函数的图象与性质专题复习评测练习
- 格式:doc
- 大小:46.50 KB
- 文档页数:1
中考数学专题复习之一次函数的图像及性质测试卷一.选择题1.若y =x +2﹣3b 是正比例函数,则b 的值是( )A .0B .﹣C .D .﹣2.函数y =(k ﹣1)x ,y 随x 增大而减小,则k 的范围是( )A .k <0B .k >1C .k ≤1D .k <13.已知点M (﹣2,m )和点N (3,n )是直线y =2x +1上的两个点,那么有( )A .m =nB .m >nC .m <nD .不能确定mn 的大小关系4.一次函数y =8x 的图象经过的象限是( )A .一、三B .二、四C .一、三、四D .二、三、四5.若点(1,2)M 关于y 轴的对称点在正比例函数(32)y k x =+的图象上,则k 的值为( )A .13B .13-C .43-D .06. 1(A x ,1)y 和2(B x ,2)y 是一次函数2(1)2y k x =++图象上的两点,且12x x <,则1y 与2y 的大小关系是( )A .12y y =B .12y y <C .12y y >D .不确定7.下列图形中,表示一次函数y =mx +n 与正比例函数y =﹣mnx (m ,n 为常数,且mn ≠0)的图象不正确的是( )A .B .C .D .8.下列关于一次函数y =﹣2x +2的图象的说法中,错误的是( )A.函数图象经过第一、二、四象限B.函数图象与x轴的交点坐标为(2,0)C.当x>0时,y<2D.y的值随着x值的增大而减小9.如图,一次函数y=k1x+b1的图象l1与一次函数y=k2x+b2的图象l2相交于点P,则不等式组的解集为()A.x>﹣2B.﹣2<x<1.5C.x>﹣1D.x>210.如图,直线y=﹣x+5交坐标轴于点A、B,与坐标原点构成的△AOB向x轴正方向平移4个单位长度得△A′O′B′,边O′B′与直线AB交于点E,则图中阴影部分面积为()A.B.15C.10D.14二.填空题11.在平面直角坐标系中,已知一次函数y=﹣2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1>x2,则y1y2(填“>”或“<”).12.当m=时,函数y=(2m﹣1)x2m﹣2是正比例函数.13.一次函数y=mx+|m﹣1|的图象经过(0,3),且y随x增大而减小,则m=.14.定义:点P与图形W上各点连接的所有线段中,若线段P A最短,则线段P A的长度称为点P到图形W的距离,记为d(P,图形W).例如,在图1中,原点O(0,0)与直线l:x=3的各点连接的所有线段中,线段OA最短,长度为3,则d(O,直线x=3)=3.特别地,点P在图形W上,则点P到图形的距离为0,即d(P,图形W)=0.①在平面直角坐标系中,原点O(0,0)与直线l:y=x的距离d(O,y=x)=;②如图2,点P的坐标为(0,m)且d(p,y=2x﹣2)=,则m=.15.如图,直线l1⊥x轴于点(1,0),直线l2⊥x轴于点(2,0),直线l3⊥x轴于点(3,0),…直线l n⊥x轴于点(n,0).函数y=x的图象与直线l1,l2,l3,……l n分别交于点A1,A2,A3,……A n;函数y=3x的图象与直线l1,l2,l3,……l n分别交于点B1,B2,B3,……B n,如果△OA1B1的面积记的作S1,四边形A1A2B2B1的面积记作S2,四边形A2A3B3B2的面积记作S3,…四边形A n﹣1A n B n B n﹣1的面积记作S n,那么S2020=.16.如图,在平面直角坐标系中,点C的坐标是(0,4),作点C关于直线AB:y=x+1的对称点D,则点D的坐标是.三.解答题17.已知函数y=(m+2)x|m|﹣1+n+4.(1)当m,n为何值时,此函数是正比例函数?(2)当m,n为何值时,此函数是一次函数?18.如图,已知直线y=x+5与x轴交于点A,直线y=kx+b与x轴交于点B(1,0),且与直线y=x+5交于第二象限点C(m,n).