卫生统计学正态分布与假设检验
- 格式:docx
- 大小:56.19 KB
- 文档页数:4
2、说明频数分布表的用途?描述频数分布的特征、描述频数分布的类型、便于发现一些特大或特小的可疑值、便于进一步做统计分析和处理3、变异系数的用途?常用于观察指标单位不同时,如身高与体重的变异程度的比较;或均数相差较大时,如儿童与成人身高变异程度的比较。
4、试举例说明均数的标准差与标准误的区别与联系?例如某医生从某地2000年的正常成年男性中,随机抽取25人,算得其血红蛋白的均数X 为138.5g/l ,标准差S 为5.20g/L,标准误x S 为1.04g/L ,。
在本例中标准差就是描述25名正常成年男性血红蛋白变异程度的指标,它反映了这25个数据对其均数的离散情况。
因此标准差是描述个体值变异程度的指标,为方差的算述平方根,该变异不能通过统计方法来控制。
而标准误则是指样本统计量的标准差, 均数的标准误实质要均数的标准差,它反映了样本均数的离散程度,也反映了样本均数与总体均数的差异,说明了均数的抽样误差。
本例均数的标准误X S 此式将标准差和标准误从数学上有机地联系起来了,同是可以看出通过增加样本含量方法可以减少标准误。
5、标准正态分布与t 分布有何不同?T 分布为抽样分布,标准正态分布为理论分布。
T 分布比标准正态分布的峰值低,且尾部翘起得要高。
随着自由度的增大,t 分布逐渐趋近于标准正态分布,即当v →∞时,t 分布→标准正态分布。
6、假设检验时,一般当P<0.5时,则拒绝0H ,理论根据是什么?P 值是指从0H 规定的总体随机抽得等于及大于(或/和等于及小于)现有样本获得的检验统计量值(如t 值 或u 值 )的概率。
当P<0.5时,说明在0H 成立的条件下,得到现有检验结果的概率小于通常确定的小概率事件标准0.05.因小概率事件在一次试验中几乎不可能发生,现在的确发生了,说明现有样本信息不支持0H ,所以怀疑原假设0H 不成立,故拒绝0H 。
在下“有差别”的结论的同时,我们能够知道可犯I 型错误的概率不会大于0.05(即通常的检验水准),这在概率上有了保证。
《卫生统计学》一、名词解释1. 计量资料2. 计数资料3. 等级资料4. 总体5. 样本6. 抽样误差7. 频数表8. 算术均数9. 中位数10. 极差11. 方差12. 标准差13. 变异系数14. 正态分布15. 标准正态分布16. 统计推断17. 抽样误差18. 标准误19. 可信区间20. 参数估计21. 假设检验中P的含义22. I型和II型错误23. 检验效能24. 检验水准25. 方差分析26. 随机区组设计27. 相对数28. 标准化法29. 二项分布30. Yates校正31. 非参数统计32. 直线回归33. 直线相关34. 相关系数35. 回归系数36. 人口总数37. 老年人口系数38. 围产儿死亡率39. 新生儿死亡率40. 婴儿死亡率41. 孕产妇死亡率42. 死因顺位43. 人口金字塔二、单项选择题1.观察单位为研究中的( D )。
A.样本 B.全部对象C.影响因素 D.个体2.总体是由( C )。
A.个体组成 B.研究对象组成C.同质个体组成 D.研究指标组成3.抽样的目的是( B )。
A.研究样本统计量 B.由样本统计量推断总体参数C.研究典型案例研究误差 D.研究总体统计量4.参数是指( B )。
A.参与个体数 B.总体的统计指标C.样本的统计指标 D.样本的总和5.关于随机抽样,下列那一项说法是正确的( A )。
A.抽样时应使得总体中的每一个个体都有同等的机会被抽取B.研究者在抽样时应精心挑选个体,以使样本更能代表总体C.随机抽样即随意抽取个体D.为确保样本具有更好的代表性,样本量应越大越好6.各观察值均加(或减)同一数后( B )。
A.均数不变,标准差改变 B.均数改变,标准差不变C.两者均不变 D.两者均改变7.比较身高和体重两组数据变异度大小宜采用( A )。
A.变异系数 B.方差C.极差 D.标准差8.以下指标中( D )可用来描述计量资料的离散程度。
卫生统计学Statistics第一章绪论统计学:是一门通过收集、分析、解释、表达数据,目的是求得可靠的结果。
