长方形、正方形的面积计算公式
- 格式:ppt
- 大小:536.50 KB
- 文档页数:13
长方形正方形的面积计算公式在我们的数学世界里,长方形和正方形就像是两个性格分明的小伙伴,它们的面积计算可是有不少有趣的门道呢!先来说说长方形吧。
长方形就像是一个长长的队伍,有两条长长的边和两条短短的边。
它的面积计算公式是:面积 = 长×宽。
这就好比是在一个长方形的花园里种花,长的那边能种的行数多,宽的那边能种的列数多,两者相乘就是能种的花的总数啦。
我还记得有一次去朋友家的果园帮忙。
那是一个长方形的果园,朋友想知道到底能种多少棵果树。
我们拿着尺子量了量,长是 20 米,宽是 15 米。
按照长方形的面积计算公式,20×15 = 300(平方米),这就是果园的面积啦。
然后再根据每棵果树需要的占地面积,就能算出大概能种多少棵果树了。
正方形呢,它就像是一个整齐的方队,四条边都一样长。
正方形的面积计算公式是:面积 = 边长×边长。
想象一下,正方形的操场,边长是 10 米,那它的面积就是 10×10 = 100(平方米),是不是很简单明了?在学习长方形和正方形面积计算的过程中,我还发现了一个小窍门。
如果把一个正方形沿着对角线剪成两个三角形,那么这两个三角形的面积是相等的,而且都等于正方形面积的一半。
比如说,有一个边长为 8 厘米的正方形手帕,它的面积是 8×8 = 64(平方厘米)。
如果沿着对角线剪开,每个三角形的面积就是 64÷2 =32(平方厘米)。
在实际生活中,长方形和正方形的面积计算用处可大啦!装修房子的时候,要计算房间地面的面积,看看需要多少地砖;做手工的时候,要计算纸张的面积,好合理安排图案;甚至是在买地盖房子的时候,也得算清楚面积,不然可就亏大啦!咱们再回到课堂上,老师在讲解这部分知识的时候,会通过各种有趣的例子让我们明白其中的道理。
比如说,会拿出各种长方形和正方形的卡片,让我们分组去测量边长,然后计算面积,看哪个小组算得又快又准。
还有的时候,老师会在黑板上画出一些奇怪的图形,让我们想办法把它们分割成长方形和正方形,再计算面积。
各种图形面积计算公式1、长方形的周长=(长+宽)×2 C=(a+b)×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽 S=ab4、正方形的面积=边长×边长 S=a.a= a5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高 S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、圆的面积=圆周率×半径×半径Ѕ=πr11、长方体的表面积=(长×宽+长×高+宽×高)×212、长方体的体积 =长×宽×高 V =abh13、正方体的表面积=棱长×棱长×6 S =6a14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a15、圆柱的侧面积=底面圆的周长×高 S=ch16、圆柱的表面积=上下底面面积+侧面积S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch17、圆柱的体积=底面积×高 V=ShV=πr h=π(d÷2) h=π(C÷2÷π) h18、圆锥的体积=底面积×高÷3V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷319、长方体(正方体、圆柱体)的体积=底面积×高 V=Sh各种图形面积计算公式整理文本1、长方形的周长=(长+宽)×2 C=(a+b)×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽 S=ab4、正方形的面积=边长×边长 S=a.a= a5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高 S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、圆的面积=圆周率×半径×半径Ѕ=πr11、长方体的表面积=(长×宽+长×高+宽×高)×212、长方体的体积 =长×宽×高 V =abh13、正方体的表面积=棱长×棱长×6 S =6a14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a15、圆柱的侧面积=底面圆的周长×高 S=ch16、圆柱的表面积=上下底面面积+侧面积S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch17、圆柱的体积=底面积×高 V=ShV=πr h=π(d÷2) h=π(C÷2÷π) h18、圆锥的体积=底面积×高÷3V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷319、长方体(正方体、圆柱体)的体积=底面积×高 V=Sh本文档部分内容来源于网络,如有内容侵权请告知删除,感谢您的配合!整理文本。