(1)若△ABC的面积为12,求点C的坐标及关于x的不等式的x+5>kx+b解集;(2)求k的取值范围.19.如图,一次函数y=﹣x+5的图象l1分别与x轴,y轴交于A、B两点,正比例函数的图象l2与l1交于点C(m,).(1)求m的值及l2的解析式;(2)求得S△AOC﹣S△BOC的值为;(3)一次函数y=kx+1的图象为l3且l1,l2,l3可以围成三角形,直接写出k的取值范围.20.如图,在平面直角坐标系中,直线y=2x+3与y轴交于点A,直线y=kx﹣1与y轴交于点B,与直线y=2x+3交于点C(﹣1,n).(1)求n、k的值;(2)求△ABC的面积.21.如图,已知一次函数y=﹣x+6的图象与x轴、y轴分别交于点A和点B,与直线y =x相交于点C.过点B作x轴的平行线l,点P是直线l上的一个动点.①点C坐标是;②若点E是直线y=x上的一个动点,且处于直线AB下方,当△APE是以∠EAP为直角的等腰直角三角形时,点E的坐标是.22.如图,正比例函数y=x与一次函数y=ax+7的图象相交于点P(4,n),过点A(t,0)作x轴的垂线l,且0<t<4,交一次函数的图象于点B,交正比例函数的图象于点C,连接OB.(1)求a值;(2)设△OBP的面积为s,求s与t之间的函数关系式;(3)当t=2时,在正比例函数y=x与一次函数y=ax+7的图象上分别有一动点M、N,是否存在点M、N,使△CMN是等腰直角三角形,且∠CNM=90°,若存在,请直接写出点M、N的坐标;若不存在,请说明理由.23.如图1,在平面直角坐标系中,直线y=﹣x+2与坐标轴交于A,B两点,以AB为斜边在第一象限内作等腰直角三角形ABC.点C为直角顶点,连接OC.(1)A点坐标为,B点坐标为.(2)请你过点C作CE⊥y轴于E点,试探究并证明OB+OA与CE的数量关系.(3)如图2,将线段AB绕点B沿顺时针方向旋转至BD,且OD⊥AD,延长DO交直线y=x+5于点P,求点P的坐标.。
二次函数的图像和性质基础知识测试题九年级数学下册《二次函数的图像和性质》基础知识测验班级:_________姓名:___________得分:__________一、选择题(每小题3分,共45分):1、下列函数是二次函数的有()A、1个;B、2个;C、3个;D、4个2.y=(x-1)2+2的对称轴是直线()A.x=-1B.x=1C.y=-1D.y=13.抛物线y x221的顶点坐标是()A.(2,1)B.(-2,1)C.(2,-1)D.(-2,-1)4.函数y=-x-4x+3图象顶点坐标是()A.(2,-1)B.(-2,1)C.(-2,-1)D.(2,1)5.已知二次函数y mx2x m(m2)的图象经过原点,则m的值为()A.或2.B.0.C.2.D.无法确定6.函数y=2x-3x+4经过的象限是()A.一、二、三象限B.一、二象限C.三、四象限D.一、二、四象限7.已知二次函数y ax2bx c(a)的图象如图5所示,有下列结论:①abc;②a+b+c>0③a-b+c<0.其中正确的结论有()A.1个D.4个8、已知二次函数y13x2、y2x2、y3x2,它们的图像开口由小到大的顺序是A、y1y2y3B、y3y2y1C、y1y3y2D、y2y3y19、与抛物线y=-1x2+3x-5的形状、开口方向都相同,只有位置不同的抛物线是()A。
y = x2+3x-5 B。
y=-x2+2x C。
y =x2+3x-5 D。
y=x210.正比例函数y=kx的图象经过二、四象限,则抛物线y=kx2-2x+k2的大致图象是()删除了明显有问题的段落。
