整车仿真
- 格式:ppt
- 大小:1.22 MB
- 文档页数:31
整车CFD仿真解决方案Siemens PLM Software 张杰Realize innovation. Unestricted© Siemens AG 2017目录•新能源汽车CFD仿真分析概览•CFD在汽车开发中各阶段的应用•基于CFD的设计空间探索•问题交流新能源汽车CFD 仿真分析内容概览3Cross validation气动噪声制动系统空气动力学乘员舱舒适性管理Thermal problemsComfortSafety (driving)Safety (visibility)Environment (save energy)Unique environmentAerodynamicsCLCrosswind CY,CS,CR Aeroacoustics Cooling SoilingWiper liftingWater managementAerodynamicsCD电池包热管理电机散热电控器散热汽车空气动力学性能概要—整车开发& CAE 驱动设计产品企划概念设计工程设计样车制造试验生产项目部性能总布置动力底盘电器CAE碰撞NVH结构CFD…试验碰撞风洞道路…CFD贯穿整车开发流程——整车性能开发项:属性模块动力性、经济性、驾驶性PED排放(Emissions)热管理(ThermoDynamic)整车重量(Weight)空气动力学(AeroDynamic)人机舒适性(Ergonomics)感知质量(Perceived Quality)NVH安全性能(Safety)操稳及平顺性(Ride & Handling)制动性能(Braking)环保性能(Environment)耐久性能(Durability)空调性能(Climate comfort)电器性能及HMI(Electric Performance & HMI)EMC水管理(water management)使用维护性(Serviceability)整车空气动力学PSF MR PS PA FSRPCPSI PTR LR LS J1OKtB气动噪声整车热管理水管理目录•新能源汽车CFD仿真分析概览•CFD在汽车开发中各阶段的应用•基于CFD的设计空间探索•问题交流CFD贯穿空气动力学开发流程——空气动力学CFD计算分析过程优化历程PC PA LR LS PSPSF目标分析CAS分析及优化整车虚拟分析及优化验证及改进优化造型阶段工程设计阶段试验验证概念设计验证分析NPDS流程下车身优化:机舱/车底↓风阻≈ 5%↓风阻≈ 1%发动机罩顶盖后扰流板后风挡侧围上车身造型优化↓风阻≈10%优化底部底部护板结构等措施CFD计算分析过程—造型CAS 面:CFD 计算分析目标达到外CAS 面Cd 目标基本确定外形模拟内容及方法半车快速模拟平底寻优思路输入外CAS 面几何模拟规模-10M 网格-K-Omega SST—造型CAS面:优化思路头部•减少高压区域•头部下压•-圆滑•角度—造型CAS面:优化思路尾部•压尾•减少尾涡侧面•轮罩—造型CAS面:CFD计算分析—二维校核上车身阻力分析—工程设计阶段:CFD 计算分析模拟规模-20-30M -K-Omega SST 目标达到整车Cd 目标优化整车(底盘和发动机舱)模拟内容及方法整车模拟(机舱+底盘)输入A 面-机舱风量少-通过底盘速度小—工程设计阶段:CFD 计算分析后扰流板优化后视镜型面设计型面优化A 处发动机底部护板建议1建议2建议3优化分析基础模型方案1方案2方案1方案2样车数据冻结局部优化车身部件优化。
整车NVH仿真模拟技术研究一、概述整车NVH仿真模拟技术是现代汽车工业中的重要技术之一,主要应用于汽车产品及零部件的设计和开发过程中对NVH噪声、振动与传动性能进行预测与评估,以达到提高汽车产品品质、降低开发成本和提升市场竞争力的目的。
本文将从整车NVH仿真模拟技术原理、应用、发展现状及趋势等方面进行介绍和分析。
二、整车NVH仿真模拟技术原理整车NVH仿真模拟技术主要是运用有限元、边界元、传递矩阵等多种方法,对汽车车身、发动机、底盘及其它空气和机械噪声源进行建模和仿真计算,并结合试验验证和优化,对整车NVH性能进行分析和评估。