多边形的面积计算公式1、长方形的面积= 长×宽字母表示:S=ab长方形的长= 面积÷宽a=S÷b长方形的宽= 面积÷长b=S ÷a2 、正方形的面积= 边长×边长字母表示: S= a 23 平行四边形的面积= 底×高字母表示: S=ah平行四边形的高= 面积÷底h=S ÷a平行四边形的底= 面积÷高a=S ÷h4、三角形的面积= 底×高÷ 2字母表示: S=ah ÷2三角形的高= 2 ×面积÷底h=2S ÷a 三角形的底= 2 ×面积÷高a=2S ÷h5、梯形的面积= (上底+下底)×高÷ 2字母表示:S=(a+b) ·h ÷2梯形的高=2 ×面积÷(上底+ 下底) h=2S ÷(a+b) 梯形的上底=2 ×面积÷高—下底a=2S ÷h-b梯形的下底=2 ×面积÷高—上底b=2S ÷h-a1 平方千米=100 公顷1 公顷=10000 平方米1 平方米=100 平方分米1 平方米=10000 平方厘米1 米==10 分米=100 厘米《多边形的面积》同步试题一、填空1.完成下表。
考查目的:平行四边形、三角形和梯形的面积计算及变式练习。
答案:解析:直接利用公式计算这三种图形的面积,对于学生来说完成的难度不大。
对于已知平行四边形的面积和高求底、已知三角形的面积和底求高这两个变式练习,可引导学生进行比较,理解并强化三角形和梯形的类似计算中需要先将“面积× 识点。
2.下图是一个平行四边形,它包含了三个三角形,其中两个空白三角形的面积分别是 15 平方厘米和 25 平方厘米。
第4讲长方形、正方形的面积一、知识要点长方形的面积=长×宽,正方形的面积=边长×边长。
掌握并能运用这两个面积公式,就能计算它们的面积。
但是,在平时的学习过程中,我们常常会遇到一些已知条件比较隐蔽、图形比较复杂、不能简单地用公式直接求出面积的题目。
这就需要我们切实掌握有关概念,利用“割补”、“平移”、“旋转”等方法,使复杂的问题转化为普通的求长方形、正方形面积的问题,从而正确解答。
二、精讲精练【例题1】已知大正方形比小正方形边长多2厘米,大正方形比小正方形的面积大40平方厘米。
求大、小正方形的面积各是多少平方厘米?【思路导航】从图中可以看出,大正方形的面积比小正方形的面积大出的40平方厘米,可以分成三部分,其中A和B的面积相等。
因此,用40平方厘米减去阴影部分的面积,再除以2就能得到长方形A和B的面积,再用A或B的面积除以2就是小正方形的边长。
求到了小正方形的边长,计算大、小正方形的面积就非常简单了。
练习1:1.有一块长方形草地,长20米,宽15米。
在它的四周向外筑一条宽2米的小路,求小路的面积。
2.正方形的一组对边增加30厘米,另一组对边减少18厘米,结果得到一个与原正方形面积相等的长方形。
原正方形的面积是多少平方厘米?3.把一个长方形的长增加5分米,宽增加8分米后,得到一个面积比原长方形多181平方分米的正方形。
求这个正方形的边长是多少分米?【例题2】一个大长方形被两条平行于它的两条边的线段分成四个较小的长方形,其中三个长方形的面积如下图所求,求第四个长方形的面积。
【思路导航】因为AE×CE=6,DE×EB=35,把两个式子相乘AE×CE×DE×EB=35×6,而CE×EB=14,所以AE×DE=35×6÷14=15。
练习2:1.下图一个长方形被分成四个小长方形,其中三个长方形的面积分别是24平方厘米、30平方厘米和32平方厘米,求阴影部分的面积。
长方形正方形面积公式
长方形的面积公式为:s=a×b(a是长方形的长,b是长方形的宽)。
正方形的面积公式为:s=a×a(a是正方形的边长)。
长方形,数学术语,是有一个角是直角的平行四边形叫做长方形。
也定义为四个角都是直角的平行四边形,同时,正方形既是长方形,也是菱形。
正方形是特殊的平行四边形之一。
对于平行四边形而言,矩形独有的性质:四个角都是直角;两条对角线相等且平分(判别直角三角形斜边上的中线等于斜边的一半的依据)。
菱形独有的性质:四条边都相等;两条对角线互相垂直,并且每条对角线平分一组对角。
而矩形和菱形独有的性质之和就是正方形对于平行四边形独有的性质。
面积计算公式:
1、长方形的面积=长×宽 s=ab
2、正方形的面积=边长×边长 s=a.a= a
3、三角形的面积=底×高÷2 s=ah÷2
4、平行四边形的面积=底×低 s=ah
5、梯形的面积=(上底+下底)×高÷2 s=(a+b)h÷2。
长方形正方形平行四边形三角形梯形的周长和面积公式我们要找出长方形、正方形、平行四边形、三角形、梯形的周长和面积的公式。
首先,我们需要了解这些几何形状的基本性质和公式。
1. 长方形:长方形有2个长边和2个短边。
周长= 2 × (长 + 宽)
面积 = 长× 宽
2. 正方形:正方形有4个等长的边。
周长= 4 × 边长
面积 = 边长^2
3. 平行四边形:平行四边形有2个等长的对边。
周长= 2 × (长 + 宽)
面积 = 长× 宽
4. 三角形:三角形有3条边。
周长 = a + b + c,其中a、b、c是三角形的三条边。
面积 = (底× 高) / 2
5. 梯形:梯形有2个平行的边和2个不平行的边。
周长 = a + b + c + d,其中a、b是上底和下底的长度,c、d是梯形的两条腰的长度。
面积 = ((上底 + 下底) × 高) / 2
计算结果如下:
长方形的周长公式为:2 × (长 + 宽),面积公式为:长× 宽
正方形的周长公式为:4 × 边长,面积公式为:边长^2
平行四边形的周长公式为:2 × (长 + 宽),面积公式为:长× 宽
三角形的周长公式为:a + b + c,面积公式为:(底× 高) / 2
梯形的周长公式为:a + b + c + d,面积公式为:((上底 + 下底) × 高) / 2。
长方形和正方形所有公式长方形和正方形是我们生活中常见的两种几何形状,它们都具有一些特殊的性质和公式。
在本文中,我们将探讨长方形和正方形的各种公式,并对它们的性质进行详细的介绍和解释。
一、长方形的性质和公式长方形是一种具有四个直角的四边形,其对边平行且相等。
根据长方形的定义,我们可以得出一些重要的性质和公式。
