原子吸收值与原子浓度的关系及原子吸收光谱测定原理
- 格式:ppt
- 大小:1.95 MB
- 文档页数:49
原子吸收分光光度法基本原理一. 原子吸收光谱的产生及共振线在一般情况下,原子处于能量最低状态(最稳定态),称为基态(E0= 0)。
当原子吸收外界能量被激发时,其最外层电子可能跃迁到较高的不同能级上,原子的这种运动状态称为激发态。
处于激发态的电子很不稳定,一般在极短的时间(10-8-10-7s)便跃回基态(或较低的激发态),此时,原子以电磁波的形式放出能量:(1)图1 原子光谱的发射和吸收示意图共振发射线:原子外层电子由第一激发态直接跃迁至基态所辐射的谱线称为共振发射线;共振吸收线:原子外层电子从基态跃迁至第一激发态所吸收的一定波长的谱线称为共振吸收线;共振线:共振发射线和共振吸收线都简称为共振线。
由于第一激发态与基态之间跃迁所需能量最低,最容易发生,大多数元素吸收也最强;因为不同元素的原子结构和外层电子排布各不相同,所以“共振线” 也就不同,各有特征,又称“特征谱线”,选作“分析线”。
二. 原子吸收值与原子浓度的关系(一)吸收线轮廓及变宽图2 基态原子对光的吸收若将一束不同频率,强度为I0 的平行光通过厚度为1cm的原子蒸气时,一部分光被吸收,(2)透射光的强度Iν仍服从朗伯-比尔定律:式中:Kν——基态原子对频率为的光的吸收系数,它是光源辐射频率的ν函数由于外界条件及本身的影响,造成对原子吸收的微扰,使其吸收不可能仅仅对应于一条细线,即原子吸收线并不是一条严格的几何线(单色λ),而是具有一定的宽度、轮廓,即透射光的强度表现为一个相似于下图的频率分布:图3 Iν与ν的关系若用原子吸收系数Kν随ν变化的关系作图得到吸收系数轮廓图:图4 原子吸收线的轮廓图①K0 :峰值吸收系数或中心吸收系数(最大吸收系数);②ν0:中心频率,最大吸收系数K0 所对应的波长;③∆ν:吸收线的半宽度,K0 /2 处吸收线上两点间的距离;④:积分吸收,吸收线下的总面积。
引起谱线变宽的主要因素有:1. 自然宽度:在无外界条件影响下的谱线宽度谓之根据量子力学的 Heisenberg 测不准原理,能级的能量有不确定量∆E,可由下式估算:τ—激发态原子的寿命,当τ为有限值时,则能级能量的不确定量∆E 为有限值,此能级不是一条直线,而是一个“带”。
原子吸收分光光度法的基本原理一、引言原子吸收分光光度法是一种常用的化学分析方法,用于测定溶液中金属元素的含量。
其基本原理是利用原子吸收光谱仪测量样品中金属元素原子在特定波长的光线下的吸收程度,通过测定吸光度来推断样品中金属元素的浓度。
本文将介绍原子吸收分光光度法的基本原理和仪器结构,以及其在实际应用中的一些注意事项。
二、原理原子吸收分光光度法的基本原理是利用金属元素原子对特定波长的光线的吸收特性。
当金属元素原子处于激发态时,它们会吸收特定波长的光线,使原子处于激发态能级上的电子跃迁到高能级。
而当金属元素原子处于基态时,它们不会吸收这些特定波长的光线。
通过测量样品溶液中特定波长的光线经过吸收后的光强度变化,可以推断出样品中金属元素的浓度。
三、仪器结构原子吸收分光光度法的仪器主要包括光源、光切割器、样品室、光路系统和检测器等部分。
光源产生特定波长的光线,光切割器用于选择特定波长的光线,样品室用于容纳待测样品溶液,光路系统将光线引导到样品室中,检测器测量经过样品溶液后的光线强度。
通过调节光切割器选择不同的波长,并测量不同波长下的吸光度,可以得到样品中金属元素的浓度信息。
四、注意事项在使用原子吸收分光光度法进行分析时,需要注意以下几点:1. 样品的制备:样品的制备对于分析结果的准确性至关重要。
样品应该经过适当的预处理,如酸溶解、稀释等,以保证样品中金属元素的浓度在合适的范围内。
2. 标准曲线的绘制:在分析过程中,需要绘制标准曲线来确定样品中金属元素的浓度。
标准曲线应该覆盖待测样品浓度范围,并包括多个浓度点,以提高分析结果的准确性。
3. 仪器的校准:在进行分析之前,需要对仪器进行校准,以保证测量结果的准确性。
校准可以通过使用已知浓度的标准溶液进行,根据标准溶液的吸光度和浓度的关系绘制标准曲线。