改写后的文章:九年级数学下册《二次函数的图像和性质》基础知识测验班级:_________姓名:___________得分:__________一、选择题(每小题3分,共45分):1、下列函数是二次函数的有()A、1个;B、2个;C、3个;D、4个2.抛物线y=(x-1)²+2的对称轴是直线()A.x=-1 B.x=1 C.y=-1 D.y=13.抛物线y=(x+2)²+1的顶点坐标是()A.(-2,1)B.(-2,-1)C.(2,1)D.(2,-1)4.函数y=-x²-4x+3图象顶点坐标是()A.(2,-1)B.(-2,1)C.(-2,-1)D.(2,1)5.已知二次函数y=mx²+x+m(m-2)的图象经过原点,则m的值为()A.2或-2 B.0 C.2 D.无法确定6.函数y=2x-3x²+4经过的象限是()A.一、二、四象限B.一、二象限C.三、四象限D.一、三、四象限7.已知二次函数y=ax²+bx+c(a≠0)的图象如图5所示,有下列结论:①abc>0;②a+b+c>0③a-b+c<0;其中正确的结论有()A.1个 B.2个 C.3个 D.4个8、已知二次函数y1=-3x²、y2=-x²、y3=x²,它们的图像开口由小到大的顺序是A、y1<y2<y3B、y3<y2<y1C、y1<y3<y2D、y2<y3<y19、与抛物线y=-x²+3x-5的形状、开口方向都相同,只有位置不同的抛物线是()A。
专题19.2.2一次函数的图象和性质一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.在函数3y x =-的图象上的点是()A .(1,-3)B .(0,3)C .(-3,0)D .(1,-2)【答案】D【解析】A.1-3=-2≠-3,故本选项不在3y x =-的图象上,B.0-3=-3≠3,故本选项不在3y x =-的图象上,C.-3-3=-6≠0,故本选项不在3y x =-的图象上,D.1-3=-2,故本选项在3y x =-的图象上.故选:D .2.函数2y kx =-的图象经过点(3,1)p -,则k 的值为()A .3B .3-C .13D .13-【答案】C【解析】∵函数2y kx =-的图象经过点(3,1)p -,∴3k −2=-1,解得k =13.故选:C .3.若点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是一次函数y =﹣x ﹣1图象上的点,并且y 1<y 2<y 3,则下列各式中正确的是()A .x 1<x 2<x 3B .x 1<x 3<x 2C .x 2<x 1<x 3D .x 3<x 2<x 1【答案】D【解析】解:∵一次函数y=﹣x ﹣1中k=﹣1<0,∴y 随x 的增大而减小,又∵y 1<y 2<y 3,∴x 1>x 2>x 3.故选:D .4.在平面直角坐标系中,将直线1:41l y x =--平移后,得到直线2:47l y x =-+,则下列平移作法正确的是()A .将1l 向右平移8个单位B .将1l 向右平移2个单位C .将1l 向左平移2个单位D .将1l 向下平移8个单位【答案】B【解析】A :将直线1:41l y x =--向右平移8个单位得到直线()481y x =---,即直线431y x =-+.B :将直线1:41l y x =--向右平移2个单位得到直线()421y x =---,即直线2:47l y x =-+.C :将直线1:41l y x =--向左平移2个单位得到直线()421y x =-+-,即直线49y x =--.D :将直线1:41l y x =--向下平移8个单位得到直线418y x =---,即直线49y x =--.故选B .5.一次函数35y x =-+的图象经过()A .第一、三、四象限B .第二、三、四象限C .第一、二、三象限D .第一、二、四象限【答案】D【解析】解: 一次函数35y x =-+中,30k =-<,50b =>,∴此一次函数的图象经过一、二、象限.故选:D6.下图为正比例函数()0y kx k =≠的图像,则一次函数y x k =+的大致图像是()A .B .C .D .【答案】B 【解析】解:∵正比例函数y=kx(k≠0)的图象经过二、四象限,∴k<0,∴一次函数y=x+k 的图象与y 轴交于负半轴且经过一、三象限.故选B.7.若一次函数y =(k -3)x -k 的图象经过第二、三、四象限,则k 的取值范围是()A .k <3B .k <0C .k >3D .0<k <3【答案】D【解析】∵一次函数y=(k-3)x-k 的图象经过第二、三、四象限,∴ ॰䃰< ॰,解得:0<k <3,故选:D .8.