总体:根据研究目的确定的同质(大同小异)的观察单位的全体。
分为目标总体和研究总体。
样本:从总体中随机抽取部分观察单位,其测量结果的集合称为样本(sample)。
样本应具有代表性。
所谓有代表性的样本,是指用随机抽样方法获得的样本。
抽样:从研究总体中抽取少量有代表性的个体。
变量:表现出个体变异性的任何特征或属性。
分定型变量和定量变量。
定型变量:1)分类变量或名义变量:最简单的是二分类变量。
0-1变量也常称为假变量或哑变量。
2)有序变量或等级变量。
定量变量:分离散型变量和连续型变量。
变量只能由高级向低级转化:定量→有序→分类→二值。
常见的三种资料类型1)计量或测量或数值资料,如身高、体重等。
2)计数资料或分类资料,如性别、血型等。
3)等级资料,如尿蛋白含量-、+、++、+++、…第一章定量变量的统计描述此章节x即为样本均数(X拔)1.离散型定量变量的取值是不连续的。
累计频数为该组及前面各组的频数之和。
累计频率表示各组累计频数在总例数中所占的比例。
可用直条图表达。
2.编制频数表的步骤与要点步骤:1确定极差2确定组数3确定各组段的上下限4列表要点(注意事项)1)制表是为了揭示数据的分布特征,故分组不宜过粗或过细。
2)为计算方便,组段下限一般取较整齐的数值3)第一组段应包含最小值,最后一个组段应包含最大值。
3.频率分布表(图)的用途1)描述变量的分布类型2)揭示变量的分布特征3)便于发现某些离群值或极端值4)便于进一步计算统计指标和统计分析。
4.描述平均水平的统计指标算术均数(mean):描述一组数据在数量上的平均水平。
总体均数用μ表示,样本均数用X表示。
适用于服从对称分布变量的平均水平描述,这时均数位于分布的中心,能反应全部观察值的平均水平。
分:直接法和频率表法。
即所有变量值加和除以总数n或所有频数f k乘以组中值X0k后求和再除以总数n。
正态分布假设检验一、概述正态分布假设检验是统计学中常用的一种方法,用于判断一个数据集是否符合正态分布。
正态分布是指在统计学中,当数据集的频率分布呈钟形曲线时,称其为正态分布。
正态分布在实际应用中非常广泛,因为许多自然现象都遵循这种分布规律。
对于一个数据集而言,如果它符合正态分布,则可以使用一系列的统计方法进行进一步的研究和分析。
二、检验方法1. 假设检验假设检验是指通过样本数据来推断总体参数的方法。
在正态分布假设检验中,我们需要对总体均值和标准差进行假设检验。
具体而言,我们需要提出原假设和备择假设两个假设:原假设:样本数据符合正态分布;备择假设:样本数据不符合正态分布。
在进行实际计算时,我们需要根据样本数据来计算出样本均值和标准差,并使用这些数据来推断总体均值和标准差是否符合正态分布。
2. 正态概率图正态概率图是判断一个数据集是否符合正态分布的常用方法之一。
它通过将数据集的分位数与正态分布的分位数进行比较,来判断数据集是否符合正态分布。
具体而言,正态概率图将数据集的每个值按照从小到大的顺序排列,并计算出每个值对应的标准化值(即该值与样本均值之间的差除以样本标准差)。
然后,将这些标准化值按照从小到大的顺序排列,并绘制在图表上。
如果数据集符合正态分布,则这些标准化值应当近似于一个直线。
3. 偏度和峰度检验偏度和峰度是用来描述一个数据集形态特征的指标。
在正态分布中,偏度为0,峰度为3。
因此,在进行正态分布假设检验时,我们可以通过计算样本偏度和峰度来判断样本是否符合正态分布。
具体而言,如果样本偏度和峰度与正态分布相差不大,则可以认为样本符合正态分布。
三、实例演示以下是一个实例演示,在Python中使用scipy库进行正态分布假设检验:```pythonimport numpy as npfrom scipy import stats# 生成100个随机数data = np.random.normal(0, 1, 100)# 进行正态性检验k2, p = stats.normaltest(data)alpha = 0.05# 输出检验结果print("p = {}".format(p))if p < alpha:print("数据不符合正态分布")else:print("数据符合正态分布")```在上述代码中,我们首先生成了一个包含100个随机数的数据集。
