桂林理工大学大学物理课后习题答案第一章(罗益民版)
- 格式:pdf
- 大小:436.43 KB
- 文档页数:7
B 班级 学号 姓名第1章 质点运动学1-2 已知质点的运动方程为r i 3j 6k e e tt-=++。
(1)求:自t =0至t =1质点的位移。
(2)求质点的轨迹方程。
解:(1) ()k j i r 630++= ()k j i r 6e 3e 1-1++= 质点的位移为()j i r ⎪⎭⎫⎝⎛-+-=3e 31e ∆(2) 由运动方程有t x e =,t y -=e 3, 6=z 消t 得 轨迹方程为 1=xy 且6=z1-3运动质点在某瞬时位于矢径()y x,r 的端点处,其速度的大小为( D )(A)dt dr (B)dt d r(C)dt d r (D)22⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx1-5某质点的运动方程为k j i r 251510t t ++-=,求:t =0,1时质点的速度和加速度。
解:由速度和加速度的定义得k j r v t dt d 1015+==, k va 10==dtd所以 t =0,1时质点的速度和加速度为 015==t jv 11015=+=t kj v1010,ka ==t1-8 一质点在平面上运动,已知质点的运动方程为j i r 2235t t +=,则该质点所作运动为[ B ](A) 匀速直线运动 (B) 匀变速直线运动 (C) 抛体运动 (D) 一般的曲线运动*1-6一质点沿Ox 轴运动,坐标与时间之间的关系为t t x 233-=(SI)。
则质点在4s 末的瞬时速度为 142m ·s -1,瞬时加速度为 72m ·s -2;1s 末到4s 末的位移为 183m ,平均速度为 61m ·s -1,平均加速度为 45m ·s -2。
解题提示:瞬时速度计算dt dxv =,瞬时加速度计算22dtx d a =;位移为()()14x x x -=∆,平均速度为()()1414--=x x v ,平均加速度为 ()()1414--=v v a1-11 已知质点沿Ox 轴作直线运动,其瞬时加速度的变化规律为t a x 3=2s m -⋅。
习题1-1. 已知质点位矢随时间变化的函数形式为r =R(cosωt i+sinωt j)其中ω为常量.求:(1)质点的轨道;(2)速度和速率。
解:1)由r=R(cosωt i+sinωt j)知x= R cos ωty= R sin ωt消去 t 可得轨道方程x2+y2=R22)v=ddtr= ωR sinωti+ωRcosωt jv =[(ωR sinωt)2+(ωR cosωt)2]12=ωR1-2. 已知质点位矢随时间变化的函数形式为r=4t2i+(3+2t)j,式中r的单位为m,t的单位为s .求:(1)质点的轨道;(2)从t=0到t=1秒的位移;(3)t =0和t =1秒两时刻的速度。
解:1)由r=4t2i+(3+2t)j可知x= 4t 2y= 3 + 2t消去 t 得轨道方程为:x=(y3)22)v =d d rt = 8t i + 2 jr =∫01 v dt = ∫01(8t i + 2 j )dt = 4i + 2 j3) v (0) = 2 j v (1) = 8i + 2 j1-3. 已知质点位矢随时间变化的函数形式为r = t 2 i + 2t j ,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速 度和法向加速度。
解:1)v =d d r t = 2t i + 2 ja =d d v t= 2i2)v = [(2t)2 + 4] 12 = 2(t 2 +1) 12 a t= dv = 2t dt t 2+1a = a 2 a 2 =2n tt 2 +11-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升 降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。
