4升5-8第八讲:容斥原理之重叠问题
- 格式:doc
- 大小:498.00 KB
- 文档页数:8
1. 瞭解容斥原理二量重疊和三量重疊的內容;2. 掌握容斥原理的在組合計數等各個方面的應用.一、兩量重疊問題 在一些計數問題中,經常遇到有關集合元素個數的計算.求兩個集合並集的元素的個數,不能簡單地把兩個集合的元素個數相加,而要從兩個集合個數之和中減去重複計算的元素個數,即減去交集的元素個數,用式子可表示成:A B A B A B =+-(其中符號“”讀作“並”,相當於中文“和”或者“或”的意思;符號“”讀作“交”,相當於中文“且”的意思.)則稱這一公式為包含與排除原理,簡稱容斥原理.圖示如下:A 表示小圓部分,B 表示大圓部分,C 表示大圓與小圓的公共部分,記為:A B ,即陰影面積.圖示如下:A 表示小圓部分,B 表示大圓部分,C 表示大圓與小圓的公共部分,記為:A B ,即陰影面積.包含與排除原理告訴我們,要計算兩個集合A B 、的並集AB 的元素的個數,可分以下兩步進行:第一步:分別計算集合A B 、的元素個數,然後加起來,即先求A B +(意思是把A B 、的一切元素都“包含”進來,加在一起);第二步:從上面的和中減去交集的元素個數,即減去C AB =(意思是“排除”了重複計算的元素個數).二、三量重疊問題A 類、B 類與C 類元素個數的總和A =類元素的個數B +類元素個數C +類元素個數-既是A 類又是B 類的元素個數-既是B 類又是C 類的元素個數-既是A 類又是C 類的元素個數+同時是A 類、B 類、C 類的元素個數.用符號表示為:A B C A B C A B B C A C A B C =++---+.圖示如下:教學目標知識要點7-7-2.容斥原理之重疊問題(二)1.先包含——A B +重疊部分A B 計算了2次,多加了1次;2.再排除——A B A B +-把多加了1次的重疊部分A B 減去.在解答有關包含排除問題時,我們常常利用圓圈圖(韋恩圖)來幫助分析思考.模組一、三量重疊問題【例 1】 一棟居民樓裏的住戶每戶都訂了2份不同的報紙。
1. 五年级奥数容斥原理之重叠问题(二)学生版2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行:第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数).二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下:教学目标知识要点7-7-2.容斥原理之重叠问题(二)1.先包含——A B +重叠部分A B 计算了2次,多加了1次;2.再排除——A B A B +-把多加了1次的重叠部分A B 减去.在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.模块一、三量重叠问题【例 1】 一栋居民楼里的住户每户都订了2份不同的报纸。
初中数学专题-重叠问题(精华版)
重叠问题是初中数学中的一个经典问题,很多同学在研究中会
遇到这个问题,现在我们来深入探讨一下。
什么是重叠问题?简单来说,就是用图形去模拟交集的情况。
例如,我们经常听说的“集体婚礼中,每个男士都握着另外四个女
士的手,每个女士也握着另外四个男士的手,问这次婚礼有多少人?”,这就是一个重叠问题。
在解决重叠问题时,我们需要注意以下几点:
1. 画图:重叠问题通常需要用图形来表示,画图是必不可少的。
2. 分类讨论:根据具体的题目条件,我们可以把问题分成不同
情况进行讨论,从而得到最终的答案。
3. 列方程:对于一些比较复杂的重叠问题,我们可以通过列方
程的方式来解决。
4. 推广应用:重叠问题是初中数学中的一个经典问题,但它在
实际生活中也有很多应用,例如科学研究、经济分析、交通规划等
领域都有重叠问题的存在。
通过学习重叠问题,我们不仅可以提高自己的数学能力,还可
以锻炼我们的思维能力和创新能力。
希望同学们能够重视这个问题,认真学习,在学习的过程中不断提高自己的解决问题的能力。
容斥原理公式及运用 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】在计数时,必须注意无一重复,无一遗漏。
为了使重叠部分不被重复计算,研究出一种新的计数方法。