1. 周长公式:长方形的周长等于两个相邻边的长度之和乘以2,即周长=2×(长+宽)。
2. 面积公式:长方形的面积等于长乘以宽,即面积=长×宽。
3. 对角线公式:长方形的对角线长等于两条边长的平方和的平方根,即对角线长=√(长的平方+宽的平方)。
4. 对称性:长方形具有对称性,即以长方形的中心点为对称中心,可以将长方形分成两个完全相同的部分。
以上是长方形的一些基本性质和公式,它们在数学和几何学中具有重要的应用价值。
长方形的周长和面积公式可以帮助我们计算长方形的大小,而对角线公式可以帮助我们计算长方形的对角线长度。
二、正方形的性质和公式正方形是一种具有四个相等边和四个直角的特殊长方形,它是一种特殊的长方形。
正方形也具有一些特殊的性质和公式。
1. 周长公式:正方形的周长等于边长乘以4,即周长=4×边长。
2. 面积公式:正方形的面积等于边长的平方,即面积=边长×边长。
3. 对角线公式:正方形的对角线长等于边长的平方根的2倍,即对角线长=√2×边长。
4. 对称性:正方形具有四个对称轴,每条对称轴都可以将正方形分成两个完全相同的部分。
正方形是一种非常特殊的几何形状,它的边长、周长、面积和对角线长度之间具有特殊的关系。
正方形的周长和面积公式可以帮助我们计算正方形的大小,而对角线公式可以帮助我们计算正方形的对角线长度。
三、长方形和正方形的比较长方形和正方形在形状和性质上有一些相似之处,但也存在一些明显的不同。
1. 形状:长方形的两个相邻边可以不相等,而正方形的四个边都相等。
图形的面积计算公式 1、长方形的周长=(长+宽)×2 C=(a+b)×2 2、正方形的周长=边长×4 C=4a 3、长方形的面积=长×宽 S=ab 4、正方形的面积=边长×边长 S=a.a 5、三角形的面积=底×高÷2 S=ah÷2 6、平行四边形的面积=底×高 S=ah 7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2 8、圆形直径=半径×2 圆形半径=直径÷2 d=2r r= d÷2 9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr 10、圆的面积=圆周率×半径×半径 S=πr ^2 11、长方体的表面积=(长×宽+长×高+宽×高)×2 S=(ab+bc+ca)×2 12、长方体的体积 =长×宽×高 V =abh 13、正方体的表面积=棱长×棱长×6 S =6a 14、正方体的体积=棱长×棱长×棱长 V=a.a.a 15、圆柱的侧面积=底面圆的周长×高 S=ch 16、圆柱的表面积=上下底面面积+侧面积 S=2πr +2πrh=2π(d÷2)+2π(d÷2)h=2π(C÷2÷π) +Ch 17、圆柱的体积=底面积×高 V=Sh V=πrh=π(d÷2)h=π(C÷2÷π)h 18、圆锥的体积=底面积×高÷3 V=Sh÷3 =πr h÷3 =π(d÷2)h÷3=π(C÷2÷π)h÷3 19、长方体(正方体、圆柱体)的体积=底面积×高 V=Sh。
长方形、正方形、圆、圆环、三角形、梯形、扇形、平行四边形的周长、面积公式长方形:长方形是一种边长不同但相对对称的矩形。
其周长公式为:P = 2(a+b),其中 a 和 b 分别代表长方形的长和宽。
其面积公式为:S = ab。
正方形:正方形是一种四条边长度相同的矩形。
其周长公式为:P = 4a,其中 a 代表正方形的边长。
其面积公式为:S = a x a 或S = a²。
圆:圆是一种没有边的几何图形,因此没有周长,但有一个重要的公式——周长的近似值,即π。
其直径为d,半径为 r,面积为 S,公式如下:周长公式:C = 2πr 或 C = πd 面积公式:S =πr²圆环:圆环是由两个同心圆组成的图形。
其外圆半径为 R,内圆半径为 r,其周长公式为 C = 2π(R + r)。
其面积公式为S = π(R² - r²)。
三角形:三角形是一种有三个顶点和三条边的几何图形。
有三种不同的三角形:直角三角形、等边三角形和等腰三角形。
直角三角形:其一条边为直角边,另外两条边称为直角边的两条腰。
其周长公式为 P = a + b + c,其中 a, b 为两条直角边的长度,c 为斜边的长度。
其面积公式为 S = (ab) / 2,其中 a 和 b 为两条直角边的长度。
等边三角形:其三条边长度相等。
其周长公式为 P = 3a,其中 a 为边长。
其面积公式为S = (a²√3) / 4。
等腰三角形:其两个底边长度相等,两个夹角也相等。
其周长公式为 P = 2a + b,其中 a 为底边长度,b 为等腰边长。
其面积公式为 S = (a x h) /2,其中 h 为等腰三角形高。
梯形:梯形是由两个平行的底边和它们之间的两条斜边组成的四边形。
其周长公式为 P = a + b + c + d,其中 a 和 b 为两个相邻的边的长度,c 和 d 为相对的两个边的长度。
其面积公式为 S = ((a + b) x h) / 2,其中h 为梯形的高。