如图,已知一次函数y kx b =+,y 随着x 的增大而增大,且0kb <,则在直角坐标系中它的图象大致是()A .B .C .D .【答案】A【解析】∵y 随x 的增大而增大,∴0k >.又∵0kb <,∴0b <,∴一次函数过第一、三、四象限,故选A .9.对于次函数21y x =-,下列结论错误的是()A .图象过点()0,1-B .图象与x 轴的交点坐标为1(,0)2C .图象沿y 轴向上平移1个单位长度,得到直线2y x=D .图象经过第一、二、三象限【答案】D【解析】A 、图象过点()0,1-,不符合题意;B 、函数的图象与x 轴的交点坐标是1(,0)2,不符合题意;C 、图象沿y 轴向上平移1个单位长度,得到直线2y x =,不符合题意;D 、图象经过第一、三、四象限,符合题意;故选:D .10.直线l 1:y =kx +b 与直线l 2:y =bx +k 在同一坐标系中的大致位置是()A .B .C .D .【答案】C【解析】解:根据一次函数的系数与图象的关系依次分析选项可得:A 、由图可得,y 1=kx+b 中,k <0,b <0,y 2=bx+k 中,b >0,k <0,b 、k 的取值矛盾,故本选项错误;B 、由图可得,y 1=kx+b 中,k >0,b <0,y 2=bx+k 中,b >0,k >0,b 的取值相矛盾,故本选项错误;C 、由图可得,y 1=kx+b 中,k >0,b <0,y 2=bx+k 中,b <0,k >0,k 的取值相一致,故本选项正确;D 、由图可得,y 1=kx+b 中,k >0,b <0,y 2=bx+k 中,b <0,k <0,k 的取值相矛盾,故本选项错误;故选:C .11.一次函数23y x =-的图像在y 轴的截距是()A .2B .-2C .3D .-3【答案】D【解析】∵23y x =-,即b=-3,∴图像与y 轴的截距为-3,故选:D.12.如果直线y=2x+m 与两坐标轴围成的三角形的面积是4,那么m 的值是()A .4-B .2C .2±D .4±【答案】D【解析】∵当x=0时,y=m ,当y=0时,x=2m -,∴直线y=2x+m 与x 轴和y 轴的交点坐标分别为(2m -,0)、(0,m ),∵直线y=2x+m 与两坐标轴围成的三角形的面积是4,∴12|2m -||m|=4,解得:m=±4,故选:D .13.八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l 将这八个正方形分成面积相等的两部分,则该直线l 的解析式为()A .35y x =B .910y x =C .34y x =D .y x=【答案】B【解析】解:设直线l 和八个正方形的最上面交点为A ,过A 作AB ⊥y 轴于B ,作AC ⊥x 轴于C ,∵正方形的边长为1,∴OB =3,∵经过原点的一条直线l 将这八个正方形分成面积相等的两部分,∴两边分别是4,∴三角形ABO 面积是5,∴12OB•AB =5,∴AB =103,∴OC =103,由此可知直线l 经过(103,3),设直线l 解析式为y =kx ,则3=103k ,解得:k =910,∴直线l 解析式为y =910x ,故选:B .14.在平面直角坐标系中,点()11,1A -在直线y x b =+上,过点1A 作11A B x ⊥轴于点1B ,作等腰直角三角形112A B B (2B 与原点O 重合),再以12A B 为腰作等腰直角三角形212A A B ;以22A B 为腰作等腰直角三角形223A B B …;按照这样的规律进行下去,那么2019A 的坐标为()A .()2018201821,2-B .()2018201822,2-C .()2019201921,2-D .()2019201922,2-【答案】B【解析】解:如上图,∵点B 1、B 2、B 3、…、B n 在x 轴上,且A 1B 1=B 1B 2,A 2B 2=B 2B 3,A 3B 3=B 3B 4,∵A 1(−1,1),∴A 2(0,2),A 3(2,4),A 4(6,8),…,∴A n (2n−1−2,2n−1).