应用这些因子进行研究。
2.过程与步骤因子分析的步骤主要包括:确定因子数量、提取因子、旋转因子和解释因子。
首先,需要根据研究的目的和理论基础确定因子的数量;然后,通过主成分分析、最大似然法等方法提取因子;接着,对提取的因子进行旋转,以便更好地解释因子的含义;最后,根据提取和旋转的因子来解释因子的含义和解释力,进行结果的解释。
3.应用与示例因子分析可以应用于研究心理学、社会学、经济学等多个领域。
例如,在心理学中,可以通过因子分析提取出代表不同人格特征的因子,从而研究不同因素对人格的影响。
在市场研究中,可以通过因子分析分析顾客对不同产品特征的偏好,从而为产品定位和市场推广提供参考。
二、对应分析1.概念与原理对应分析是一种描绘和解释两个或多个表格之间关系的统计方法,通过计算表格中元素之间的关联性,找出表格之间的对应关系。
对应分析基于数学原理,可以识别表格中的模式和趋势,并提供对表格元素之间关系的可视化展示。
2.过程与步骤对应分析的过程主要包括:计算对应坐标、分析对应方向和解释对应结果。
首先,通过降维技术(如主成分分析)计算表格中每个元素的对应坐标,即将高维表格转化为低维坐标。
其次,通过对应方向的分析,找出表格之间的对应关系。
最后,根据对应结果,解释表格之间的关联性和趋势。
3.应用与示例对应分析可以应用于研究多个变量之间的关系,如消费者对产品特征的偏好、不同地区的经济发展等。
例如,在市场研究中,可以通过对应分析识别消费者对不同产品特征的偏好,并据此进行市场推广策略。