4. 光路系统的清洁:光路系统是原子吸收分光光度法中的关键部分,需要保持清洁以避免杂质对测量结果的影响。
定期清洁光路系统,以确保光线传输的准确性。
原子吸收光谱法原理
原子吸收光谱法是一种常用的分析技术,用于确定物质中的元素含量。
该方法基于原子在特定波长的光照射下发生能级跃迁的现象,利用元素特征波长的吸收峰的强度来测量样品中元素的浓度。
以下是原子吸收光谱法的原理。
1. 原子的能级结构:原子由电子围绕着原子核的轨道运动组成。
电子在这些轨道上具有不同的能量,称为电子能级。
当原子受到外部的能量激发时,电子会从低能级跳跃到高能级,形成激发态。
2. 能级跃迁:原子的电子在吸收能量后,会跃迁到高能级。
当电子从高能级返回到低能级时,必须释放出能量。
这个能量的差别可以以光子形式释放出来,其波长与能级差相关。
3. 吸收光谱:在原子吸收光谱实验中,使用的是特定波长的光源,通常为中性或离子化的金属蒸汽灯。
这些光源会发出特定波长的光,射入样品中。
4. 样品吸收:样品中的元素原子会吸收与其能级差相匹配的波长的光。
当光通过样品时,部分光会被吸收,其吸收强度与元素的浓度成比例。
5. 检测:通过测量样品吸收光的强度,可以确定元素的浓度。
一般使用光电器件来测量吸收光的强度。
可以采用单光束或双光束系统进行测量。
6. 标准曲线:为了确定未知样品中元素的浓度,常常使用标准曲线进行定量分析。
通过测量一系列已知浓度的标准溶液的吸收峰强度,可以绘制出吸收峰强度与浓度之间的关系曲线。
利用这个曲线,可以根据样品的吸光度值来确定其浓度。
总之,原子吸收光谱法利用原子能级跃迁的现象,通过测量样品对特定波长光的吸收来测量元素的浓度。
该技术广泛应用于元素分析和环境监测等领域。
原子吸收光谱法和原子吸收分光光度法原子吸收光谱法和原子吸收分光光度法是分析化学中常用的技术手段,用于测定物质中金属元素的含量。
本文将介绍这两种方法的原理、应用以及比较。
一、原子吸收光谱法原子吸收光谱法是一种基于物质对特定波长的吸收能力进行分析的方法。
它利用原子在吸收特定波长的光线时会发生能量跃迁的特性,通过测量样品对特定波长的光线吸收的强度来确定其中金属元素的含量。
原子吸收光谱法的原理是基于原子的量子力学原理,当金属元素处于基态时,外层电子具有特定的能级跃迁能量,吸收特定波长的光线。
通过测量光线透过样品之前和之后的强度差,可以计算得到金属元素的浓度。
原子吸收光谱法的应用广泛,尤其在环境监测、食品安全、药物分析等领域具有重要意义。
例如,通过原子吸收光谱法可以测定水中重金属元素的含量,用于评估水质的安全性;还可以用于监测土壤中的污染物含量,从而保护农作物的品质。
二、原子吸收分光光度法原子吸收分光光度法是一种基于原子吸收光谱技术的定量分析方法。
它利用物质对特定波长的光线吸收的强度与其浓度呈线性关系的特点,通过测量样品对特定波长光线吸收的强度来确定其中金属元素的含量。
原子吸收分光光度法与原子吸收光谱法相比,其最大的区别在于前者是定量分析方法。
通过建立标准曲线,测定样品吸光度与浓度的线性关系,可以准确计算得到金属元素的含量。
原子吸收分光光度法具有高灵敏度、准确度高以及分析速度快的优点,广泛应用于食品、化妆品、医药等行业中。
例如,原子吸收分光光度法可以用于检测食品中的微量元素,如铜、锌等,帮助评估食品的质量和安全性。
三、原子吸收光谱法与原子吸收分光光度法的比较原子吸收光谱法和原子吸收分光光度法在金属元素的定量分析方面都有重要的应用,但在一些方面存在差异。
1. 灵敏度:原子吸收光谱法的灵敏度更高,可以检测到更低浓度的金属元素,而原子吸收分光光度法的灵敏度相对较低。
2. 准确度:原子吸收分光光度法的准确度更高,可以通过建立标准曲线进行定量分析,而原子吸收光谱法的准确度相对较低。
原子吸收光谱仪的原理
原子吸收光谱仪是一种常用的分析仪器,用于测定样品中特定元素的含量。
其工作原理基于原子的电子结构和光的吸收特性。
首先,将待测样品以气态或溶液形式进入光谱仪的样品池中。
样品经过加热或气化等处理后,变为由原子组成的热原子蒸气。