这种方法的基本思路是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
一、容斥原理1:两个集合的容斥原理如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,发现既是A类又是B类的部分重复计算了一次,所以要减去。
如下图所示。
【示例1】??一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?数学得满分人数→A,语文得满分人数→B,数学、语文都是满分人数→A∩B,至少有一门得满分人数→A∪B。
A∪B=15+12-4=23,共有23人至少有一门得满分。
二、容斥原理2:三个集合的容斥原理如果被计数的事物有A、B、C三类,那么,将A、B、C三个集合的元素个数相加后发现两两重叠的部分重复计算了1次,三个集合公共部分被重复计算了2次。
如下图所示,灰色部分A∩B-A∩B∩C、B∩C-A∩B∩C、C∩A-A∩B∩C都被重复计算了1次,黑色部分A∩B∩C被重复计算了2次,因此总数A∪B∪C=A+B+C-(A∩B-A∩B∩C)-(B∩C-A∩B∩C)-(C∩A-A∩B∩C)-2A∩B∩C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C。
即得到:【示例2】??某班有学生45人,每人都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有24人,足球、排球都参加的有12人,足球、游泳都参加的有9人,排球、游泳都参加的有8人,问:三项都参加的有多少人?参加足球队→A,参加排球队→B,参加游泳队→C,足球、排球都参加的→A∩B,足球、游泳都参加的→C∩A,排球、游泳都参加的→B∩C,三项都参加的→A∩B∩C。
第八讲:容斥原理之重叠问题导入文氏图■■■■■■■■■■■■■■■文氏图,也叫维恩图”是由英国著名数学家Venn发明的.维恩(公元1834 年8月4日「公元1923 年4月4日)十九世纪英国著名的数学家和哲学家,生于英国赫尔.他1883 年获得理学博士学位,同年被选为英国皇家学会会员.维恩最主要的成就是系统解释并发展了几何表示的方法,也就是发明了文氏图.■他作出一系列・简单闭曲线(圆或更复杂的图形),将平面分为许多间隔.利用这种图表,维恩阐明了演绎推理的基本原理.为了进一步明确起见,他还引入了一些数学难题作为实例.虽然在维恩之前,莱布尼茨(Leibniz )已系统地运用过这类逻辑图,但今天这种逻辑图仍称作维恩图”另外, 维恩在概率论和逻辑学方面也有很大贡献,他的著作一一《机会逻辑》和《符号逻辑》,在19 世纪末20世纪初曾享有很高的声誉.除了数学以外,维恩还有一项较为特别的技能一一制作机器.他曾制作过一部板球发球机,当澳洲板球队在1909 年到访剑桥大学时,维恩的机器依然运作正常,并使他们其中一位成员打空四次.什么是容斥原理?这一讲我们主要学习和“包含”与“排除”有关的问题,这样的问题在生活中就有不少,比如吃瓜子.我们说吃掉了一斤瓜子,指的是带壳的瓜子,并非真的吃到肚子里一斤,因为这一斤中还“包含”着瓜子壳.如果要计算到底吃了多少,最简单的方法就是称一称瓜子壳,用原来的一斤“排除”掉瓜子壳的重量.瓜子的例子相对简单,一斤瓜子里一部分是瓜子仁,另一部分就是瓜子壳,两者各不相关.但本讲要学习的包含与排除问题要复杂一些,各部分之间会有重叠.比如一个办公室中每个人都至少爱喝茶或咖啡中的一种,已知有7个人爱喝茶,10个人爱喝咖啡,那能不能就说办公室里有17 个人呢?显然不能,因为可能有一些人既爱喝茶也爱喝咖啡,如果直接将喝茶的人数和喝咖啡的人数相加,会把既爱喝茶又爱喝咖啡的人计算2次,计算人数的时候要把这一部分减去才行.比如,如果有3个人既爱喝茶又爱喝咖啡,那总的人数就应该是7 + 10 - 3 = 14 人.这就是我们今天要来研究的问题一一有重叠的计数问题,即包含与排除问题•研究这种问题通常需要画出示意图,这样的示意图又叫做文氏图,下面我们就用文氏图推导两个对象的容斥原理公式.两个量之间的重叠例1、某班有34名同学参加了学校的运动会,其中有17名参加了跳绳,有20名参加了拔河,问:及参加了跳绳又参加了拔河的又多少人?如右图所示,如果要计算三个部分的总数,直接计算A+B 就会算多了,而多算的正好是共同部分,只要把多算的减掉就可以了•上述分析总结成公式就是:R总数=沖+丹一』、号重拄这个公式就是两个对象的容斥原理.练一练1、五年级有122 名学生参加语文、数学考试,每人至少有一门功课的成绩是优秀,其中语文成绩优秀的有65人,数学优秀的有87人•语文、数学都优秀的有多少人?2、在一次数学测试中有两道题全班同学都至少答对一题,答对第一题的有33人,答对第二题的又38人,两题都答对的又15人,问全班又多少人?3、学校文艺组每人至少会演奏一种乐器。
