长方形、正方形的面积计算公式
- 格式:ppt
- 大小:536.50 KB
- 文档页数:13
长方形正方形的面积计算公式在我们的数学世界里,长方形和正方形就像是两个性格分明的小伙伴,它们的面积计算可是有不少有趣的门道呢!先来说说长方形吧。
长方形就像是一个长长的队伍,有两条长长的边和两条短短的边。
它的面积计算公式是:面积 = 长×宽。
这就好比是在一个长方形的花园里种花,长的那边能种的行数多,宽的那边能种的列数多,两者相乘就是能种的花的总数啦。
我还记得有一次去朋友家的果园帮忙。
那是一个长方形的果园,朋友想知道到底能种多少棵果树。
我们拿着尺子量了量,长是 20 米,宽是 15 米。
按照长方形的面积计算公式,20×15 = 300(平方米),这就是果园的面积啦。
然后再根据每棵果树需要的占地面积,就能算出大概能种多少棵果树了。
正方形呢,它就像是一个整齐的方队,四条边都一样长。
正方形的面积计算公式是:面积 = 边长×边长。
想象一下,正方形的操场,边长是 10 米,那它的面积就是 10×10 = 100(平方米),是不是很简单明了?在学习长方形和正方形面积计算的过程中,我还发现了一个小窍门。
如果把一个正方形沿着对角线剪成两个三角形,那么这两个三角形的面积是相等的,而且都等于正方形面积的一半。
比如说,有一个边长为 8 厘米的正方形手帕,它的面积是 8×8 = 64(平方厘米)。
如果沿着对角线剪开,每个三角形的面积就是 64÷2 =32(平方厘米)。
在实际生活中,长方形和正方形的面积计算用处可大啦!装修房子的时候,要计算房间地面的面积,看看需要多少地砖;做手工的时候,要计算纸张的面积,好合理安排图案;甚至是在买地盖房子的时候,也得算清楚面积,不然可就亏大啦!咱们再回到课堂上,老师在讲解这部分知识的时候,会通过各种有趣的例子让我们明白其中的道理。
比如说,会拿出各种长方形和正方形的卡片,让我们分组去测量边长,然后计算面积,看哪个小组算得又快又准。
还有的时候,老师会在黑板上画出一些奇怪的图形,让我们想办法把它们分割成长方形和正方形,再计算面积。
各种图形面积计算公式1、长方形的周长=(长+宽)×2 C=(a+b)×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽 S=ab4、正方形的面积=边长×边长 S=a.a= a5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高 S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、圆的面积=圆周率×半径×半径Ѕ=πr11、长方体的表面积=(长×宽+长×高+宽×高)×212、长方体的体积 =长×宽×高 V =abh13、正方体的表面积=棱长×棱长×6 S =6a14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a15、圆柱的侧面积=底面圆的周长×高 S=ch16、圆柱的表面积=上下底面面积+侧面积S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch17、圆柱的体积=底面积×高 V=ShV=πr h=π(d÷2) h=π(C÷2÷π) h18、圆锥的体积=底面积×高÷3V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷319、长方体(正方体、圆柱体)的体积=底面积×高 V=Sh各种图形面积计算公式整理文本1、长方形的周长=(长+宽)×2 C=(a+b)×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽 S=ab4、正方形的面积=边长×边长 S=a.a= a5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高 S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、圆的面积=圆周率×半径×半径Ѕ=πr11、长方体的表面积=(长×宽+长×高+宽×高)×212、长方体的体积 =长×宽×高 V =abh13、正方体的表面积=棱长×棱长×6 S =6a14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a15、圆柱的侧面积=底面圆的周长×高 S=ch16、圆柱的表面积=上下底面面积+侧面积S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch17、圆柱的体积=底面积×高 V=ShV=πr h=π(d÷2) h=π(C÷2÷π) h18、圆锥的体积=底面积×高÷3V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷319、长方体(正方体、圆柱体)的体积=底面积×高 V=Sh本文档部分内容来源于网络,如有内容侵权请告知删除,感谢您的配合!整理文本。