然后,通过一个光源产生一束特定波长的光,并将光传输到样品池中。
这束光称为入射光。
入射光中的特定波长与待测元素的电子结构有关,可以使待测元素原子吸收这束光。
在样品池内,入射光经过原子蒸气时,与原子相互作用并被吸收。
吸收光谱仪通过检测入射光经过样品后剩余的光强度的变化来测量吸收光。
这是通过一个光探测器来实现的。
光探测器将吸收光转化为电信号。
通过测量吸收光谱仪输出的电信号的强度,可以确定被测元素的含量。
测量时可以选择不同的波长来检测不同元素。
为了提高测量的准确性和灵敏度,常常使用基准比较法或方法来对测量结果进行校正和修正。
基准比较法是指在样品中加入已知浓度的参比物质,通过比较参比物质和待测物质对光的吸收,来计算待测物质的浓度。
总结起来,原子吸收光谱仪的原理是利用原子在特定波长的光照射下发生吸收的特性来测定样品中特定元素的含量。
通过测
量吸收光谱仪输出的电信号的强度,并使用基准比较法来校正和修正测量结果,可以获得高精度和可靠的分析结果。
原子吸收光谱仪|原子吸收分光光度计原理及特点原子吸收分光光度计的工作原理:元素在热解石墨炉中被加热原子化,成为基态原子蒸汽,对空心阴极灯发射的特征辐射进行选择性吸收。
在一定浓度范围内,其吸收强度与试液中被的含量成正比。
其定量关系可用郎伯-比耳定律,A= -lg I/I o= -lgT = KCL ,式中I为透射光强度;I0为发射光强度;T为透射比;L为光通过原子化器光程(长度),每台仪器的L值是固定的;C是被测样品浓度;所以A=KC。
利用待测元素的共振辐射,通过其原子蒸汽,测定其吸光度的装置称为原子吸收分光光度计。
它有单光束,双光束,双波道,多波道等结构形式。
其基本结构包括光源,原子化器,光学系统和检测系统。
它主要用于痕量元素杂质的分析,具有灵敏度高及选择性好两大主要优点。
广泛应用于特种气体,金属有机化合物,金属醇盐中微量元素的分析。
但是测定每种元素均需要相应的空心阴极灯,这对检测工作带来不便。
原子吸收分光光度计的特点:灵敏度高:火焰原子吸收分光光度法测定大多数金属元素的相对灵敏度为1.0×10-8~1.0×10-10g·mL-1,非火焰原子吸收分光光度法的绝对灵敏度为1.0×10-12~1.0×10-14g。
这是由于原子吸收分光光度法测定的是占原子总数99%以上的基态原子,而原子发射光谱测定的是占原子总数不到1%的激发态原子,所以前者的灵敏度和准确度比后者高的多。
精密度好:由于温度的变化对测定影响较小,该法具有良好的稳定性和重现性,精密度好。
一般仪器的相对标准偏差为1%~2%,性能好的仪器可达0.1%~0.5%.选择性好,方法简便:由光源发出特征性入射光很简单,且基态原子是窄频吸收,元素之间的干扰较小,可不经分离在同一溶液中直接测定多种元素,操作简便。
准确度高,分析速度快:测定微、痕量元素的相对误差可达0.1%~0.5%,分析一个元素只需数十秒至数分钟。
金属元素的原子吸收法原理
原子吸收法是一种光谱分析技术,用于测定金属元素的含量。
它的原理基于元素原子在特定波长的光照射下,原子吸收能量的量与元素的浓度成正比关系。
具体原理如下:
1. 原子化:通过加热样品或使用火焰、燃烧炉等将样品转化为气态原子。
有机物样品需要先进行矿化处理,将其转化为无机物。
2. 光谱测定:将样品送入光谱仪,使用特定波长的光照射样品。
光源通过一个窄缝发出的光束,经过物镜透镜聚焦后通过样品室中的样品,被光罩捕捉到一个条状窄缝的光栅上。
3. 吸收:样品中的金属原子在特定波长的光照射下会吸收特定的能量,导致吸收的光强度减弱。
吸收的光强度与金属元素的浓度成正比。
4. 比较:将吸收的光通过光电倍增管转化为电信号,经过放大、滤波等处理后与标准溶液进行比较。
5. 计算:通过校正曲线,将吸收的信号与标准曲线上的吸收值对应,从而确定样品中金属元素的浓度。
原子吸收法具有准确性高、灵敏度好等优点,在环境、食品、医药等领域有广泛
应用。
原子吸收测量的基本原理随着现代科技的不断发展,原子吸收测量技术在分析化学领域中发挥着越来越重要的作用。
而要理解原子吸收测量这一技术的基本原理,我们需要从以下几个方面逐步展开。