1.有限元方法(FEA)有限元方法是将一个复杂的大系统分解成若干个较小的、简单的子系统,并且进行离散化,计算每个子系统的特性参数。
然后,通过组合论把每个子系统重新组成一个大系统,并分析其总体特性,从而解决全局问题的一种数值计算方法。
在整车NVH仿真模拟中,有限元方法主要用于车身和底盘的NVH分析和评估。
2.边界元方法(BEA)边界元方法通常将待求解的问题的边界与周围环境联系起来,将问题转化为一些与边界相关的算法。
实际上深入发掘了边界的信息,用边界而非内部的信息表示问题,从而使计算得到简化。
在整车NVH仿真模拟中,主要应用于板件和空气噪声的分析和评估。
3.传递矩阵方法(TMM)传递矩阵方法是以系统的输入、输出特性和传递函数为基础,分析系统内外噪声发生、传输和反射的技术方法。
它能有针对性地对汽车的空气、机械、液体等噪声进行分析和评估,可以了解噪声对车辆各个部位的影响和损伤,为NVH优化提供科学依据。
三、整车NVH仿真模拟技术应用整车NVH仿真模拟技术在汽车行业中应用广泛,主要集中在以下方面:1.车身和底盘NVH分析评估车身和底盘是汽车的基本构成部分,而其NVH性能是影响乘坐舒适性的最重要因素之一。
通过整车NVH仿真模拟技术,汽车设计师可以更加直观地了解不同材质、结构、加工工艺等因素对NVH性能的影响,从而对设计方案进行优化,提高整车NVH性能。
汽车整车动力学仿真分析
汽车整车动力学仿真分析的关键是建立一个准确的动力学模型,该模
型包括车辆的运动学和动力学方程。
运动学方程描述了车辆在不同路面条
件下的运动轨迹和姿态,而动力学方程则描述了车辆在不同工况下的运动
力学性能。
这些方程可以通过物理实验和测试获得,也可以通过先进的计
算力学方法进行数值求解。
在进行汽车整车动力学仿真分析时,首先需要输入一些基本的参数和
假设条件,例如车辆的质量、车辆的几何尺寸、轮胎的摩擦系数等。
然后,根据这些参数和假设条件,可以求解车辆的运动学和动力学方程,以得到
车辆在不同工况下的运动性能。
例如,可以计算车辆的加速度、制动距离、最大行驶速度等指标。
在汽车整车动力学仿真分析中,还可以对不同的设计方案进行比较和
评估。
例如,可以比较不同车辆配置下的加速性能,或者评估不同悬挂系
统对车辆操控性能的影响。
通过这种比较和评估,可以帮助工程师选择最
佳的设计方案,并进行必要的优化。
此外,汽车整车动力学仿真分析还可以用于进行车辆的故障诊断和故
障排除。
通过对车辆在不同工况下的仿真分析,可以定位和解决一些潜在
的动力学问题,以提高车辆的安全性和可靠性。
总之,汽车整车动力学仿真分析是一种非常有效的工具,可以帮助工
程师在汽车设计过程中预测和优化车辆的运动性能、稳定性和操控性能。
它可以帮助工程师选择最佳的设计方案,并进行必要的优化,从而提高车
辆的性能和安全性。
介绍整车偏频的仿真方法和技巧
一、整车试验方法介绍
按照GB4783-84汽车悬挂系统的固有频率测定方法:
滚下法:将汽车测试端的车轮,沿斜坡驶上凸块(凸块断面如下图所示,其高度根据汽车类型与悬挂结构可选取60、90、120mm,横向宽度要保证车轮全部置于凸块上),在停车挂空档发动机熄火后,再将汽车车轮从凸块上推下、滚下时应尽量保证左、右轮同时落地。
二、在ride模块下实现
在ride中打开整车模型,整车模型和工况设定见上图所示。
分析后后处理中找出前轴上下点的加速度时域信号(见上图所示),然后通过在后处理中使用fft变换,求出其频域特性,也可以按照国标算法找出其频率值,其中在adams/postprocessor得出结果见下图所示。
三、在ride模块下实现
标准工况定义中实现偏频测量,必须条件是完整的整车模型(同上模型)、定义工况、台阶路面。
注意:1.在adms中使用工况定义使用straight-line maintain工况定义;2.其中路面必须按照GB4783-84编制,下图路面文件可做参考;3.定义车速应该尽量低,计算之前必须进行静平衡,不然会产生误差;4.然后点击ok计算,得出分析结果,在adams/postprocessor的数据处理方法同上述,不在累赘。