各种图形面积计算公式1、长方形的周长=(长+宽)×2 C=(a+b)×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽 S=ab4、正方形的面积=边长×边长 S=a.a= a5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高 S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、圆的面积=圆周率×半径×半径Ѕ=πr11、长方体的表面积=(长×宽+长×高+宽×高)×212、长方体的体积 =长×宽×高 V =abh13、正方体的表面积=棱长×棱长×6 S =6a14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a15、圆柱的侧面积=底面圆的周长×高 S=ch16、圆柱的表面积=上下底面面积+侧面积S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch 17、圆柱的体积=底面积×高 V=ShV=πr h=π(d÷2) h=π(C÷2÷π) h18、圆锥的体积=底面积×高÷3V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3 19、长方体(正方体、圆柱体)的体积=底面积×高 V=Sh各种图形面积计算公式1、长方形的周长=(长+宽)×2 C=(a+b)×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽 S=ab4、正方形的面积=边长×边长 S=a.a= a5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高 S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、圆的面积=圆周率×半径×半径Ѕ=πr11、长方体的表面积=(长×宽+长×高+宽×高)×212、长方体的体积 =长×宽×高 V =abh13、正方体的表面积=棱长×棱长×6 S =6a14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a15、圆柱的侧面积=底面圆的周长×高 S=ch16、圆柱的表面积=上下底面面积+侧面积S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch 17、圆柱的体积=底面积×高 V=ShV=πr h=π(d÷2) h=π(C÷2÷π) h18、圆锥的体积=底面积×高÷3V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3 19、长方体(正方体、圆柱体)的体积=底面积×高 V=Sh。
各种图形面积计算公式1、长方形的周长=(长+宽)×2 C=(a+b)×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽S=ab4、正方形的面积=边长×边长S=a.a= a5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、圆的面积=圆周率×半径×半径Ѕ=πr11、长方体的表面积=(长×宽+长×高+宽×高)×212、长方体的体积=长×宽×高V =abh13、正方体的表面积=棱长×棱长×6 S =6a14、正方体的体积=棱长×棱长×棱长V=a.a.a= a15、圆柱的侧面积=底面圆的周长×高S=ch16、圆柱的表面积=上下底面面积+侧面积S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch17、圆柱的体积=底面积×高V=ShV=πr h=π(d÷2) h=π(C÷2÷π) h18、圆锥的体积=底面积×高÷3V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷319、长方体(正方体、圆柱体)的体积=底面积×高 V=Sh各种图形体积计算公式平面图形名称符号周长C和面积S1、正方形a—边长C=4aS=a22、长方形a和b-边长C=2(a+b)S=ab3、三角形a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2·sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)4、四边形d,D-对角线长α-对角线夹角S=dD/2·sinα5、平行四边形a,b-边长h-a边的高α-两边夹角S=ah=absinα6、菱形a-边长α-夹角D-长对角线长d-短对角线长S=Dd/2=a2sinα7、梯形a和b-上、下底长h-高m-中位线长S=(a+b)h/2=mh8、圆r-半径d-直径C=πd=2πrS=πr2=πd2/49、扇形r—扇形半径a—圆心角度数C=2r+2πr×(a/360)S=πr2×(a/360)10、弓形l-弧长b-弦长h-矢高r-半径α-圆心角的度数S=r2/2·(πα/180-sinα) =r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2=παr2/360 - b/2·[r2-(b/2)2]1/2=r(l-b)/2 + bh/2≈2bh/311、圆环R-外圆半径r-内圆半径D-外圆直径d-内圆直径S=π(R2-r2)=π(D2-d2)/412、椭圆D-长轴d-短轴S=πDd/4立方图形名称符号面积S和体积V正方体a-边长S=6a2V=a3长方体a-长b-宽c-高S=2(ab+ac+bc)V=abc棱柱S-底面积h-高V=Sh棱锥S-底面积h-高V=Sh/3棱台S1和S2-上、下底面积h-高V=h[S1+S2+(S1S1)1/2]/3 