小学奥数专题-重叠问题(精华版)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN小学奥数重叠问题专题日常生活或数学问题中,在把一些数据按照某个标准分类时,常常出现其中的一部分数据同时属于两种或两种以上不同的类别,这样在计算总数时就会出现重复计算的情况,这类问题就叫做重叠问题。
重叠问题中涉及到的容斥原理是奥数的四大原理之一,是奥数重要知识点。
学生学习奥数,一定要掌握容斥原理。
下面小编给大家分享解决重叠的方法。
1. 解答重叠问题要用到数学中一个重要原理——包含与排除原理,即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
2. 解答重叠问题的应用题,必须从条件入手进行认真的分析,有时还要画出图示,借助图形进行思考,找出哪些是重复的,重复了几次。
明确需要要求的是哪一部分,从而找出解答方法。
3. 在数学中,我们经常用平面上封闭曲线的内部代表集合和集合之间的关系。
这种图称为韦恩图(也叫文氏图)。
4. 解答重叠问题的常用方法是:先不考虑重叠的情况,把有重复包含的几个计数部分加起来,再从它们的和中排除重复部分元素的个数,使得计算的结果既无遗漏又不重复。
这个原理叫做包含与排斥原理,也叫容斥原理。
5. 容斥原理1:如果被计数的对象,被分为A、B两大类,则:被计数对象的总个数=A类元素的个数+B类元素的个数-同时属于A类和B类的元素个数。
容斥原理2:如果被计数的对象,被分为A、B、C三大类,则:被计数对象的总个数=A类元素的个数+B类元素的个数+C类元素的个数-同时属于A类和B类元素的个数-同时属于A类和C类元素个数-同时属于B类和C类元素个数+同时属于A类、B类、C类元素个数。
一、重叠问题之长度:(1)拼接(对接)(2)搭接(3)打结题目1:(搭接正问题:求总长度)把两段同样是20厘米长的纸条粘合在一起,形成一段更长的纸条。
中间重叠的部分是6厘米,粘好的纸条长多少厘米?题目2:(搭接反问题一:等长搭接,求原来长度)把两段一样长的纸条粘合在一起,形成一段更长的纸条。
小学数学典型应用题之重叠问题一、含义重叠问题是数学上非常常见的一类数学问题,它要用到数学中的一个非常重要的原理:容斥原理,即当两个(或多个)计数部分有重复包含时,为了不重复计数,应从他们的和中排除重复部分。
二、解题思路和方法解决重叠问题时,必须从条件入手进行认真的分析,有时还要画图,借助图形进行思考,找出哪些是重叠的和重叠的次数,明确求的是哪一部分,从而找出解答方法。
当两个计数部分重叠时,可从它们的单项和中减去重叠的部分,得出总数。
三、例题例题(一):二(1)班同学人人参加课外活动,有20人参加英语班,有26人参加电脑班,每人至少参加一项。
其中4人两个班都参加。
二(1)班一共有多少人?解析:(1)已知20人参加英语班,26人参加电脑班,一共有20+26-46(人)。
(2)这46人中,有4人两班都参加。
(3)也就是说这4人在英语班算了名额,在电脑班也算了名额,多算了一次。
(4)所以,全班的人数应是46=4=42(人)。
例题(二):三(2)班有42名同学,会下象棋的有21名同学,会下围棋的有17名,两种棋都不会的有10名。
那么只会下象棋的同学有多少名?解析:(1)方法一:至少会下一种棋的人数是42-10=32名,而两种棋都会下的有21+17-32=6名,所以只会下象棋的同学有21-6=15(名)。
(2)方法二:至少会下一种棋的人数是42-10=32(名),用至少会下一种棋的人数减去会下围棋的人数就是只会下象棋的同学,故共有32-17=15(名)。
例题(三):全班50 人,不会骑自行车的有23人,不会滑旱冰的有35人,两样都会的有4人。
两样都不会的有多少人?解析:(1)会骑自行车的有50-23=27人,会滑旱冰的有50-35=15人。