解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为y = v t + 1at 2(1)图 1-41 0 21gt 2y 2 = h + v 0t (2)2y 1 = y 2 (3)解之t =2d g + a1-5. 一质量为m 的小球在高度h 处以初速度v 0 水平抛出,求:(1)小球的运动方程; (2)小球在落地之前的轨迹方程;(3)落地前瞬时小球的d r, d v , d v .d t d td t 解:(1) x = v 0 t式(1)y = h 1gt 2式(2)2 1 gt 2 ) jr (t) = v 0 t i + (h -2(2)联立式(1)、式(2)得y = hgx 22v 02(3) d r = v 0 i - gt j 而 落地所用时间 t = 2hgdt所以 d r = v 0 i - 2gh j d v = g jdtdtv = v 2x + v 2y = v 02 + (gt)2dv = g 2 t = g 2ghdt [ v 2 + ( gt ) 2 ] 1 2 ( v 2 + 2gh ) 120 01-6. 路灯距地面的高度为h 1 ,一身高为h 2 的人在路灯下以匀速v 1 沿直线行走。
⼤学物理上册答案第四版(罗益民吴烨)北邮出版第⼀章第1章质点运动学1-1⼀运动质点某⼀瞬时位于径⽮()r x y ,的端点处,关于其速度的⼤⼩有4种不同的看法,即(1)d d t r ;(2)d d t r;(3)d d s r;(4下列判断正确的是().(A)只有(1)和(2)正确(B)只有(2)正确(C)只有(3)和(4)正确(D)(1)(2)(3)(4)都正确答案:(C )解析:瞬时速度的⼤⼩等于瞬时速率,故(3)正确;速度可由各分量合成,故(4)正确。
1-2⼀质点的运动⽅程为22cos cos sin sin x At Bt y At Bt θθθθ=+,=+,式中A ,B ,θ均为常量,且A >0,B >0,则该质点的运动为().(A)⼀般曲线运动(B)匀速直线运动(C)匀减速直线运动(D)匀加速直线运动答案:(D )解析:由tan y x θ可知,质点做直线运动.a x =2B cos θa y =2B sin θa=2B加速度a 为定值,故质点做匀加速直线运动.1-3⼀质点沿半径为R 的圆周运动,其⾓速度随时间的变化规律为ω=2bt ,式中b 为正常量.如果t =0时,θ0=0,那么当质点的加速度与半径成45°⾓时,θ⾓的⼤⼩为()rad.(A)12(B)1(C)b (D)2b 答案:(A )解析:a t =R β=2bRa n =R 2ω=4Rb 2t 2a t =a nt 2=b 21θ=20tω?d t =bt 2=211-4⼀⼈沿停靠的台阶式电梯⾛上楼需时90s ,当他站在开动的电梯上上楼,需时60s .如果此⼈沿开动的电梯⾛上楼,所需时间为().(A)24s(B)30s (C)36s (D)40s答案:(C )解析:设电梯长度为s ,则=+9060s s s t ,解得t =36s.1-5已知质点的加速度与位移的关系式为32a x =+,当t =0时,v 0=0,x 0=0,则速度v 与位移x 的关系式为________.答案:v 2=3x 2+4x 解析:d d d d d d d d v v x v a v t x t x===,d d v v a x =,00d =(3+2)d v x v v x x ?,v 2=3x 2+4x .1-6在地⾯上以相同的初速v 0,不同的抛射⾓θ斜向上抛出⼀物体,不计空⽓阻⼒.当θ=________时,⽔平射程最远,最远⽔平射程为________.答案:45°20v g解析:对于斜抛运动:0cos x v tθ?=201sin 2y v t gt θ?=-当y =0时,解得02sin v t gθ=物体的⽔平射程20sin 2v x gθ=当θ=45°时有最远⽔平射程,其⼤⼩为20max v x g=1-7某⼈骑摩托车以115m s -?的速度向东⾏驶,感觉到风以115m s -?的速度从正南吹来,则风速的⼤⼩为________m·s -1,⽅向沿________.答案:m/s 东偏北45°解析:如答案1-7图所⽰,由图可知=+v v v 风地风⼈⼈地故风速⼤⼩m/sv风地=⽅向为东偏北45°.答案1-7图1-8⼀质点作直线运动,加速度2sin a A t ωω=,已知t =0时,x 0=0,v 0=-ωA ,则该质点的运动⽅程为_______________.答案:sin x A t ω=-,解析:d d v a t=20d sin d v tA v A t t ωωω-=??解得,该质点的速度为cos v A tωω=-d d x v t=00d cos d x t x A t t ωω=-??解得,该质点的运动⽅程为sin x A tω=-1-9⼀质点在xOy 平⾯上运动,运动⽅程为x =3t +5,y =12t 2+3t -4式中,t 以s 计,x ,y 以m 计.(1)以时间t 为变量,写出质点位置⽮量的表⽰式;(2)计算第1s 内质点的位移;(3)计算t =0s 时刻到t =4s 时刻内的平均速度;(4)求出质点速度⽮量表⽰式,计算t =4s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度⽮量的表⽰式,计算t =4s 时质点的加速度.