卫生统计学基础流行病学数据的假设检验与置信区间计算在卫生统计学中,流行病学数据的假设检验与置信区间计算是常见的分析方法。
通过这些方法,我们可以对流行病学数据进行有效的推断和判断。
本文将介绍基本的假设检验和置信区间计算的原理和应用。
一、假设检验假设检验是指通过收集样本数据,对总体的某个参数提出假设,并利用样本统计量对该假设进行验证的统计方法。
常见的假设检验有单样本均值检验、两样本均值检验和相关性检验等。
1. 单样本均值检验假设我们有一组样本数据,想要判断该样本的均值是否等于某个给定的值。
首先我们提出原假设(H0)和备择假设(H1),然后计算样本均值和标准误差,接着利用标准正态分布或t分布进行判断。
2. 两样本均值检验在两个独立的样本群体中,我们想要判断两个群体均值是否存在显著差异。
同样,我们提出原假设(H0)和备择假设(H1),计算两个样本的均值和标准误差,并利用t分布进行判断。
3. 相关性检验当我们需要了解两个变量之间是否存在相关性时,可以进行相关性检验。
常见的方法有Pearson相关系数和Spearman等级相关系数。
通过计算相关系数的置信区间,我们可以判断两个变量之间的相关程度。
二、置信区间计算置信区间是指对总体参数的一个区间估计,通常用一个上限值和一个下限值表示。
置信区间计算可以帮助我们确定总体参数的范围。
在流行病学数据分析中,我们常用置信区间来估计疾病的患病率、死亡率等指标。
置信区间的计算方法与假设检验类似,根据所需的置信水平和样本数据,计算样本均值和标准误差,再利用正态分布或t分布确定置信区间。
除了单个参数的置信区间计算外,对于两个参数之间的差异,也可以计算置信区间。
例如,在两组样本数据中,我们希望确定两个样本均值之间的差异是否显著。
通过计算差异的置信区间,可以得出结论。
三、数据分析示例为了更好地理解假设检验和置信区间计算的应用,我们以某疾病的发病率为例进行说明。
假设我们有两组样本数据,分别为疫苗接种组和非接种组的患病人数。
卫生统计复习题及答案09徐医本科班医学统计学练习题及答案第一章医学统计中的基本概念练习题一、单向选择题1. 医学统计学研究的对象是A. 医学中的小概率事件B. 各种类型的数据C. 动物和人的本质D. 疾病的预防与治疗E.有变异的医学事件2. 用样本推论总体,具有代表性的样本指的是A.总体中最容易获得的部分个体 B.在总体中随意抽取任意个体C.挑选总体中的有代表性的部分个体 D.用配对方法抽取的部分个体E.依照随机原则抽取总体中的部分个体3. 下列观测结果属于等级资料的是A.收缩压测量值 B.脉搏数C.住院天数 D.病情程度E.四种血型4. 随机误差指的是A. 测量不准引起的误差B. 由操作失误引起的误差C. 选择样本不当引起的误差D. 选择总体不当引起的误差E. 由偶然因素引起的误差5. 收集资料不可避免的误差是A. 随机误差B. 系统误差C. 过失误差D. 记录误差E.仪器故障误差答案: E E D E A二、简答题1. 常见的三类误差是什么?应采取什么措施和方法加以控制?[参考答案]常见的三类误差是:(1)系统误差:在收集资料过程中,由于仪器初始状态未调整到零、标准试剂未经校正、医生掌握疗效标准偏高或偏低等原因,可造成观察结果倾向性的偏大或偏小,这叫系统误差。
要尽量查明其原因,必须克服。
(2)随机测量误差:在收集原始资料过程中,即使仪器初始状态及标准试剂已经校正,但是,由于各种偶然因素的影响也会造成同一对象多次测定的结果不完全一致。
譬如,实验操作员操作技术不稳定,不同实验操作员之间的操作差异,电压不稳及环境温度差异等因素造成测量结果的误差。
对于这种误差应采取相应的措施加以控制,至少应控制在一定的允许范围内。
一般可以用技术培训、指定固定实验操作员、加强责任感教育及购置一定精度的稳压器、恒温装置等措施,从而达到控制的目的。
(3)抽样误差:即使在消除了系统误差,并把随机测量误差控制在允许范围内,样本均数(或其它统计量)与总体均数(或其它参数)之间仍可能有差异。