(2)那么至少会这两样其中一样的人有:27+15-4=38人。
(3)加上两样都不会的人,就是全班人数。
(4)所以两样都不会的人数有50-38=12人。
例题(四):芳草地小学四年级的64人都会钢琴或画画中的一种,其中有58人学钢琴,43人学画画,问只学钢琴和只学画画的分别各有多少人?解析:(1)学了钢琴或画画的有73-9=64(人)。
小升初容斥原理
容斥原理是指通过排除重叠的部分,计算出两个或多个集合的并集的方法。
在小升初数学中,容斥原理常常用于解决集合与运算的问题。
例如,假设A和B是两个集合,我们要求A和B的并集中元
素的个数。
容斥原理告诉我们,可以通过计算A的元素个数
加上B的元素个数,然后减去A和B的交集中元素的个数来
得到并集中元素的个数。
用数学公式表示就是:|A∪B| = |A| + |B| - |A∩B|
在小升初数学中,容斥原理常常用于解决排列组合类问题。
通过应用容斥原理,可以将一个复杂的问题转化为更简单的子问题,从而简化解题过程。
需要注意的是,在应用容斥原理时,需要注意重叠部分的计算。
有时候,重叠部分需要进行递推计算,或者使用其他方法来求解。
总之,容斥原理是小升初数学中常用的一个解题方法,通过排除重叠部分,可以简化解题过程,提高解题效率。
第八讲:容斥原理之重叠问题一、导入文氏图文氏图,也叫“维恩图”,是由英国著名数学家 Venn 发明的.维恩(公元 1834 年 8 月 4 日─公元 1923 年 4 月 4 日)十九世纪英国著名的数学家和哲学家,生于英国赫尔.他 1883 年获得理学博士学位,同年被选为英国皇家学会会员.维恩最主要的成就是系统解释并发展了几何表示的方法,也就是发明了文氏图.他作出一系列简单闭曲线(圆或更复杂的图形),将平面分为许多间隔.利用这种图表,维恩阐明了演绎推理的基本原理.为了进一步明确起见,他还引入了一些数学难题作为实例.虽然在维恩之前,莱布尼茨(Leibniz)已系统地运用过这类逻辑图,但今天这种逻辑图仍称作“维恩图”另外,维恩在概率论和逻辑学方面也有很大贡献,他的著作-—《机会逻辑》和《符号逻辑》,在 19 世纪末 20 世纪初曾享有很高的声誉.除了数学以外,维恩还有一项较为特别的技能——制作机器.他曾制作过一部板球发球机,当澳洲板球队在 1909 年到访剑桥大学时,维恩的机器依然运作正常,并使他们其中一位成员打空四次.什么是容斥原理?这一讲我们主要学习和“包含”与“排除”有关的问题,这样的问题在生活中就有不少,比如吃瓜子.我们说吃掉了一斤瓜子,指的是带壳的瓜子,并非真的吃到肚子里一斤,因为这一斤中还“包含”着瓜子壳.如果要计算到底吃了多少,最简单的方法就是称一称瓜子壳,用原来的一斤“排除"掉瓜子壳的重量.瓜子的例子相对简单,一斤瓜子里一部分是瓜子仁,另一部分就是瓜子壳,两者各不相关.但本讲要学习的包含与排除问题要复杂一些,各部分之间会有重叠.比如一个办公室中每个人都至少爱喝茶或咖啡中的一种,已知有 7 个人爱喝茶,10 个人爱喝咖啡,那能不能就说办公室里有 17 个人呢?显然不能,因为可能有一些人既爱喝茶也爱喝咖啡,如果直接将喝茶的人数和喝咖啡的人数相加,会把既爱喝茶又爱喝咖啡的人计算 2 次,计算人数的时候要把这一部分减去才行.比如,如果有 3 个人既爱喝茶又爱喝咖啡,那总的人数就应该是 7 + 10 − 3 = 14 人.这就是我们今天要来研究的问题——有重叠的计数问题,即包含与排除问题.研究这种问题通常需要画出示意图,这样的示意图又叫做文氏图,下面我们就用文氏图推导两个对象的容斥原理公式.两个量之间的重叠例1、某班有34名同学参加了学校的运动会,其中有17名参加了跳绳,有20 名参加了拔河,问:及参加了跳绳又参加了拔河的又多少人?如右图所示,如果要计算三个部分的总数,直接计算 A+B就会算多了,而多算的正好是共同部分,只要把多算的减掉就可以了.上述分析总结成公式就是:这个公式就是两个对象的容斥原理.17+20—34=37-34=3(人)答:即参加跳绳又参加拔河的同学有3人.练一练1、五年级有 122 名学生参加语文、数学考试,每人至少有一门功课的成绩是优秀,其中语文成绩优秀的有 65 人,数学优秀的有 87 人.语文、数学都优秀的有多少人?2、在一次数学测试中有两道题全班同学都至少答对一题,答对第一题的有33人,答对第二题的又38 人,两题都答对的又15 人,问全班又多少人?3、学校文艺组每人至少会演奏一种乐器。