(位置⽮量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表⽰成直⾓坐标系中的⽮量式)解:(1)质点t 时刻位⽮为21(35)342r t i t t j ??=+++-(m)(2)第1s 内位移为11010()()r x x i y y j=-+- 2213(10)(10)3(10)23 3.5()i j i j m ??=-+-+-=+ (3)前4s 内平均速度为11(1220)35(m s )4r v i j i j t -?==?+=+?? (4)质点速度⽮量表⽰式为1d 3(3)(m s )d r v i t j t-==++? t =4s 时质点的速度为143(43)37(m s )v i j i j -=++=+? (5)前4s 内平均加速度为240731(m s )4s 4v v v a j j t -?--====?? (6)质点加速度⽮量的表⽰式为2d 1(m s )d v a j t-==? t =4s 时质点的加速度为241(m s )a j -=? 1-10质点沿直线运动,速度v =(t 3+3t 2+2)m·s -1,如果当t =2s 时,x =4m ,求:t =3s 时,质点的位置、速度和加速度.解:32d 32d x v t t t==++431d d 24x x v t t t t c ===+++??当t =2时,x =4,代⼊可得c =-12.则质点的位置、速度和加速度的表达式分别为4312124x t t t =++-32232d 36d v t t v a t t t=++==+将t =3s 分别代⼊得上述各式,解得1233341.25m 56m s 45m s x v a --==?=?,,1-11质点的运动⽅程为2[4(32)] m r t i t j =++,t 以s 计.求:(1)质点的轨迹⽅程;(2)t =1s 时质点的坐标和位⽮⽅向;(3)第1s 内质点的位移和平均速度;(4)t =1s 时质点的速度和加速度.解:(1)由运动⽅程2432x t y t==+消去t 得轨迹⽅程2(3)0x y --=(2)t =1s 时,114m 5m x y ==,,故质点的坐标为(4,5).由11tan 1.25y x α==得51.3α=?,即位⽮与x 轴夹⾓为53.0°.(3)第1s 内质点的位移和平均速度分别为1(40)(53)42(m)r i j i j ?=-+-=+1142(m s )r v i j t-?==+?? (4)质点的速度与加速度分别为d 82d r v ti j t==+ d 8d v a i t== 故t =1s 时的速度和加速度分别为1182m s v i j -=+? ()218m s a i -=? ()1-12以速度v 0平抛⼀球,不计空⽓阻⼒,求:t 时刻⼩球的切向加速度a t 和法向加速度a n 的量值.解:⼩球下落过程中速度为v故切向加速度为2t d d v a t =由222n t a g a =-得,法向加速度为n a =1-13⼀种喷⽓推进的实验车,从静⽌开始可在1.80s 内加速到1600km·h -1的速率.按匀加速运动计算,它的加速度是否超过了⼈可以忍受的加速度25g ?这1.80s 内该车跑了多少距离?解:实验车的加速度为3222160010m /s 2.4710m/s 3600 1.80v a t ?===??故它的加速度略超过25g .1.80s 内实验车跑的距离为3160010 1.80m 400m 223600v s t ?==?=?1-14在以初速率-1015.0 m s v ?=竖直向上扔⼀块⽯头后,(1)在1.0s 末⼜竖直向上扔出第⼆块⽯头,后者在h =11.0m ⾼度处击中前者,求第⼆块⽯头扔出时的速率;(2)若在1.3s 末竖直向上扔出第⼆块⽯头,它仍在h =11.0m ⾼度处击中前者,求这⼀次第⼆块⽯头扔出时的速率.解:(1)设第⼀块⽯头扔出后经过时间t 被第⼆块击中,则2012h v t gt =-代⼊已知数据得2111159.82t t =-?解此⽅程,可得⼆解为111.84s 1.22st t ==,′第⼀块⽯头上升到顶点所⽤的时间为10m 15.0s 1.53s 9.8v t g ===1m t t >,这对应于第⼀块⽯头回落时与第⼆块相碰;1m t t <′,这对应于第⼀块⽯头上升时被第⼆块赶上击中.设20v 和20v ′分别为在t 1和1t ′时刻两⽯块相碰时第⼆⽯块的初速度,则由于22011111()()2h v t t g t t =---D D 所以2211201111()119.8(1.841)22m/s 17.2m/s 1.841hg t t v t t +-?+??-===-?-同理,2211201111()119.8(1.221)22m/s 51.1m/s 1.221h g t t v t t +-?+??-===-?-′′′(2)由于211.3s t t ?=>′,所以第⼆块⽯头不可能在第⼀块上升时与第⼀块相碰。