多边形的面积计算公式1、长方形的面积= 长×宽字母表示:S=ab长方形的长= 面积÷宽a=S÷b长方形的宽= 面积÷长b=S ÷a2 、正方形的面积= 边长×边长字母表示: S= a 23 平行四边形的面积= 底×高字母表示: S=ah平行四边形的高= 面积÷底h=S ÷a平行四边形的底= 面积÷高a=S ÷h4、三角形的面积= 底×高÷ 2字母表示: S=ah ÷2三角形的高= 2 ×面积÷底h=2S ÷a 三角形的底= 2 ×面积÷高a=2S ÷h5、梯形的面积= (上底+下底)×高÷ 2字母表示:S=(a+b) ·h ÷2梯形的高=2 ×面积÷(上底+ 下底) h=2S ÷(a+b) 梯形的上底=2 ×面积÷高—下底a=2S ÷h-b梯形的下底=2 ×面积÷高—上底b=2S ÷h-a1 平方千米=100 公顷1 公顷=10000 平方米1 平方米=100 平方分米1 平方米=10000 平方厘米1 米==10 分米=100 厘米《多边形的面积》同步试题一、填空1.完成下表。
考查目的:平行四边形、三角形和梯形的面积计算及变式练习。
答案:解析:直接利用公式计算这三种图形的面积,对于学生来说完成的难度不大。
对于已知平行四边形的面积和高求底、已知三角形的面积和底求高这两个变式练习,可引导学生进行比较,理解并强化三角形和梯形的类似计算中需要先将“面积× 识点。
2.下图是一个平行四边形,它包含了三个三角形,其中两个空白三角形的面积分别是 15 平方厘米和 25 平方厘米。
第4讲长方形、正方形的面积一、知识要点长方形的面积=长×宽,正方形的面积=边长×边长。
掌握并能运用这两个面积公式,就能计算它们的面积。
但是,在平时的学习过程中,我们常常会遇到一些已知条件比较隐蔽、图形比较复杂、不能简单地用公式直接求出面积的题目。
这就需要我们切实掌握有关概念,利用“割补”、“平移”、“旋转”等方法,使复杂的问题转化为普通的求长方形、正方形面积的问题,从而正确解答。
二、精讲精练【例题1】已知大正方形比小正方形边长多2厘米,大正方形比小正方形的面积大40平方厘米。
求大、小正方形的面积各是多少平方厘米?【思路导航】从图中可以看出,大正方形的面积比小正方形的面积大出的40平方厘米,可以分成三部分,其中A和B的面积相等。
因此,用40平方厘米减去阴影部分的面积,再除以2就能得到长方形A和B的面积,再用A或B的面积除以2就是小正方形的边长。
求到了小正方形的边长,计算大、小正方形的面积就非常简单了。
练习1:1.有一块长方形草地,长20米,宽15米。
在它的四周向外筑一条宽2米的小路,求小路的面积。
2.正方形的一组对边增加30厘米,另一组对边减少18厘米,结果得到一个与原正方形面积相等的长方形。
原正方形的面积是多少平方厘米?3.把一个长方形的长增加5分米,宽增加8分米后,得到一个面积比原长方形多181平方分米的正方形。
求这个正方形的边长是多少分米?【例题2】一个大长方形被两条平行于它的两条边的线段分成四个较小的长方形,其中三个长方形的面积如下图所求,求第四个长方形的面积。
【思路导航】因为AE×CE=6,DE×EB=35,把两个式子相乘AE×CE×DE×EB=35×6,而CE×EB=14,所以AE×DE=35×6÷14=15。
练习2:1.下图一个长方形被分成四个小长方形,其中三个长方形的面积分别是24平方厘米、30平方厘米和32平方厘米,求阴影部分的面积。
长方形正方形面积公式
长方形的面积公式为:s=a×b(a是长方形的长,b是长方形的宽)。
正方形的面积公式为:s=a×a(a是正方形的边长)。
长方形,数学术语,是有一个角是直角的平行四边形叫做长方形。
也定义为四个角都是直角的平行四边形,同时,正方形既是长方形,也是菱形。
正方形是特殊的平行四边形之一。
对于平行四边形而言,矩形独有的性质:四个角都是直角;两条对角线相等且平分(判别直角三角形斜边上的中线等于斜边的一半的依据)。
菱形独有的性质:四条边都相等;两条对角线互相垂直,并且每条对角线平分一组对角。
而矩形和菱形独有的性质之和就是正方形对于平行四边形独有的性质。
面积计算公式:
1、长方形的面积=长×宽 s=ab
2、正方形的面积=边长×边长 s=a.a= a
3、三角形的面积=底×高÷2 s=ah÷2
4、平行四边形的面积=底×低 s=ah
5、梯形的面积=(上底+下底)×高÷2 s=(a+b)h÷2。
长方形正方形平行四边形三角形梯形的周长和面积公式我们要找出长方形、正方形、平行四边形、三角形、梯形的周长和面积的公式。