重叠问题详解探究必备日常生活或数学问题中,在把一些数据按照某个标准分类时,常常出现其中的一部分数据同时属于两种或两种以上不同的类别,这样在计算总数时就会出现重复计算的情况,这类问题就叫做重叠问题,解答重叠问题常用方法是:先不考虑重叠的情况,把有重复包含的几个计数部分加起来,再从它们的和中排除重复部分元素的个数,使得计算的结果既无遗漏又不重复;这个原理叫做包含与排除原理,也叫容斥原理;容斥原理包含以下两条基本计算公式:①容斥原理一,如果被计数的对象,被分为A、B两大类,则:被计数对象的总个数=A类元素个数+B类元素个数—同时属于A类和B类的元素个数;②容斥原理二,如果被计数的对象,被分为A、B、C三大类,则:被计数对象的总个数=A类元素+B类元素个数+C类元素个数—同时属于A类和B类的元素个数—同时属于A类和C类的元素个数—同时属于B类和C类的元素个数+同时属于A、B、C三类的元素个数;运用容斥原理解答重叠问题应用题的关键是,画出示意图,认真分析已知条件,找出哪些是重复的,重复了几次题目要求的又是哪一部分借助示意图进行思考,找到正确的解答方法;王牌题目1、三1班有48人,其中订少年报的有32人,订数学报的有38人,有25人两份报都订,那么:1只订少年报而没有订数学报的有多少人2只订数学报而没有订少年报的有多少人3有多少人两种报都没订解析:先画出订报情况示意图,如下图:用长方形的面积表示全班人数;字母A所在的椭圆表示订少年报的人数32人;字母B所在的椭圆表示订数学报的人数38人;字母C所在区域即两个椭圆的重叠部分表示同时订了两份报的人数25人;字母D所在的空白部分表示两种报都没有的订的人数;1用订少年报的总人数A,减去重叠部分C,剩下来的就是只订少年报而没有订数学报的人数:32-25=7人;2同理,B-C就是只订数学报而没有订少年报的人数:38-25=13人;3先求出订报的总人数,即图中所有阴影部分表示的人数,再用班级总人数减去订报总人数,即是两种报都没订的人数D;这题有两种解法;解法一:在1、2两小题中已求出只订少年报的人数7人、只订数学报的人数13人,即图中纯黑色阴影部分和纯红色阴影表示的人数,中间重叠部分为25人,所以订报总人数为:7+25+13=45人;所以,两种报都没有订的人数为:48-45=3人;解法二:不考虑重叠部分,订数学报和少年报的总人数为:32+38=70人;有25人两份报都订了,这些人既包含在32人之中,又包含在38人之中,我们在求和时,这25人就加了两遍,重复计算了一遍,要去掉多算的一遍;因此,订报总人数为:70-25=45人;两种报都没有订的人数就是:48-45=3人;2、一次老师给全班同学做两道智力趣题,结果全班10人两题都对,8人两题都错,第二道题有15人错,问第一道对而第二道错的同学有多少人解析:解答这题要抓住题中的有效条件,避免受无效条件的干扰;因为第二道题有15人错,全班只有8人两题都错,而两题都错的人第二道题肯定错了,所以两题都错的8个人包含在前面15人之中,从15人里去掉这8个人还剩:15-8=7人;去掉两题都错的8人,剩下的7人肯定只错了一道题,他们第二道题错了,第一道题肯定是对的,所以第一道对而第二道错的同学有7人;3、100位旅游者中,70人懂中文,52人懂英语,还有10人两种语言都不懂;1懂中文和英语的一共有多少人2既懂英语又懂中文的有多少人3只懂中文不懂英语的有多少人4只懂英文不懂中文的有多少人解析:1100名旅游者中,有10人两种语言都不懂,所以懂中文和英语的人一共有:100-10=90人;270人懂中文,52人懂英语,不考虑重叠情况即既懂英语又懂中文人数,懂两种语言的共有:70+52=122人;在第1小题已经求出懂两种语言的总人数为90人,所以被重复计算的既懂英语又懂中文的人数为:122-90=32人;3在第2小题已经求出既懂英语又懂中文的人数为32人,而懂中文的总人数为70人,这32人是包含在这70人当中的;从懂中文的总人数中排除既懂英语又懂中文的人数,剩下的就是只懂中文不懂英语的人数:70-32=38人;4与第3小题同理,从懂英文的52人中排除既懂英语又懂中文的32人,剩下的就是只懂英文不懂中文的人数:52-32=20人;。
第八讲:容斥原理之重叠问题
一、导入
文氏图
文氏图,也叫“维恩图”,是由英国著名数学家 Venn 发明的.