第1章质点运动学1-1一运动质点某一瞬时位于径矢()r x y ,的端点处,关于其速度的大小有4种不同的看法,即(1)d d t r ;(2)d d t r;(3)d d s r;(4下列判断正确的是().(A)只有(1)和(2)正确(B)只有(2)正确(C)只有(3)和(4)正确(D)(1)(2)(3)(4)都正确答案:(C )解析:瞬时速度的大小等于瞬时速率,故(3)正确;速度可由各分量合成,故(4)正确。
1-2一质点的运动方程为22cos cos sin sin x At Bt y At Bt θθθθ⎧⎪⎨⎪⎩=+,=+,式中A ,B ,θ均为常量,且A >0,B >0,则该质点的运动为().(A)一般曲线运动(B)匀速直线运动(C)匀减速直线运动(D)匀加速直线运动答案:(D )解析:由tan y x θ可知,质点做直线运动.a x =2B cos θa y =2B sin θa=2B加速度a 为定值,故质点做匀加速直线运动.1-3一质点沿半径为R 的圆周运动,其角速度随时间的变化规律为ω=2bt ,式中b 为正常量.如果t =0时,θ0=0,那么当质点的加速度与半径成45°角时,θ角的大小为()rad.(A)12(B)1(C)b (D)2b 答案:(A )解析:a t =R β=2bRa n =R 2ω=4Rb 2t 2a t =a nt 2=b 21θ=20tω⎰d t =bt 2=211-4一人沿停靠的台阶式电梯走上楼需时90s ,当他站在开动的电梯上上楼,需时60s .如果此人沿开动的电梯走上楼,所需时间为().(A)24s(B)30s (C)36s (D)40s答案:(C )解析:设电梯长度为s ,则=+9060s s s t ,解得t =36s.1-5已知质点的加速度与位移的关系式为32a x =+,当t =0时,v 0=0,x 0=0,则速度v 与位移x 的关系式为________.答案:v 2=3x 2+4x 解析:d d d d d d d d v v x v a v t x t x===,d d v v a x =,00d =(3+2)d v x v v x x ⎰⎰,v 2=3x 2+4x .1-6在地面上以相同的初速v 0,不同的抛射角θ斜向上抛出一物体,不计空气阻力.当θ=________时,水平射程最远,最远水平射程为________.答案:45°20v g解析:对于斜抛运动:0cos x v tθ⋅=201sin 2y v t gt θ⋅=-当y =0时,解得02sin v t gθ=物体的水平射程20sin 2v x gθ=当θ=45°时有最远水平射程,其大小为20max v x g=1-7某人骑摩托车以115m s -⋅的速度向东行驶,感觉到风以115m s -⋅的速度从正南吹来,则风速的大小为________m·s -1,方向沿________.答案:m/s 东偏北45°解析:如答案1-7图所示,由图可知=+v v v 风地风人人地故风速大小m/sv风地=方向为东偏北45°.答案1-7图1-8一质点作直线运动,加速度2sin a A t ωω=,已知t =0时,x 0=0,v 0=-ωA ,则该质点的运动方程为_______________.答案:sin x A t ω=-,解析:d d v a t=20d sin d v tA v A t t ωωω-=⎰⎰解得,该质点的速度为cos v A tωω=-d d x v t=00d cos d x t x A t t ωω=-⎰⎰解得,该质点的运动方程为sin x A tω=-1-9一质点在xOy 平面上运动,运动方程为x =3t +5,y =12t 2+3t -4式中,t 以s 计,x ,y 以m 计.(1)以时间t 为变量,写出质点位置矢量的表示式;(2)计算第1s 内质点的位移;(3)计算t =0s 时刻到t =4s 时刻内的平均速度;(4)求出质点速度矢量表示式,计算t =4s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度.