整车碰撞仿真分析完成整车建模、设置好相应的测试单元,并核对模型整车情况与试验完全一致后即可将模型提交计算,完成计算后即可对结果进行分析。
正面刚性壁碰撞仿真分析内容主要包括:仿真计算可信性分析;整车和关键部件变形分析;B柱速度/加速度分析;A柱折弯分析;前侵入分析;假人伤害情况分析。
1 仿真计算可行性分析在整车碰撞仿真中虽然顺利完成计算,但由于有以下三个原因的存在并不能保证该计算结果完全准确可靠。
(1)在有限元仿真计算中涉及多种积分算法和不同的接触算法,系统为保证计算正常进行有时会自动增加某些部件的质量,如果该质量增加太多则会导致后期计算结果不可信。
(2)为节约计算时间计算中更多时候采用了非全积分的积分算法,这时将有可能在计算中发生沙漏,导致系统总体能力不守恒。
(3)在接触计算中如果接触设置不合理,将有可能产生较大的界面滑移能,这也是导致系统总能量不守恒的重要因素。
所以在顺利完成仿真计算后,需要对计算结果进行分析。
只有由于上述因素导致的质量增加和能量变化在可接受的范围内,再能认为该模型仿真计算结果是可信的,值得分析的。
打开计算输出的glstat文件或binout文件的glstat选项(见图1. 1),可以方便查看模型计算中涉及的以上因素变化曲线。
图1.1binout文件glstat选项菜单质量增加和能量变化查看内容为added_mass、energy_ratio,一般要求最终质量增加和能量变化不得超过5%,通常计算中初始质量增加在10kg以内,随着计算的进行整车质量还将有所增加。
关于能量变化曲线一般查看hourglass_energy、internal_energ y、kinetic_energy、interface_energy、total_energy这五项。
通常情况这五条曲线形状大致如图1.2。
图1.2仿真过程中能量变化曲线如图1.2可以观察到系统动能逐步转换为内能的过程,图中几条曲线一般应该为光滑过渡,如果在某位置发生突变则有可能是这个位置发生了较大的沙漏或质量增加。
AVLCRUISE整车动力性经济性仿真分析一点技巧1.创建合适的整车模型:首先,需要创建一个准确反映汽车系统的整车模型。
整车模型应包括发动机、传动系统、车辆和驱动循环等关键组成部分。
AVLCRUISE提供了一系列预定义的整车组件,可以快速建立模型。
2.考虑不同的驱动循环:驱动循环是模拟车辆在不同道路条件和行驶方式下的行驶模式。
AVLCRUISE提供了多种驱动循环选项,例如城市循环、高速公路循环和混合循环等。
根据应用需求选择合适的驱动循环。
3.选择适当的发动机模型:发动机是整车系统的核心组件之一,选择合适的发动机模型对于准确预测整车动力性和经济性至关重要。
AVLCRUISE提供了多种发动机模型,包括燃油喷射、气缸模型和排放模型等。
根据实际应用情况选择适当的发动机模型。
4.进行系统参数优化:使用AVLCRUISE可以对整车系统的参数进行优化。
通过调整发动机控制策略、传动系统参数和车辆配置等参数,可以获得最佳的动力性和经济性。
优化参数需要根据具体需求和目标制定,并通过多次仿真计算得到最佳结果。
5.分析仿真结果:AVLCRUISE提供了丰富的结果分析工具,可以从多个方面评估整车动力性和经济性。
例如,可以分析车辆加速性能、燃料消耗率、二氧化碳排放等指标。
通过比较不同优化方案的仿真结果,可以评估其影响,并进行进一步的改进。
6.考虑不确定性因素:在进行整车动力性经济性仿真分析时,需要考虑到实际操作中可能存在的不确定性因素,如驾驶行为、道路状况和环境影响等。
AVLCRUISE允许将这些因素考虑在内,并进行敏感性分析,以评估其对整车性能的影响。
7.与实际测试数据对比:为了验证模型的准确性和可靠性,建议将仿真结果与实际测试数据进行比较。
通过进行实际测试和仿真验证,可以进一步改进整车模型和优化策略,提高整车动力性和经济性。
总之,使用AVLCRUISE进行整车动力性经济性仿真分析需要综合考虑车辆模型、驱动循环、发动机模型、参数优化、结果分析、不确定性因素和实际测试数据等多个方面。