维恩(公元 1834 年 8 月 4 日─公元 1923 年 4 月 4 日)十九世纪英国著名的数学家和哲学家,生于英国赫尔.他 1883 年获得理学博士学位,同年被选为英国皇家学会会员.
维恩最主要的成就是系统解释并发展了几何表示的方法,也就是发明了文氏图.他作出一系列简单闭曲线(圆或更复杂的图形),将平面分为许多间隔.利用这种图表,维恩阐明了演绎推理的基本原理.为了进一步明确起见,他还引入了一些数学难题作为实例.虽然在维恩之前,
莱布尼茨(Leibniz)已系统地运用过这类逻辑图,但今天这种逻辑图仍称作“维恩图”另外,维恩在概率论和逻辑学方面也有很大贡献,他的著作——《机会逻辑》和《符号逻辑》,在 19 世纪末 20 世纪初曾享有很高的声誉.
除了数学以外,维恩还有一项较为特别的技能——制作机器.他曾制作过一部板球发球机,当澳洲板球队在 1909 年到访剑桥大学时,维恩的机器依然运作正常,并使他们其中一位成员打空四次.
什么是容斥原理?
这一讲我们主要学习和“包含”与“排除”有关的问题,这样的问题在生活中就有不少,
比如吃瓜子.我们说吃掉了一斤瓜子,指的是带壳的瓜子,并非真的吃到肚子里一斤,因为这一斤中还“包含”着瓜子壳.如果要计算到底吃了多少,最简单的方法就是称一称瓜子壳,用原来的一斤“排除”掉瓜子壳的重量.瓜子的例子相对简单,一斤瓜子里一部分是瓜子仁,另一部分就是瓜子壳,两者各不相关.但本讲要学习的包含与排除问题要复杂一些,各部分之间会有重叠.
比如一个办公室中每个人都至少爱喝茶或咖啡中的一种,已知有 7 个人爱喝茶,10 个人爱喝咖啡,那能不能就说办公室里有 17 个人呢?显然不能,因为可能有一些人既爱喝茶也爱喝咖啡,如果直接将喝茶的人数和喝咖啡的人数相加,会把既爱喝茶又爱喝咖啡的人计算 2 次,计算人数的时候要把这一部分减去才行.
比如,如果有 3 个人既爱喝茶又爱喝咖啡,那总的人数就应该是 7 + 10 − 3 = 14 人.
这就是我们今天要来研究的问题——有重叠的计数问题,即包含与排除问题.研究这种问题通常需要画出示意图,这样的示意图又叫做文氏图,下面我们就用文氏图推导两个对象的容斥原理公式.
两个量之间的重叠
例1、某班有34名同学参加了学校的运动会,其中有17名参加了跳绳,有20 名参加了拔河,问:及参加了跳绳又参加了拔河的又多少人?
如右图所示,如果要计算三个部分的总数,直接计算 A+B
就会算多了,而多算的正好是共同部分,只要把多算的减掉就可以
了.上述分析总结成公式就是:
这个公式就是两个对象的容斥原理.
17+20-34
=37-34
=3(人)
答:即参加跳绳又参加拔河的同学有3人。
练一练
1、五年级有 122 名学生参加语文、数学考试,每人至少有一门功课的成绩是优秀,其中语文成绩优秀的有 65 人,数学优秀的有 87 人.语文、数学都优秀的有多少人?
2、在一次数学测试中有两道题全班同学都至少答对一题,答对第一题的有33人,答对第二题的又38 人,两题都答对的又15 人,问全班又多少人?
3、学校文艺组每人至少会演奏一种乐器。
已知会拉手风琴的有24人,会弹电子琴的有17人,其中两种乐器都会的有8人,这个文艺组一共有多少人?