(位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)解:(1)质点t 时刻位矢为21(35)342r t i t t j ⎛⎫=+++- ⎪⎝⎭(m)(2)第1s 内位移为11010()()r x x i y y j∆=-+- 2213(10)(10)3(10)23 3.5()i j i j m ⎡⎤=-+-+-⎢⎥⎣⎦=+ (3)前4s 内平均速度为11(1220)35(m s )4r v i j i j t -∆==⨯+=+⋅∆ (4)质点速度矢量表示式为1d 3(3)(m s )d r v i t j t-==++⋅ t =4s 时质点的速度为143(43)37(m s )v i j i j -=++=+⋅ (5)前4s 内平均加速度为240731(m s )4s 4v v v a j j t -∆--====⋅∆ (6)质点加速度矢量的表示式为2d 1(m s )d v a j t-==⋅ t =4s 时质点的加速度为241(m s )a j -=⋅ 1-10质点沿直线运动,速度v =(t 3+3t 2+2)m·s -1,如果当t =2s 时,x =4m ,求:t =3s 时,质点的位置、速度和加速度.解:32d 32d x v t t t==++431d d 24x x v t t t t c ===+++⎰⎰当t =2时,x =4,代入可得c =-12.则质点的位置、速度和加速度的表达式分别为4312124x t t t =++-32232d 36d v t t v a t t t=++==+将t =3s 分别代入得上述各式,解得1233341.25m 56m s 45m s x v a --==⋅=⋅,,1-11质点的运动方程为2[4(32)] m r t i t j =++,t 以s 计.求:(1)质点的轨迹方程;(2)t =1s 时质点的坐标和位矢方向;(3)第1s 内质点的位移和平均速度;(4)t =1s 时质点的速度和加速度.解:(1)由运动方程2432x t y t⎧=⎨=+⎩消去t 得轨迹方程2(3)0x y --=(2)t =1s 时,114m 5m x y ==,,故质点的坐标为(4,5).由11tan 1.25y x α==得51.3α=︒,即位矢与x 轴夹角为53.0°.(3)第1s 内质点的位移和平均速度分别为1(40)(53)42(m)r i j i j ∆=-+-=+1142(m s )r v i j t-∆==+⋅∆ (4)质点的速度与加速度分别为d 82d r v ti j t==+ d 8d v a i t== 故t =1s 时的速度和加速度分别为1182m s v i j -=+⋅ ()218m s a i -=⋅ ()1-12以速度v 0平抛一球,不计空气阻力,求:t 时刻小球的切向加速度a t 和法向加速度a n 的量值.解:小球下落过程中速度为v故切向加速度为2t d d v a t =由222n t a g a =-得,法向加速度为n a =1-13一种喷气推进的实验车,从静止开始可在1.80s 内加速到1600km·h -1的速率.按匀加速运动计算,它的加速度是否超过了人可以忍受的加速度25g ?这1.80s 内该车跑了多少距离?解:实验车的加速度为3222160010m /s 2.4710m/s 3600 1.80v a t ⨯===⨯⨯故它的加速度略超过25g .1.80s 内实验车跑的距离为3160010 1.80m 400m 223600v s t ⨯==⨯=⨯1-14在以初速率-1015.0 m s v ⋅=竖直向上扔一块石头后,(1)在1.0s 末又竖直向上扔出第二块石头,后者在h =11.0m 高度处击中前者,求第二块石头扔出时的速率;(2)若在1.3s 末竖直向上扔出第二块石头,它仍在h =11.0m 高度处击中前者,求这一次第二块石头扔出时的速率.解:(1)设第一块石头扔出后经过时间t 被第二块击中,则2012h v t gt =-代入已知数据得2111159.82t t =-⨯解此方程,可得二解为111.84s 1.22st t ==,′第一块石头上升到顶点所用的时间为10m 15.0s 1.53s 9.8v t g ===1m t t >,这对应于第一块石头回落时与第二块相碰;1m t t <′,这对应于第一块石头上升时被第二块赶上击中.设20v 和20v ′分别为在t 1和1t ′时刻两石块相碰时第二石块的初速度,则由于22011111()()2h v t t g t t =---D D 所以2211201111()119.8(1.841)22m/s 17.2m/s 1.841h g t t v t t +-∆+⨯⨯-===-∆-同理,2211201111()119.8(1.221)22m/s 51.1m/s 1.221h g t t v t t +-∆+⨯⨯-===-∆-′′′(2)由于211.3s t t ∆=>′,所以第二块石头不可能在第一块上升时与第一块相碰。