首先,我们需要了解这些几何形状的基本性质和公式。
1. 长方形:长方形有2个长边和2个短边。
周长= 2 × (长 + 宽)
面积 = 长× 宽
2. 正方形:正方形有4个等长的边。
周长= 4 × 边长
面积 = 边长^2
3. 平行四边形:平行四边形有2个等长的对边。
周长= 2 × (长 + 宽)
面积 = 长× 宽
4. 三角形:三角形有3条边。
周长 = a + b + c,其中a、b、c是三角形的三条边。
面积 = (底× 高) / 2
5. 梯形:梯形有2个平行的边和2个不平行的边。
周长 = a + b + c + d,其中a、b是上底和下底的长度,c、d是梯形的两条腰的长度。
面积 = ((上底 + 下底) × 高) / 2
计算结果如下:
长方形的周长公式为:2 × (长 + 宽),面积公式为:长× 宽
正方形的周长公式为:4 × 边长,面积公式为:边长^2
平行四边形的周长公式为:2 × (长 + 宽),面积公式为:长× 宽
三角形的周长公式为:a + b + c,面积公式为:(底× 高) / 2
梯形的周长公式为:a + b + c + d,面积公式为:((上底 + 下底) × 高) / 2。
长方形和正方形所有公式长方形和正方形是我们生活中常见的两种几何形状,它们都具有一些特殊的性质和公式。
在本文中,我们将探讨长方形和正方形的各种公式,并对它们的性质进行详细的介绍和解释。
一、长方形的性质和公式长方形是一种具有四个直角的四边形,其对边平行且相等。
根据长方形的定义,我们可以得出一些重要的性质和公式。
1. 周长公式:长方形的周长等于两个相邻边的长度之和乘以2,即周长=2×(长+宽)。
2. 面积公式:长方形的面积等于长乘以宽,即面积=长×宽。
3. 对角线公式:长方形的对角线长等于两条边长的平方和的平方根,即对角线长=√(长的平方+宽的平方)。
4. 对称性:长方形具有对称性,即以长方形的中心点为对称中心,可以将长方形分成两个完全相同的部分。
以上是长方形的一些基本性质和公式,它们在数学和几何学中具有重要的应用价值。
长方形的周长和面积公式可以帮助我们计算长方形的大小,而对角线公式可以帮助我们计算长方形的对角线长度。
二、正方形的性质和公式正方形是一种具有四个相等边和四个直角的特殊长方形,它是一种特殊的长方形。
正方形也具有一些特殊的性质和公式。
1. 周长公式:正方形的周长等于边长乘以4,即周长=4×边长。
2. 面积公式:正方形的面积等于边长的平方,即面积=边长×边长。
3. 对角线公式:正方形的对角线长等于边长的平方根的2倍,即对角线长=√2×边长。
4. 对称性:正方形具有四个对称轴,每条对称轴都可以将正方形分成两个完全相同的部分。
正方形是一种非常特殊的几何形状,它的边长、周长、面积和对角线长度之间具有特殊的关系。
正方形的周长和面积公式可以帮助我们计算正方形的大小,而对角线公式可以帮助我们计算正方形的对角线长度。
三、长方形和正方形的比较长方形和正方形在形状和性质上有一些相似之处,但也存在一些明显的不同。
1. 形状:长方形的两个相邻边可以不相等,而正方形的四个边都相等。
图形的面积计算公式 1、长方形的周长=(长+宽)×2 C=(a+b)×2 2、正方形的周长=边长×4 C=4a 3、长方形的面积=长×宽 S=ab 4、正方形的面积=边长×边长 S=a.a 5、三角形的面积=底×高÷2 S=ah÷2 6、平行四边形的面积=底×高 S=ah 7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2 8、圆形直径=半径×2 圆形半径=直径÷2 d=2r r= d÷2 9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr 10、圆的面积=圆周率×半径×半径 S=πr ^2 11、长方体的表面积=(长×宽+长×高+宽×高)×2 S=(ab+bc+ca)×2 12、长方体的体积 =长×宽×高 V =abh 13、正方体的表面积=棱长×棱长×6 S =6a 14、正方体的体积=棱长×棱长×棱长 V=a.a.a 15、圆柱的侧面积=底面圆的周长×高 S=ch 16、圆柱的表面积=上下底面面积+侧面积 S=2πr +2πrh=2π(d÷2)+2π(d÷2)h=2π(C÷2÷π) +Ch 17、圆柱的体积=底面积×高 V=Sh V=πrh=π(d÷2)h=π(C÷2÷π)h 18、圆锥的体积=底面积×高÷3 V=Sh÷3 =πr h÷3 =π(d÷2)h÷3=π(C÷2÷π)h÷3 19、长方体(正方体、圆柱体)的体积=底面积×高 V=Sh。
长方形、正方形、圆、圆环、三角形、梯形、扇形、平行四边形的周长、面积公式长方形:长方形是一种边长不同但相对对称的矩形。