挑战思维
1、为了参加一次竞赛,某班46人中,每人至少参加一项。
其中有20人参加语文兴趣小组,,参加语文同时又参加数学兴趣小组的有2人,两项都没有报的有10 人,那么参加数学兴趣小组的有多少人?
三个量之间的重叠
1、某单位元旦期间组织旅游,每人至少说出一个想去的地方。
其中想去海南的有42人,想去桂林的有44人,想去港澳的有36人,既想去海南又想去桂林的有12人,既想去桂林又想去港澳的有8人,既想去海南又想去港澳的有10人,三个地方都想去的有4人。
问这个单位一共有多少人?
(42=44+36)-12-8-10+4
=122-(12+8+10)+4
=122-30+4
=96(人)
答:这个单位一共有96 人。
方法总结:
练一练
1、学校对150名大学生做关于《业余生活》的调查,统计到喜欢看电影的有63人,喜欢玩球的有66人,喜欢读书的有54人,既喜欢看电影又喜欢玩球的有18人,既喜欢玩球又喜欢读书的有12人,既喜欢看电影又喜欢读书的有15人.问:三种都喜欢的有多少人?
2、在校园艺术活动中,五(2)班的同学参加了美术和声乐比赛。
参加美术比赛的有25人,参加声乐比赛的有20人,两项都参加的有12人,两项都没有参加的有10人。
五(2)班一共有多少人?
挑战竞赛
3、学校举行运动会。
四年级共有60名同学,其中参加百米赛跑的有21人,参加投掷的有26人,即参加百米有参加跳远的有12人,即参加跳远有参加投掷的有9人,即参加百米有参加投掷的有14人,三项都参加的有5人,三项都没有参加的有12人,问参加跳远的有多少人?
重叠问题中的极值问题
1、40人参加某次晚会,其中28 人在晚会上唱了歌,25人在晚会上跳舞,那么即唱歌有跳舞的人最多有多少人,最少有多少人?
最少:(28+25)-40=13人
答:最多25 人最少13 人。
方法总结:
练一练
1、某校100名学生中,爱好音乐的有56人,爱好美术的有75人,那么即爱好音乐有爱好美术的最多有多少人?最少有多少人?
2、某班30 名同学。
在一项测试中,答对一题的有19 人,答对2题的14 人,那么两题都答对的最多有多少人?最少有多少人?
挑战思维
3、希望小学音乐兴趣小组有37 人,其中20人会手风琴,16人会钢琴,24人会电子琴,即会手风琴又会钢琴的8人,即会电子琴又会钢琴的10人,即会手风琴又会电子琴的8人,
那么三种都不会的至少多少人?
方法总结:
家庭作业
1、一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。
又问:‘谁做完数学作业?请举手!”有42人举手。
最后问:“谁语文、数学作业没有做完?”没有人举手。
求这个班语文、数学作业都完成的人数是______人。
2、某个班的全体学生进行了短跑、游泳、篮球三个项目的测试,有4名学生在这三个项目上都没有达到优
求这个班的学生数?
3、某班共有30名男生,其中20人参加足球队,12人参加蓝球队,10人参加排球队。
已知没一个人同时参加3个队,且每人至少参加一个队,有6人既参加足球队又参加蓝球队,有2人既参加蓝球队又参加排球队,那么既参加足球队又参加排球队的有多少人?
4、班有46人其中会弹琴的有30人,会拉小提琴的有28人,则这个班级会弹琴又会拉小提琴的至少有多少人?
5、某班同学中,有26人爱打篮球,17人爱打排球,19人爱踢足球,有9人既爱打篮球又爱踢足球,有4人既爱打排球又爱踢足球,有7人既爱打篮球又爱打排球,没有一个人三种球都爱玩,也没有一个人三种球都不爱玩,问:这个班共有多少学生?
6、某班有45名同学,其中22名同学参加科技兴趣小组,27名同学参加数学兴趣小组,同时参加两个小组的人数是两个小组均未参加的人数的2倍,那么至少参加一个兴趣小组的同学有多少名?
7、我校六年级三班学生每人至少参加了一种竞赛,其中有32人参加数学竞赛,27人参加英语竞赛,22人参加语文竞赛.其中参加英语和数学两科的有12人,参加英语和语文两科的有14人,参加数学和语文两科的有10人.问:这个班至少有多少人?至多有多少人?。