(完整版)⼤学物理学(课后答案)第1章第1章质点运动学习题⼀选择题1-1 对质点的运动,有以下⼏种表述,正确的是[ ] (A)在直线运动中,质点的加速度和速度的⽅向相同(B)在某⼀过程中平均加速度不为零,则平均速度也不可能为零 (C)若某质点加速度的⼤⼩和⽅向不变,其速度的⼤⼩和⽅向可不断变化 (D)在直线运动中,加速度不断减⼩,则速度也不断减⼩解析:速度是描述质点运动的⽅向和快慢的物理量,加速度是描述质点运动速度变化的物理量,两者没有确定的对应关系,故答案选C 。
1-2 某质点的运动⽅程为)(12323m t t x +-=,则该质点作[ ] (A)匀加速直线运动,加速度沿ox 轴正向 (B)匀加速直线运动,加速度沿ox 轴负向 (C)变加速直线运动,加速度沿ox 轴正向 (D)变加速直线运动,加速度沿ox 轴负向解析:229dx v t dt ==-,18dva tdt==-,故答案选D 。
1-3 ⼀质点在平⾯上作⼀般曲线运动,其瞬时速度为v ,瞬时速率为v ,某⼀段时间内的平均速率为v ,平均速度为v ,他们之间的关系必定有[ ](A)v =v ,v =v (B)v ≠v ,v =v (C)v ≠v ,v ≠v (D)v =v ,v ≠v解析:瞬时速度的⼤⼩即瞬时速率,故v =v ;平均速率sv t=,⽽平均速度trv =,故v ≠v 。
答案选D 。
1-4 质点作圆周运动时,下列表述中正确的是[ ](A)速度⽅向⼀定指向切向,所以法向加速度也⼀定为零 (B)法向分速度为零,所以法向加速度也⼀定为零 (C)必有加速度,但法向加速度可以为零 (D)法向加速度⼀定不为零解析:质点作圆周运动时,2n t v dva a dtρ=+=+n t n t a e e e e ,所以法向加速度⼀定不为零,答案选D 。
1-5 某物体的运动规律为2dvkv t dt=-,式中,k 为⼤于零的常量。
当0t =时,初速为0v ,则速率v 与时间t 的函数关系为[ ](A)2012v kt v =+ (B)20112kt v v =+(C)2012v kt v =-+ (D)20112kt v v =-+解析:由于2dvkv t dt=-,所以020()vtv dv kv t dt =-?,得到20112kt v v =+,故答案选B 。
第1章习题答案1-1 解:竖直上抛运动 gH 2max20v = ()s m gH /849102008.1223max 0=⨯⨯⨯==v1-2 解:匀变速直线运动 ()()g s m t a t 259.24680.103600/1000160020<⋅=-⨯=∆-=-v v (不超过) ()()m t s t 4008.1036001000160021210=⨯⎪⎭⎫ ⎝⎛+⨯⨯=∆⨯+=v v 1-3 解:以喷嘴作为坐标原点,竖直向上作为y 轴的正向 竖直上抛运动 ()m g v H 5.348.92262220max=⨯== ()gy v y v 220-=连续性方程 ()()gyv qy v q y S 220-==任一瞬间空间上升的水流体积 ()()l gy v g q dy gy v qdy y S V H H 38.1222maxmax020020=⎥⎦⎤⎢⎣⎡--=-==⎰⎰上升下降上升V V =()l V V V 7.24=+=下降上升总1-4 解:()()bt u bt u btbt b u u dt dx v --=----⎪⎭⎫ ⎝⎛-+==1ln 1ln 11 ()()btub bt b u dt dv a -=---==11 ()00=v()()()s m v /1091.6120105.71ln 100.3120333⨯=⨯⨯-⨯-=-1-5 解:()2122212R R N rNdr s R R -==⎰ππ ()()()()m in 6939416364132256650222122==-⨯⨯=-==∆s v R R N v s t ππ()s rad r v /26.00.53.1===ω ()222/338.00.53.1s rad r v ===α1-6 解: ()s m v /37430344=+=东()s m v /31430344=-=西()s m v /3433034422=-=北N F μθ≥cos1-7 解: 因θsin F mg N += 故 θμμθsin cos F mg F +≥ (1) θμθμsin cos s s mgF -≥静(2) θμθμsin cos k k mgF -≥动(3) 0sin cos ≤-θμθs sμθ1tan ≥1-8 解:()()()()()()()N a g m M F am M g m M F 676006.08.915005000=+⨯+=++=+=+-桨桨()()()N