拟柱体S1-上底面积S2-下底面积S0-中截面积h-高V=h(S1+S2+4S0)/6圆柱r-底半径h-高C—底面周长S底—底面积S侧—侧面积S表—表面积C=2πrS底=πr2S侧=ChS表=Ch+2S底V=S底h=πr2h空心圆柱R-外圆半径r-内圆半径h-高V=πh(R2-r2)直圆锥r-底半径h-高V=πr2h/3圆台r-上底半径R-下底半径h-高V=πh(R2+Rr+r2)/3球r-半径d-直径V=4/3πr3=πd2/6球缺h-球缺高r-球半径a-球缺底半径V=πh(3a2+h2)/6 =πh2(3r-h)/3a2=h(2r-h)球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6 圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2 =π2Dd2/4桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12 (母线是圆弧形,圆心是桶的中心) V=πh(2D2+Dd+3d2/4)/15 (母线是抛物线形)圆形的面积=。
长方形和正方形的表面积和体积的计算公式长方形和正方形是我们日常生活中经常接触到的图形,它们在建筑、家具、电子产品等领域都有广泛的应用。
在计算长方形和正方形的表面积和体积时,我们需要掌握一些基本的计算公式和方法。
本文就长方形和正方形的表面积和体积的计算公式进行详细介绍。
一、长方形长方形是由两个相等的平行四边形组成的图形,其中一对相邻的边相等,另一对相邻的边也相等,但不同对的边长度可以不同。
长方形的面积和体积的计算公式如下:1. 长方形的面积计算公式长方形的面积就是长乘以宽,即:面积 = 长×宽其中,长和宽分别代表长方形的两个相邻边的长度,单位为米、厘米、毫米等。
2. 长方形的体积计算公式长方形的体积是指一个长方形的三维空间内所占的容积,也就是长方形的面积乘以高度,即:体积 = 面积×高度其中,高度指长方形的第三条边的长度,单位同样为米、厘米、毫米等。
二、正方形正方形是一种四边相等、四角都是直角的图形,它是一种特殊的长方形,长和宽相等。
正方形的面积和体积的计算公式如下:1. 正方形的面积计算公式正方形的面积就是边长的平方,即:面积 = 边长×边长其中,边长指正方形的一条边的长度,单位同样为米、厘米、毫米等。
2. 正方形的体积计算公式正方形的体积是指一个正方形的三维空间内所占的容积,也就是正方形的面积乘以高度,即:体积 = 面积×高度其中,高度指正方形的第三条边的长度,单位同样为米、厘米、毫米等。
三、计算实例为了更好地理解长方形和正方形的面积和体积的计算公式,下面给出一些具体的计算实例。
1. 计算一个长为10厘米,宽为5厘米,高为3厘米的长方体的体积。
解:根据长方形的体积计算公式,可以得到:体积 = 面积×高度其中,面积为长乘以宽,即:面积 = 10厘米× 5厘米 = 50平方厘米将面积和高度代入公式中,得到:体积 = 50平方厘米× 3厘米 = 150立方厘米因此,该长方体的体积为150立方厘米。
120第三讲 长方形和正方形的面积(公式计算)ʌ知识概述ɔ我们都知道求长方形和正方形面积的公式是:长方形的面积=a ˑb (a 为长,b 为宽)正方形的面积=a ˑa (a 为边长)在生活中,我们利用这两个公式可以求各种直角多边形的面积㊂例如,对左下图,我们无法直接求出它的面积,但是可以将它分割成几块,其中每一块都是长方形或正方形,分别计算出各块面积再求和,就得出整个图形的面积㊂例题精学例1 有一块长方形土地,长是宽的2倍,中间有一块花坛,花坛是一个正方形,周围是草坪,草坪的面积是多少平方米?(单位:米)ʌ思路点拨ɔ 要求草坪的面积,就要用长方形土地的面积减去正方形花坛的面积㊂要求长方形土地的面积,就要知道它的长与宽㊂现在已知长是20米,是宽的2倍,可以先求出宽,再求出长方形土地的面积㊂121同步精练1.有一个长方形水池长10米,是宽的2倍,中间有一座正方形雕塑,边长2米,求水池的面积㊂2.用一根长36厘米的铁丝围成一个正方形,它的面积是多少?用这根铁丝围成一个长12厘米的长方形,它的面积是多少?3.在一张长15厘米,宽10厘米的红纸上剪下一个最大的正方形,剩下部分的面积是多少平方厘米?122例2 有一个长方形,如果它的长不变,宽减少2米,面积就减少24平方米;如果它的宽不变,长增加3米,面积就增加15平方米㊂求原长方形的面积㊂ʌ思路点拨ɔ 如果它的长不变,宽减少2米,面积就减少24平方米,如图所示,减少的是一个长方形,面积是24平方米,宽是2米,所以长是24ː2=12(米),这就是原来长方形的长㊂如果宽不变,长增加3米,面积就增加15平方米,如图所示,增加部分是一个长方形,面积是15平方米,长是3米,所以宽是15ː3=5(米),这就是原来长方形的宽㊂同步精练1.有一个长方形,如果宽不变,长增加4米,面积就增加24平方米;如果长不变,宽增加3米,面积就增加36平方米,求原来长方形的面积㊂2.有一个长方形,如果它的宽减少2米,或长减少3米,那么它的面积都减少24平方米,求原来这个长方形的面积㊂3.一个长方形,长16厘米,如果长减少6厘米,就变成了一个正方形㊂它的面积减少了多少平方厘米?123例3 有一个正方形水池,如下图的阴影部分,在它的周围修一个宽8米的花坛,花坛的面积是480平方米㊂求水池的边长㊂ʌ思路点拨ɔ 根据题意可知,图中的空白部分是480平方米,根据图的特点将它分成几部分(如下图所示),其中四个角上是面积为8ˑ8=64(平方米)的正方形,四个角上的正方形面积和是64ˑ4=256(平方米)㊂用总面积(480-256)得到四个空白小长方形的面积是224平方米,因为这四个小长方形的面积相等,所以每个小长方形的面积是224ː4=56(平方米)㊂每个小长方形的长是8米,所以每个小长方形的宽是56ː8=7(米),这就是水池的边长㊂同步精练1.