卫生统计学统计工作基本步骤:统计设计(调查设计和实验设计)、资料分析{收集资料、整理资料、分析资料【统计描述和统计推断(参数估计和假设检验)】。
★统计推断:是利用样本所提供的信息来推断总体特征,包括:参数估计和假设检验.a参数估计是指利用样本信息来估计总体参数,主要有点估计(把样本统计量直接作为总体参数估计值)和区间估计【按预先设定的可信度(1-α),来确定总体均数的所在范围】。
b假设检验:是以小概率反证法的逻辑推理来判断总体参数间是否有质的区别.变量资料可分为定性变量、定量变量。
不同类型的变量可以进行转化,通常是由高级向低级转化。
资料按性质可分为计量资料、计数资料和等级资料。
定量资料的统计描述1频率分布表和频率分布图是描述计量资料分布类型及分布特征的方法.离散型定量变量的频率分布图可用直条图表达。
2频率分布表(图)的用途:①描述资料的分布类型;②描述分布的集中趋势和离散趋势;③便于发现一些特大和特小的可疑值;④便于进一步的统计分析和处理;⑤当样本含量足够大时,以频率作为概率的估计值. ★3集中趋势和离散趋势是定量资料中总体分布的两个重要指标。
(1)描述集中趋势的统计指标:平均数(算术均数、几何均数和中位数)、百分位数(是一种位置参数,用于确定医学参考值范围,P50就是中位数)、众数.算术均数:适用于对称分布资料,特别是正态分布资料或近似正态分布资料;几何均数:对数正态分布资料(频率图一般呈正偏峰分布)、等比数列;中位数:适用于各种分布的资料,特别是偏峰分布资料,也可用于分布末端无确定值得资料。
(2)描述离散趋势的指标:极差、四分位数间距、方差、标准差和变异系数。
四分位数间距:适用于各种分布的资料,特别是偏峰分布资料,常把中位数和四分位数间距结合起来描述资料的集中趋势和离散趋势。
方差和标准差:都适用于对称分布资料,特别对正态分布资料或近似正态分布资料,常把均数和标准差结合起来描述资料的集中趋势和离散趋势;变异系数:主要用于量纲不同时,或均数相差较大时变量间变异程度的比较。
正态分布的假设检验方法正态分布是一个重要的统计概念,经常用于解决各种实际问题。
不同于其它常见分布,正态分布具有非常特殊的性质,其中最突出的就是其反映了许多现实生活中的随机变量(例如人的身高、体重等)的分布类似于正态分布的情况。
随着科技与数据收集技术的不断进步,人们能够收集到越来越多的实际数据,并采用各种统计方法来分析这些数据。
在实际应用中,对于一些特定的问题,我们需要检验数据是否符合正态分布,并进而研究相关假设问题。
这需要运用到假设检验的方法,因此本文将对正态分布的假设检验方法进行详细阐述,包括其基础理论、假设设定方法、检验统计量的计算以及显著性检验的实现等。
一、基础理论正态分布是统计学中一个重要的概念,它是一个连续型概率分布,通常由两个参数μ和σ描述,其中μ是正态分布的均值,σ是正态分布的标准差。
对于一个正态分布的随机变量x ~N(μ,σ²),它的概率密度函数可以表示为:$$ f(x)=\frac{1}{\sigma\sqrt{2\pi}}\mathrme^{−(x−\mu)^2/2\sigma^2} $$在实际研究中,许多随机变量的分布都具有类似于正态分布的特性,在大样本情况下,它们的概率密度图常常能够像钟形曲线一样展示出来,因此我们可以通过正态分布模型,来描述某些随机变量的概率分布情况。
随着数据科学的不断进步,我们现在可以通过各种手段来收集数据,并利用统计工具对这些数据进行分析。
假设检验是其中一个最基础的分析方法,它通常用于判断某一假设是否成立。
正态分布的假设检验方法,就是一种基于正态分布模型的检验方法。
二、假设设定方法在进行正态分布的假设检验时,我们通常要设定两个假设,分别为原假设和备择假设。
原假设($H_0$)是我们想要检验的假设,而备择假设($H_1$)则是对原假设的拒绝。
在正态分布的假设检验中,常见的假设包括以下两种:1. 单样本均值检验对于单样本均值检验,我们设定以下的原假设和备择假设:$$ H_0:\mu=\mu_0 \ \ \ \ \ H_1:\mu\neq\mu_0 $$其中,$H_0$表示总体均值等于特定值$\mu_0$,$H_1$表示总体均值不等于$\mu_0$。