a g m F mamg F 156006.08.91500=+⨯=+==-桨绳1-9 解: r m rMm G22ω= ()()()Kg G r T G r M 261138232321069.51067.61036.136002.142/2⨯=⨯⨯⨯⎪⎭⎫ ⎝⎛⨯===-ππω1-10 解: ⎰⎰⎰-=-==ωπω20cos tdt kA kxdt Fdt IωωωωπkAt kA -=⎥⎦⎤⎢⎣⎡-=20sin1-11 解: ()s m /500i v-=()()s m t /45sin 8045cos 800j i v +=()()s N m m t ⋅+=-=j i v v I92.778.140()215278.1492.7arctan 89.160'=-=⋅=πϕs N I ()6168.914.084584502.089.16=⨯===∆=mg F N t I F1-12 一辆停在直轨道上质量为m 1的平板车上站着两个人,当他们从车上沿同方向跳下后,车获得了一定的速度。
大学物理学习题答案习题一答案 习题一1.1 简要回答下列问题:(1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等?(2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等?(3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么?(4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变? (5) r ∆和r ∆有区别吗?v ∆和v ∆有区别吗?0dvdt =和0d v dt=各代表什么运动? (6) 设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出22r x y =+,然后根据drv dt= 及 22d r a dt =而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即22dx dy v dt dt ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭ 及 222222d x d y a dt dt ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭你认为两种方法哪一种正确?两者区别何在?(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?(8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗?(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变? (11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何?1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。
大学物理课后答案(上)习题11.1选择题(1) 一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为(A)dtdr(B)dt r d(C)dtr d ||(D) 22)()(dt dy dt dx[答案:D](2) 一质点作直线运动,某时刻的瞬时速度s m v /2 ,瞬时加速度2/2s m a ,则一秒钟后质点的速度(A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。
[答案:D](3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为(A)t R t R 2,2 (B) tR2,0 (C) 0,0 (D) 0,2tR[答案:B]1.2填空题(1) 一质点,以1 s m 的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。
[答案: 10m ; 5πm](2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m·s -1,则当t 为3s 时,质点的速度v= 。
[答案: 23m·s -1 ](3) 轮船在水上以相对于水的速度1V 航行,水流速度为2V,一人相对于甲板以速度3V 行走。
如人相对于岸静止,则1V 、2V和3V 的关系是 。