街心花园中一个正方形花坛四周有1米宽的水泥路㊂如果水泥路的总面积是12平方米,中间花坛的面积是多少平方米?1242.下图是一个长50米,宽25米的标准游泳池㊂它的四周铺设了宽2米的白瓷地砖(阴影部分)㊂求游泳池面积和地砖面积㊂3.有一块菜地,长35米,宽25米,菜地中间留了宽1米的路,把菜地平均分成四块,每块的面积是多少平方米?125例4 如下图,正方形中套着一个长方形,正方形的边长是15厘米㊂长方形的四个角的顶点,恰好分别把正方形四条边都分成两段,其中长的一段是短的2倍㊂这个长方形的面积是多少平方厘米?ʌ思路点拨ɔ 要求长方形的面积需要知道它的长和宽,而长和宽都很难求出㊂我们可以换个角度思考,用正方形的面积减去四个三角形的面积就等于长方形的面积㊂仔细观察,发现两个大三角形通过移位㊁合并,可以拼成一个正方形,两个小三角形也可以拼成一个正方形㊂这样,只要求出拼成的两个正方形的边长就可以了㊂根据 长的一段是短的2倍 ,可知较小的正方形的边长是15ː(2+1)=5(厘米),较大的正方形的边长是15-5=10(厘米)㊂同步精练1.如右下图,一个正方形中套着一个长方形,已知正方形的边长是16厘米,长方形的四个角的顶点恰好把正方形的四条边都分成两段,其中长的一段是短的3倍㊂阴影部分的面积是多少?1262.如右下图,大正方形的边长比小正方形多4厘米,大正方形的面积比小正方形的面积多96平方厘米㊂大正方形和小正方形的面积各是多少?3.如右下图,已知大正方形的面积比小正方形多52平方分米,大正方形的边长比小正方形多2分米㊂小正方形的面积是多少?大正方形的面积是多少?127练习卷一㊁填空题㊂1.一间房长16米,宽12米,用边长为4分米的正方形地砖铺地,需要( )块㊂2.如下图,大正方形的边长是8厘米,小正方形的面积为( )平方厘米㊂第2题第4题3.把一根长24厘米的铁丝围成一个长方形,当边长为( )时面积最大,最大面积为( )㊂4.如右上图,有一块菜地长16米,宽8米,菜地中间留了2条宽2米的路,把菜地平均分成了四块,每一块的面积是( )㊂二㊁解决问题㊂1.右下图是6个相等的三角形拼成的图形,求这个图形的面积㊂(单位:分米)1282.求下列各图的面积㊂(单位:厘米)(1) (2)3.把边长为40米的正方形运动场扩大为长60米㊁宽50米的运动场,此运动场的面积扩大了多少?4.从一张边长是40厘米的正方形纸上剪下一个长是30厘米,宽是20厘米的长方形,还剩下多少平方厘米?5.光明小学的操场原来长80米㊁宽40米,现在长增加20米,宽增加10米,现在操场的面积是多少平方米?6.有两个相同的长方形,长是7厘米,宽是2厘米,把它们按右下图重叠放置,这个图形的面积是多少?129 7.一根铁丝能够围成一个长8厘米㊁宽4厘米的长方形,如果用这根铁丝围最大的正方形,它的面积是多少平方厘米?8.一个长方形和一个正方形部分重合(如下图),两块没有重合的阴影部分面积相差多少?(单位:厘米)9.有两个完全相同的长方形,如果把它们的长拼在一起则拼成一个新长方形,新长方形的周长比原来一个长方形的周长大10厘米;如果把它们的宽拼在一起组成一个新长方形,则该长方形的周长比原来一个长方形的周长大16厘米㊂求原来一个长方形的面积㊂10.用一张长26厘米,宽19厘米的长方形纸,剪出边长为3厘米的小正方形,能剪多少个小正方形?13011.一个正方形的面积是144平方米㊂如果它被分成六个相同的长方形(如下图),那么,其中一个长方形的面积和周长各是多少?12.如下图,长方形的长是12分米,宽是6分米,计算出图中阴影部分的面积㊂(A ,B 为中点)13.一个边长为7厘米的正方形纸片最多能裁出多少个长是4厘米,宽是1厘米的长方形纸条?请画图说明㊂12.答:75.5个㊂第三讲长方形和正方形的面积(公式计算)例120ˑ(20ː2)-1ˑ1=20ˑ10-1ˑ1=200-1=199(平方米)答:草坪的面积是199平方米㊂[同步精练]1.10ː2=5(米)10ˑ5=50(平方米)2ˑ2=4(平方米)50-4=46(平方米)答:水池的面积是46平方米㊂2.36ː4=9(厘米)9ˑ9=81(平方厘米)(36-12ˑ2)ː2=6(厘米)12ˑ6=72(平方厘米)答:围成的正方形的面积是81平方厘米,围成的长方形的面积是72平方厘米㊂2683.剪下的一个最大的正方形的边长为10厘米㊂15ˑ10=150(平方厘米)10ˑ10=100(平方厘米)150-100=50(平方厘米)答:剩下部分的面积是50平方厘米㊂例224ː2=12(米)15ː3=5(米)12ˑ5=60(平方米)答:原长方形的面积是60平方米㊂[同步精练]1.24ː4=6(米)36ː3=12(米)6ˑ12=72(平方米)答:原来长方形的面积是72平方米㊂2.24ː2=12(米)24ː3=8(米)12ˑ8=96(平方米)答:原来这个长方形的面积是96平方米㊂3.