其周长公式为:P = 2(a+b),其中 a 和 b 分别代表长方形的长和宽。
其面积公式为:S = ab。
正方形:正方形是一种四条边长度相同的矩形。
其周长公式为:P = 4a,其中 a 代表正方形的边长。
其面积公式为:S = a x a 或S = a²。
圆:圆是一种没有边的几何图形,因此没有周长,但有一个重要的公式——周长的近似值,即π。
其直径为d,半径为 r,面积为 S,公式如下:周长公式:C = 2πr 或 C = πd 面积公式:S =πr²圆环:圆环是由两个同心圆组成的图形。
其外圆半径为 R,内圆半径为 r,其周长公式为 C = 2π(R + r)。
其面积公式为S = π(R² - r²)。
三角形:三角形是一种有三个顶点和三条边的几何图形。
有三种不同的三角形:直角三角形、等边三角形和等腰三角形。
直角三角形:其一条边为直角边,另外两条边称为直角边的两条腰。
其周长公式为 P = a + b + c,其中 a, b 为两条直角边的长度,c 为斜边的长度。
其面积公式为 S = (ab) / 2,其中 a 和 b 为两条直角边的长度。
等边三角形:其三条边长度相等。
其周长公式为 P = 3a,其中 a 为边长。
其面积公式为S = (a²√3) / 4。
等腰三角形:其两个底边长度相等,两个夹角也相等。
其周长公式为 P = 2a + b,其中 a 为底边长度,b 为等腰边长。
其面积公式为 S = (a x h) /2,其中 h 为等腰三角形高。
梯形:梯形是由两个平行的底边和它们之间的两条斜边组成的四边形。
其周长公式为 P = a + b + c + d,其中 a 和 b 为两个相邻的边的长度,c 和 d 为相对的两个边的长度。
其面积公式为 S = ((a + b) x h) / 2,其中h 为梯形的高。
各种图形面积计算公式1、长方形的周长=(长+宽)×2 C=(a+b)×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽 S=ab4、正方形的面积=边长×边长 S=a.a= a5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高 S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、圆的面积=圆周率×半径×半径Ѕ=πr11、长方体的表面积=(长×宽+长×高+宽×高)×212、长方体的体积 =长×宽×高 V =abh13、正方体的表面积=棱长×棱长×6 S =6a14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a15、圆柱的侧面积=底面圆的周长×高 S=ch16、圆柱的表面积=上下底面面积+侧面积S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch 17、圆柱的体积=底面积×高 V=ShV=πr h=π(d÷2) h=π(C÷2÷π) h18、圆锥的体积=底面积×高÷3V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3 19、长方体(正方体、圆柱体)的体积=底面积×高 V=Sh各种图形面积计算公式1、长方形的周长=(长+宽)×2 C=(a+b)×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽 S=ab4、正方形的面积=边长×边长 S=a.a= a5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高 S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、圆的面积=圆周率×半径×半径Ѕ=πr11、长方体的表面积=(长×宽+长×高+宽×高)×212、长方体的体积 =长×宽×高 V =abh13、正方体的表面积=棱长×棱长×6 S =6a14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a15、圆柱的侧面积=底面圆的周长×高 S=ch16、圆柱的表面积=上下底面面积+侧面积S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch 17、圆柱的体积=底面积×高 V=ShV=πr h=π(d÷2) h=π(C÷2÷π) h18、圆锥的体积=底面积×高÷3V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3 19、长方体(正方体、圆柱体)的体积=底面积×高 V=Sh。