[答案: 0321 V V V]1.3 一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定: (1) 物体的大小和形状; (2) 物体的内部结构; (3) 所研究问题的性质。
解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。
1.4 下面几个质点运动学方程,哪个是匀变速直线运动? (1)x=4t -3;(2)x=-4t 3+3t 2+6;(3)x=-2t 2+8t+4;(4)x=2/t 2-4/t 。
给出这个匀变速直线运动在t=3s 时的速度和加速度,并说明该时刻运动是加速的还是减速的。
1.1 一质点在Oxy 平面内运动,运动方程为)SI (53+=t x ,)SI (432/2-+=t t y 。
(1)以时间t 为变量,写出质点位矢的表达式;(2)求出质点速度分量的表达式,并计算s 4=t 时,质点速度的大小和方向;(3)求出质点加速度分量的表达式,并计算出s 4=t 时,质点加速度的大小和方向。
解:(1))SI (53+=t x ,)SI (432/2-+=t t y 质点位矢的表达式为:j t t i t j y i x r )432/()53(2-+++=+=; (2)m/s 3)53(=+==t dt d dt dx v x ,m/s )3()432/(2+=-+==t t t dt d dt dy v ys 4=t ,m/s 3=x v ,m/s 7=y v ,m/s 6.7m/s 5822==+=y x v v v设θ是v 和x v 的夹角,则37tan ==x y v v θ,8.66=θ°; (3)2m/s 0)3(===dt d dt dv a x x ,2m/s 1)3(=+==t dt d dt dv a y ys 4=t ,2m/s 0=x a ,2m/s 1=y a ,222m/s 1=+=y x a a a方向沿y 轴方向。
1.2 质点在Oxy 平面内运动,运动方程为)SI (3t x =,)SI (22t y -=。
(1)写出质点运动的轨道方程;(2)s 2=t 时,质点的位矢、速度和加速度。
解:(1)质点运动方程)SI (3t x =,)SI (22t y -=,质点运动的轨道方程为:9/2)3(222x xy -=-=或2189x y -=;(2)j t i t j y i x r )2()3(2-+=+=,s 2=t 时: j i r 26-=j t i v 23-=,s 2=t 时:j i v43-=j a 2-=,s 2=t 时:j a2-=1.3质点沿直线运动,其坐标x 与时间t 有如下关系:)SI (cos t Aex tωβ-=(A 和β皆为常量)。
物理部分课后习题答案(标有红色记号的为老师让看的题)27页 1-2 1-4 1-121-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位,求:(1) 质点的运动轨迹;(2) 从1t s =到2t s =质点的位移的大小; (3) 2t s =时,质点的速度和加速度。
解:(1)由运动方程消去时间t 可得轨迹方程,将t =21)y =或1=(2)将1t s =和2t s =代入,有11r i =, 241r i j =+213r r r i j =-=-位移的大小 231r =+= (3) 2x dxv t dt== 2(1)y dy v t dt==-22(1)v ti t j =+-2xx dv a dt==, 2y y dv a dt == 22a i j =+当2t s =时,速度和加速度分别为42/v i j m s =+22a i j =+ m/s 21-4 设质点的运动方程为cos sin ()r R ti R t j SI ωω=+,式中的R 、ω均为常量。
求(1)质点的速度;(2)速率的变化率。
解 (1)质点的速度为sin cos d rv R ti R t j dtωωωω==-+ (2)质点的速率为v R ω==速率的变化率为0dvdt= 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+。
求质点在t 时刻的法向加速度n a 的大小和角加速度β的大小。
解 由于 4d t dtθω== 质点在t 时刻的法向加速度n a 的大小为2216n a R Rt ω==角加速度β的大小为 24/d rad s dtωβ==77页2-15, 2-30, 2-34,2-15 设作用于质量1m kg =的物体上的力63()F t SI =+,如果物体在这一力作用下,由静止开始沿直线运动,求在0到2.0s 的时间力F 对物体的冲量。