∴A 2019的坐标为(22018−2,22018).故选:B .二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上)15.一次函数36y x =-+的图象与y 轴的交点坐标是________.【答案】(0,6)【解析】解:根据题意,令0x =,解得6y =,所以一次函数36y x =-+的图象与y 轴的交点坐标是(0,6).故答案为:(0,6).16.一次函数(3)2=-+y k x ,若y 随x 的增大而增大,则k 的取值范围是_________.【答案】3k >【解析】∵一次函数(3)2=-+y k x ,y 随x 的增大而增大,30k ∴->,3k ∴>.k .故答案为:317.已知A(2,1),B(2,4).(1)若直线l:y=x+b与AB有一个交点.则b的取值范围为_______________;(2)若直线l:y=kx与AB有一个交点.则k的取值范围为_______________.【答案】-1≤b≤2;0.5≤k≤2.【解析】解:(1)把A(2,1),代入直线l:y=x+b,得2+b=1,解得b=-1;把B(2,4)代入直线l:y=x+b,的2+b=4,解得b=2;所以:b的取值范围是:-1≤b≤2;(2)把A(2,1),代入直线l:y=kx,得2k=1,解得k=0.5;把B(2,4)代入直线l:y=kx,的2k=4,解得k=2;∴k的取值范围为:0.5≤k≤2.故答案为:-1≤b≤2;0.5≤k≤2.18.若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k﹣1)x+k的图象不经过第象限.【答案】一【解析】首先确定点M所处的象限,然后确定k的符号,从而确定一次函数所经过的象限,得到答案.∵点M(k﹣1,k+1)关于y轴的对称点在第四象限内,∴点M(k﹣1,k+1)位于第三象限,∴k﹣1<0且k+1<0,解得:k<﹣1,∴y=(k﹣1)x+k经过第二、三、四象限,不经过第一象限三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分)19.先完成下列填空,再在同一直角坐标系中画出以下函数的图象(不必再列表)(1)正比例函数2y x =过(0,)和(1,);(2)一次函数3y x =-+(0,)(,0).【答案】(1)0,2;(2)3,3,作图见解析【解析】解:(1)当x=0时,y=2x=0,∴正比例函数y=2x 过(0,0);当x=1时,y=2x=1,∴正比例函数y=2x 过(1,2).故答案为:0;2.(2)当x=0时,y=-x+3=3,∴一次函数y=-x+3过(0,3);当y=0时,有-x+3=0,解得:x=3,∴一次函数y=-x+3过(3,0).故答案为:3;3.20.已知一次函数()226y k x k =--+.(1)k 满足何条件时,y 随x 的增大而减小;(2)k 满足何条件时,图像经过第一、二、四象限;(3)k 满足何条件时,它的图像与y 轴的交点在x 轴的上方.【答案】(1)k>2;(2)2<k<3;(3)k<3且k≠2.【解析】(1)∵一次函数y=(2−k)x−2k+6的图象y 随x 的增大而减小,∴2−k<0,解得k>2;(2)∵该函数的图象经过第一、二、四象限,∴2−k<0,且−2k+6>0,解得2<k<3;(3)∵y=(2−k)x −2k+6,∴当x=0时,y=−2k+6,由题意,得−2k+6>0且2−k≠0,∴k<3且k≠2.21.如图,已知正比例函数y kx =(0)k ≠经过点(2,4)P .(1)求这个正比例函数的解析式;(2)该直线向上平移4个单位,求平移后所得直线的解析式.【答案】(1)2y x =;(2)24y x =+【解析】解:(1)把(2,4)P 代入y kx =,得42k =,∴2k =,∴这个正比例函数的解析式是2y x =.(2)设平移后所得直线的解析式是y =2x +b ,把(0,4)代入得:4=b ,∴y =2x +4.