(16-6)ˑ6=60(平方厘米)答:它的面积减少了60平方厘米㊂例38ˑ8=64(平方米)64ˑ4=256(平方米)480-256=224(平方米)224ː4=56(平方米)56ː8=7(米)答:水池的边长是7米㊂[同步精练]1.12ː4=3(平方米)3ː1=3(米)3-1=2(米)2ˑ2=4(平方米)269270答:中间花坛的面积是4平方米㊂2.50ˑ25=1250(平方米)注意:游泳池为中间的小长方形㊂(50+2ˑ2)ˑ(25+2ˑ2)=54ˑ29=1566(平方米) 1566-1250=316(平方米)答:游泳池面积是1250平方米,地砖面积是316平方米㊂3. (35-1)ː2=34ː2=17(米) (25-1)ː2=24ː2=12(米) 17ˑ12=204(平方米)答:每块的面积是204平方米㊂例4 15ː(2+1)=5(厘米) 5ˑ5=25(平方厘米)15-5=10(厘米) 10ˑ10=100(平方厘米) 15ˑ15-100-25=225-100-25=100(平方厘米)答:这个长方形的面积是100平方厘米㊂[同步精练]1.16ː(3+1)=4(厘米) 4ˑ4=16(平方厘米)16-4=12(厘米) 12ˑ12=144(平方厘米)144+16=160(平方厘米)答:阴影部分的面积是160平方厘米㊂2.4ˑ4=16(平方厘米)96-16=80(平方厘米)80ː2=40(平方厘米)40ː4=10(厘米) 10ˑ10=100(平方厘米)100+96=196(平方厘米)答:大正方形的面积是196平方厘米,小正方形的面积是100平方厘米㊂3.2ˑ2=4(平方分米)52-4=48(平方分米)48ː2=24(平方分米)24ː2=12(分米)12ˑ12=144(平方分米)144+52=196(平方分米)答:小正方形的面积是144平方分米,大正方形的面积是196平方分米㊂练习卷一㊁1.16米=160分米12米=120分米160ˑ120=19200(平方分米) 4ˑ4=16(平方分米)19200ː16=1200(块)故需要1200块砖㊂2.由图可见,大正方形可平均分成8块小三角形,其中271小正方形占4块㊂8ˑ8=64(平方厘米)64ː8ˑ4=32(平方厘米)故小正方形的面积是32平方厘米㊂3.注意:在长与宽的和一定的情况下,它们的差越小面积就越大㊂极端情况下,正方形面积最大㊂24ː2=12(厘米)12ː2=6(厘米)6ˑ6=36(平方厘米)故当边长是6厘米时面积最大,最大面积是36平方厘米㊂4.(16-2)ː2=7(米)(8-2)ː2=3(米)7ˑ3=21(平方米)故每一块的面积是21平方米㊂二㊁1.4ˑ4=16(平方分米)16ː4ˑ6=24(平方分米)答:这个图形的面积是24平方分米㊂2.(1)4ˑ12+4ˑ9+4ˑ6+4ˑ3=48+36+24+12=120(平方厘米)(2)10-4-3=3(厘米)10-7=3(厘米)3ˑ6+4ˑ3+3ˑ10=18+12+30=60(平方厘米)2723.60ˑ50-40ˑ40=3000-1600=1400(平方米)答:此运动场的面积扩大了1400平方米㊂4.40ˑ40-30ˑ20=1600-600=1000(平方厘米)答:还剩下1000平方厘米㊂5.(80+20)ˑ(40+10)=100ˑ50=5000(平方米)答:现在操场的面积是5000平方米㊂6.7ˑ2ˑ2=28(平方厘米)2ˑ2=4(平方厘米)28-4=24(平方厘米)答:这个图形的面积是24平方厘米㊂7.(8+4)ˑ2=24(厘米)24ː4=6(厘米)6ˑ6=36(平方厘米)答:它的面积是36平方厘米㊂8.注意:长方形与正方形的面积差也就是两块阴影部分的面积差㊂3ˑ4-2ˑ2=12-4=8(平方厘米)273答:两块没有重合的阴影部分面积相差8平方厘米㊂9.提示:两个完全相同的长方形的长拼在一起,拼成一个长方形,增加的周长也就是原来长方形的两条宽㊂同理,把宽拼在一起拼成的长方形,增加的周长也就是原来长方形的两条长㊂10ː2=5(厘米)16ː2=8(厘米)8ˑ5=40(平方厘米)答:原来一个长方形的面积是40平方厘米㊂10.26ː3=8(个) 2(厘米)19ː3=6(个) 1(厘米)8ˑ6=48(个)答:能剪48个小正方形㊂11.144ː6=24(平方米)144=12ˑ12所以这个正方形的边长是12米㊂12ː2=6(米)12ː3=4(米)(6+4)ˑ2=20(米)答:其中一个长方形的面积是24平方米,周长是20米㊂12.提示:如图添一条线,发现长方形被平均分成8份,其中阴影部分占2份㊂12ˑ6=72(平方分米)72ː8ˑ2=18(平方分米)答:图中阴影部分的面积是18平方分米㊂27413.如图所示,最多能剪出12个长是4厘米,宽是1厘米的长方形纸条㊂第四讲三位数除以一位数的除法(算式谜)例1132 5丿660 5161510100[同步精练]1.1336丿798 619 18181802.2138丿170416108242403.8796丿527448474254540例280408丿643256432325或30408丿243252432325275。
长方形和正方形所有公式
长方形和正方形是常见的几何形状,下面是它们的公式及解释:
1. 长方形:
长方形是一种有四个角为直角的四边形,其中相对的边长相等。
以下是与长方形相关的公式:
-周长:长方形周长的计算公式是P = 2(l + w),其中l代表长,w代表宽。
周长是指长方形所有边的长度之和。
-面积:长方形的面积计算公式是A = l ×w,其中l代表长,w代表宽。
面积是指长方形所覆盖的平面区域的大小。
2. 正方形:
正方形是一种有四个边长相等的四边形,同时也是一种特殊的长方形。
以下是与正方形相关的公式:
-周长:正方形周长的计算公式是P = 4s,其中s代表边长。
周长是指正方形所有边的长度之和。
-面积:正方形的面积计算公式是A = s^2,其中s代表边长。
面积是
指正方形所覆盖的平面区域的大小。
需要注意的是,长方形的长度和宽度可以是任意实数,而正方形的边长必须是相等的。
希望以上解释对你有所帮助。
如有任何其他问题,请随时提问。
第八讲长方形和正方形的面积(公式计算)【知识概述】我们都知道求长方形和正方形面积的公式是:长方形的面积=长×宽正方形的面积=边长×边长在生活中,我们利用这两个公式可以求各种直角多边形的面积。