第一步:光的电磁学原理原子吸收测量利用的是光与物质的相互作用,而要理解这一过程,首先需要熟悉光的电磁学原理。
光是一种电磁波,其波长、频率和能量与其振幅相关。
当光波穿过传播介质时,其传播速度会受到介质折射率的影响。
同时,光波的剖面也会发生弯曲,这一现象被称为折射。
第二步:原子光谱学原理原子光谱学主要研究的是原子在特殊条件下所发射的光谱。
在原子吸收测量中,我们利用的是原子在吸收进入其能级的光子后发生的电子跃迁现象。
当原子吸收光子的能量与其能级之间的能差相等或略大时,电子会受到激发并跃迁到更高能级。
这会导致原子吸收特定波长(即特定能量)的光子,其吸收光谱特征具有原子的特异性。
第三步:吸光度与浓度关系吸光度是原子吸收测量的一个重要指标,它与溶液中某种物质(例如金属离子)的浓度有关。
根据比尔-朗伯定律,当光通过样品溶液时,上述吸收效应的影响将随着物质浓度的增加而增加。
实验测量吸光度值后,我们可以利用标准曲线对样品溶液中的物质浓度进行计算。
第四步:光路系统和探测器原子吸收测量的光路系统通常由光源、单色器、样品池和探测器等部分组成。
其中,光源通常采用空心阴极灯,样品池用于存放测量物质,探测器用于检测入射光和出射光信号的差异。
而波长选择器--单色器可以选择不同波长的光以使物质吸收不同的光。
综上所述,原子吸收测量的基本原理涉及光的电磁学原理、原子光谱学原理、吸光度与浓度的关系以及光路系统和探测器等多个方面。
通过对这些原理的深入理解,我们可以更好地掌握这一分析化学技术,为实验设计和数据分析提供更有效的支持。
原子吸收分光光度法的基本原理
原子吸收分光光度法是一种常用的分析方法,用于测定溶液或气体中的微量金属元素。
它的基本原理是通过原子的吸收光谱来确定样品中目标金属元素的浓度。
原子吸收光谱是指在特定波长范围内,给定元素的原子或离子能够吸收特定波长的光。
吸收光谱的强度与样品中目标元素的浓度成正比。
因此,通过测量吸收光谱的强度,可以确定样品中目标元素的浓度。
原子吸收分光光度法的基本步骤如下:
1. 选择合适的光源和光学仪器:通常使用中空阴极灯作为光源,该灯能够产生目标元素的特定光谱线。
光学仪器包括光栅和光电二极管等,用于分离和测量吸收光谱。
2. 选择合适的波长:根据目标元素的特征吸收波长,选择适当的光谱线。
这通常是在元素的特定能级间转移时发生的波长。
3. 准备样品和标准溶液:将待测样品稀释到适当浓度,并配制一系列不同浓度的标准溶液。
4. 测量吸收光谱:将样品和标准溶液依次放入光路中,通过光电二极管等光学仪器测量吸收光谱的强度。
5. 绘制标准曲线:使用标准溶液的吸光度和浓度数据,绘制吸光度与浓度的标准曲线。
这可以用于确定待测样品中目标元素
的浓度。
6. 测量样品的吸光度:通过将待测样品放入光路中,测量其吸光度,并使用标准曲线确定目标元素的浓度。
原子吸收分光光度法具有高选择性、灵敏度和精确度的优点,适用于多种金属元素的测定。
但需要注意的是,该方法对样品的基体影响较大,因此在分析复杂样品时需要进行适当的前处理步骤,以消除干扰效应。
原子吸收分光光度法的原理
原子吸收分光光度法是一种常用的分析技术,用于测定样品中金属和非金属元素的含量。
其原理基于原子在特定波长的光线照射下,吸收特定能量的现象。
实验中使用一个光源产生特定波长的光线,其波长与待测元素的吸收波长相对应。
这个光线穿过样品溶液,并穿过一个狭缝进入单色仪。
单色仪可以调节光线的波长,使其与待测元素的吸收波长相匹配。
样品溶液中含有待测元素的离子,当特定波长的光线通过时,其中的元素离子会吸收能量,发生能级跃迁。
吸收吸光度与元素的浓度成正比,可以根据吸光度的变化确定元素的含量。
在实验中,通过测量吸光度的变化可以获得样品中待测元素的浓度。
测量吸光度通常使用光电二极管或光电倍增管等光电器件。
这些器件将光能转化为电能,并产生相应的电信号。
接收到的电信号经过放大和处理后,可以通过连接的计算机或显示设备显示样品中待测元素的浓度。
原子吸收分光光度法具有高灵敏度、高精确度和高选择性的特点。
它广泛应用于环境分析、食品质量检测、医学诊断等领域,成为了一种重要的分析手段。