答:平移后所得直线的解析式是y =2x +4.22.已知一次函数的图象与正比例函数23y x =-的图象平行,且经过点()04,.(1)求一次函数的解析式;(2)若点()8M m -,和()5N n ,在一次函数的图象上,求m ,n 的值.【答案】(1)243y x =-+;(2)283m =;32n =-.【解析】设一次函数的解析式为y=kx+b ,∵一次函数的图象与正比例函数23y x =-的图象平行,∴k=23-,∵一次函数图象经过点(0,4),∴b=4,∴一次函数的解析式为y=23-x+4.(2)∵点()8M m -,和()5N n ,在一次函数的图象上,∴m=23-×(-8)+4=283,5=23-n+4,解得:m=283,n=32-.23.已知一次函数y =-x +3与x 轴,y 轴分别交于A ,B 两点.(1)求A ,B 两点的坐标.(2)在坐标系中画出一次函数y =-x +3的图象,并结合图象直接写出y <0时x 的取值范围.【答案】(1)()3,0A ,()0,3B (2)作图见解析,3x >【解析】(1)令0x =,则3y =,故()0,3B 令0y =,则03x =-+,故()3,0A .(2)如图所示,即为所求,根据图象可得y <0时,3x >.24.如图,直线AB 与x 轴相交于点(3,0)A ,与y 轴相交于点(0,4)B ,点C 是直线AB 上的一个动点.(1)求直线AB 的函数解析式;(2)若AOC ∆的面积是3,求点C 的坐标.【答案】(1)443y x =-+;(2)点C 的坐标为3,22⎛⎫ ⎪⎝⎭或9,22⎛⎫- ⎪⎝⎭.【解析】解:(1)设直线AB 的解析式为y kx b =+.∵直线过点(3,0)A 和点(0,4)B ,∴30,4.k b b +=⎧⎨=⎩解得4,34.k b ⎧=-⎪⎨⎪=⎩∴直线AB 的解析式为443y x =-+.(2)∵(3,0)A ,∴3AO =,∵AOC ∆的面积是3,∴AOC ∆边OA 上的高为2,∴点C 的纵坐标为2或-2,∵点C 为直线AB 上的点,当4423x -+=时,解得32x =;当4423x -+=-时,解得92x =.∴当AOC ∆的面积是3时,点C 的坐标为3,22⎛⎫ ⎪⎝⎭或9,22⎛⎫- ⎪⎝⎭.25.在平面直角坐标系中,一次函数122y x =-+的图象交x 轴、y 轴分别于A B 、两点,交直线y kx =于P 。
2.1.2指数函数的图象和性质1.下列函数是指数函数的是( ).A .y =x 5B .y =4x 3C .43x y ⎛⎫= ⎪⎝⎭D .y =13x ⎛⎫- ⎪⎝⎭+2 2.函数f (x )=132a ⎛⎫- ⎪⎝⎭·a x 是指数函数,则12f ⎛⎫ ⎪⎝⎭的值为( ).A .2B .-2C .-D .3.函数||12x y -⎛⎫= ⎪⎝⎭的图象是( ).4.函数f (x )=a x (a >0且a ≠1)对于任意的实数x ,y 都有( ).A .f (xy )=f (x )f (y )B .f (xy )=f (x )+f (y )C .f (x +y )=f (x )f (y )D .f (x +y )=f (x )+f (y )5.已知f (x )=a -x (a >0且a ≠1),且f (-2)>f (-3),则a 的取值范围是( ).A .a >0B . a >1C .a <1D .0<a <16.函数y ( ).A .[0,+∞)B .[0,4]C .[0,4)D .(0,4)7.若f (x )是指数函数,且f (2)-f (1)=6,则f (x )=__________.8.已知(a 2+2a +5)3x >(a 2+2a +5)1-x ,则x 的取值范围是__________.9.函数y =的定义域是__________.10.函数y =a x (a >0且a ≠1)在区间[1,2]上的最大值比最小值大2a ,求a 的值.参考答案1. 答案: C2. 答案:D解析:∵函数f (x )是指数函数, ∴12a -3=1,a =8.