例如,对下图我们无法直接求出它的面积,但是可以将它分割成几块,其中每一块都是长方形或正方形,分别计算出各块面积再求和,就得出整个图形的面积。
【精讲一】1、有一块长方形土地,长是宽的2倍,中间有一块花坛,花坛是一个正方形,周围是草坪,草坪的面积是多少平方分米?【思路导航】要求草坪的面积,就要用长方形土地的面积减去正方形花坛的面积。
【精练一】1、有一个长方形水池长10米,是宽的2倍,中间有一座正方形雕塑,边长2米,求水池的面积。
2、用一根长36厘米的铁丝围成一个正方形,它的面积是多少?用这个铁丝围成一个长12厘米的长方形,它的面积是多少?【精讲二】1、有一个长方形,如果它的长不变,宽减少2米,面积就减少24平方米;如果它的宽不变,长增加3米,面积就增加15平方米。
求原来长方形的面积。
【思路导航】如图“长不变,宽减少2米,面积就减少24平方米”,则原来长方形的长如图“它的宽不变,长增加3米,面积就增加15平方米”,则原来长方形的宽【精练二】1、有一个长方形,如果宽不变,长增加4米,面积就增加24平方米;如果长不变,宽增加3米,面积就增加36平方米。
求原来长方形的面积。
2、有一个长方形,如果它的宽减少2米,或长减少3米,那么它的面积都减少24平方米,求原来这个长方形的面积。
【精讲三】1、有一个正方形水池,如下图的阴影部分,在它的周围修一个宽8米的花坛,花坛的面积是480平方米。
求水池的边长。
【思路导航】如图,根据图的特征将它分成几部分,其中四个角上是面积为,四个角上的面积和是。
用总面积(480- )得到四个空白小长方形的面积是因为这四个小长方形的面积相等,所以每个小长方形的面积是,每个小长方形的长是8米,所以宽是。
长方形和正方形的周长和面积公式长方形和正方形是几何学中常见的两种形状,它们在数学和实际生活中都有广泛的应用。
本文将分别介绍长方形和正方形的周长和面积公式,并探讨它们的应用。
一、长方形的周长和面积公式长方形是一种边长不相等的四边形,它的对边平行且相等。
长方形的周长和面积可以用以下公式计算:1. 周长公式:周长等于长方形的两个相邻边长之和的两倍。
即C = 2(a + b)。
其中,C表示长方形的周长,a和b分别表示长方形的两个相邻边长。
2. 面积公式:面积等于长方形的两个相邻边长的乘积。
即 S = ab。
其中,S表示长方形的面积,a和b分别表示长方形的两个相邻边长。
长方形的周长和面积公式可以帮助我们计算长方形的周长和面积,进而应用到各个领域。
比如,我们可以利用长方形的面积公式计算一个长方形花坛的面积,从而确定需要多少土壤和植物;又或者利用长方形的周长公式计算一张桌子的周长,以确定需要多长的桌布。
二、正方形的周长和面积公式正方形是一种边长相等的四边形,它的四个内角均为90度。
正方形的周长和面积可以用以下公式计算:1. 周长公式:周长等于正方形的边长的四倍。
即 C = 4a。
其中,C 表示正方形的周长,a表示正方形的边长。
2. 面积公式:面积等于正方形的边长的平方。
即 S = a^2。
其中,S表示正方形的面积,a表示正方形的边长。
正方形的周长和面积公式也具有广泛的应用。
例如,在建筑设计中,我们可以利用正方形的面积公式计算一个正方形花坛的面积,从而确定需要多少土壤和植物;在制作画框时,我们可以利用正方形的周长公式计算画框的周长,以确定需要多长的边框。
三、长方形和正方形的应用长方形和正方形作为基本的几何形状,在生活和工作中有着广泛的应用。
1. 应用于建筑设计:长方形和正方形的规则形状使得它们在建筑设计中得到广泛应用。
例如,长方形的形状适合用来设计房间、花坛等,而正方形的形状适合用来设计广场、庭院等。
2. 应用于绘画和艺术:长方形和正方形的规则形状使得它们在绘画和艺术创作中得到广泛应用。
长方形、正方形相关公式长方形一、面积1、面积=长╳宽例:长是2厘米,宽是3厘米,面积=长╳宽=2╳3=6(平方厘米)2、长=面积÷宽例:面积是24平方厘米,宽是4厘米,长=面积÷宽=24÷4=6(厘米)3、宽=面积÷长例:面积是36平方厘米,长是9厘米,宽=面积÷长=36÷9=4(厘米)二、周长1、周长=(长+宽)╳2例:长是5厘米,宽是3厘米,周长=(长+宽)╳2=(5+3)╳2=16(厘米)2、长=周长÷2-宽例:周长是16厘米,宽是2厘米,长=周长÷2-宽=16÷2-2=6(厘米)3、宽=周长÷2-长例:周长是20厘米,长是6厘米,宽=周长÷2-长=20÷2-6=4(厘米)正方形1、面积=边长╳边长例:边长是4厘米,面积=边长╳边长=4╳4=16(平方厘米)2、周长=边长╳4例:边长是5厘米,周长=边长╳4=5╳4=20(平方厘米)3、边长=周长÷4例:周长是28厘米,边长=周长÷4=28÷4=7(厘米)单位进率长度单位:相邻两个单位之间的进率是101千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米例:1米=10分米=100厘米=1000毫米面积单位:相邻两个单位之间的进率是1001平方千米=100公顷 1公顷=10000平方米1平方米=100平方分米 1平方分米=100平方厘米例:1平方米=100平方分米=10000平方厘米单位换算1、大单位变成小单位,用乘法,即用大单位前面的数字乘上两个单位间的进率例1:2米=()厘米米与厘米间的进率是100,所以2╳100=200,即2米=(200)厘米例2:3平方米=()平方分米平方米与平方分米间的进率是100,所以3╳100=300,即3平方米=(300)平方分米注:乘上10、100、1000时,在原数字后面加上几个0。