∴f (x )=8x ,12182f ⎛⎫== ⎪⎝⎭3. 答案:B4. 答案:C解析:f (x +y )=a x +y =a x ·a y =f (x )·f (y ),故选C .5. 答案:D 解析:由于f (x )=a -x =1xa ⎛⎫ ⎪⎝⎭,而f (-2)>f (-3),说明f (x )是递增函数,从而11a >,0<a <1,故选D .6. 答案:C解析:∵4x >0,∴16-4x <16.∴函数y =[0,4).7. 答案:3x解析:设f (x )=a x (a >0且a ≠1),则a 2-a =6,解得a =3,即f (x )=3x .8. 答案:14⎛⎫+∞ ⎪⎝⎭,解析:对于任意实数a ,a 2+2a +5=(a +1)2+4≥4>1,故y =(a 2+2a +5)x 是递增函数,因此有3x >1-x ,即14x >. 9. 答案:(-∞,0] 解析:由21402x -⎛⎫-≥ ⎪⎝⎭,得22-x ≥22,∴2-x ≥2,x ≤0.10. 解:当a >1时,y =a x 在[1,2]上是递增函数,∴y max =f (2)=a 2,y min =f (1)=a .∴f (2)-f (1)=2a ,即a 2-a =2a .∴32a =. 当0<a <1时, y =a x 在[1,2]上是递减函数, ∴y max =f (1),y min =f (2),即f (1)-f (2)=2a ,即a -a 2=2a . ∴12a =. 综上所述,12a =或32a =.。
函数的图象与性质试题课程名称高考数学二轮复习模拟考试教研室___________________ 高三数学组_________________复习时间年月日时分至适用专业班级成绩开卷A卷闭卷_±B卷班级_______________________ 姓名______________________ 学号___________________ 考生注童:舞弊万莫償,那祥要退学,自爱当守诺,最怕錯上第,若真不及格,努力下次过。
答案耳在答题娥上,耳在试题妖上无效。
一、选择题一、选择题1. (2017-高考山东卷)设函数y=\/4二x2的定义域为A,函数y=\n(\~x)的定义域为b则AHB=()A・(1, 2) B. (1, 2C・(一2, 1) D. -2, 1)[log4 工.工>0 •2・(2017-沈阳模拟)已知函数f(x)= \则师4))的值为()A. —£B. —99D.3. (2017-湖南东部六校联考)函数y=\M()A・是偶函数,在区间0)上单调递增B.是偶函数,在区间(一8, 0)上单调递减C.是奇函数,在区间(0, +8)上单调递增 D ・是奇函数,在区间(0, +8)上单调递减5. (2017-西安模拟)对于函数y=f(x),部分x 与y 的对应关系如下表:上,则 Xl+X2~\ ----- X2 017 = ( ) A. 7 554B. 7 540C. 7 561D. 7 5646. 已知/(x)是定义在R 上的奇函数,且在[0, +8)上单调递增,若/(lgx)<0, 则x 的取值范围是() A. (0, 1) B ・(1, 10) C. (1, +8)D. (10, +8)7. (2016-福州质检)已知偶函数/⑴满足:当xi, x 2e(0, +8)时,(x!-x2)[/(xi) -Ax2)]>0 恒成立.设 “=/(一4), b=/(l), c=/(3),则 d, h, c 的大小关系为( ) A. a<b<c B ・ h<a<c C. b<c<aD. c<b<a8. 函数/W 的定义域为R.若/(x+2)为偶函数,且血)=1,则/⑻+/(9)=( )A. —2B. —1C. 0试 题 共页 第页.V1 2 3 4 5 6 7 8 9 y375961824D. 1数列{忌}满足:xi = 1,且对于任B 点3,亦1)都在函数y=f(x)的图象9. (2017-高考山东卷)设/⑴=心,0<x<l, 1 U H),Q.若何%+】)'©=()A. 2 C. 6B. 4 D. 810. (2017•山西四校联考)已知函数/W满足:①定义域为R;®VxeR,都有/U+2)=/U);③当A-G[-1, 1]时,/W=—Lrl+1.则方程/W=*log2lxl在区间[一3, 5]内解的个数是()A. 5 C. 7B. 6 D. 811.(2017.天津模拟)已知函数爪)的图象如图所示,则/⑴的解析式可能是()A. x2cos xC. xsin x12・已知定义在R上的奇函数几兀)满足/(A—4)=-/«,且在区间[0, 2]上是增函数,贝|J()A.X-25)<All)</(80)B./(80)</(ll)</(-25)C.几11)勺(80)勺(一25)D・人一25)彳80)今(11)二、填空题13. (2017-高考全国卷II)已知函数/(x)是定义在R上的奇函数,当兀丘(一8, 0)时,X A)=2A3+A2,则f(2)= _____________ ・试题共页第页14.若函数f(x) = 2x+a^x为奇函数,则实数4= ____________ ・215・已知函数几丫)=苑丁+sin卅则人一2 017)+几一2 016)+用))土A2 016)+/(2 017)= ________ .16.已知定义在R上的函数/U)满足:①函数y=f(x-V)的图象关于点(1, 0)对称;②VxeR,石一"=石+寸:③当炸(一扌,一弓时,_/W = log2( — 3卄1).则/(2 017)= _______ ・(-log., T>0,且何一厶则曲「) = ()B.-扌5C・-42.(2017-高考北京卷)已知函数妙=3'—(分,则金)()A. 是奇函数, 且在R上是增函数B. 是偶函数, 且在R上是增函数C.D.3.4.A.C.是奇函数,是偶函数,且在R上是减函数且在R上是减函数函数劝2站的图象大致是(函数y=kl(l—x)在区间4上是增函数,那么区间4是()B •卜 I](―°°,0)[0, +oo) D.伶 +8)A. — log377D・_4函数/(x)的上确界.则函数用・)=是奇函数,则实数。
三角函数的图像与性质专项训练一、单选题1.(23-24高一上·浙江宁波·期末)为了得到πsin 53y x ⎛⎫=+ ⎪⎝⎭的图象,只要将函数sin 5y x =的图象()A .向左平移π15个单位长度B .向右平移π15个单位长度C .向右平移π3个单位长度D .向左平移π3个单位长度2.(23-24高一上·浙江丽水·期末)已知函数()()2sin f x x ωϕ=+的图象向左平移π6个单位长度后得到函数π2sin 23y x ⎛⎫=+ ⎪⎝⎭的图象,则ϕ的一个可能值是()A .0B .π12C .π6D .π33.(23-24高一下·浙江杭州·期末)为了得到函数()sin2f x x =的图象,可以把()cos2g x x =的图象()A .向左平移π2个单位长度B .向右平移π2个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度4.(23-24高一上·浙江宁波·期末)已知函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭.若π8f x ⎛⎫- ⎪⎝⎭为奇函数,π8f x ⎛⎫+ ⎪⎝⎭为偶函数,且()f x 在π0,6⎛⎫⎪⎝⎭上没有最小值,则ω的最大值是()A .2B .6C .10D .145.(23-24高一上·浙江湖州·期末)我们知道,每一个音都是由纯音合成的,纯音的数学模型是sin y A x ω=.已知某音是由3个不同的纯音合成,其函数为()11sin sin 2sin 323f x x x x =++,则()A .π3f ⎛⎫=⎪⎝⎭B .()f x 的最大值为116C .()f x 的最小正周期为2π3D .()f x 在π0,6⎛⎫⎪上是增函数6.(23-24高一上·浙江杭州·期末)已知函数()*2sin 6f x x ωω⎛⎫=+∈ ⎪⎝⎭N 有一条对称轴为23x =,当ω取最小值时,关于x 的方程()f x a =在区间,63ππ⎡⎤-⎢⎥⎣⎦上恰有两个不相等的实根,则实数a 的取值范围是()A .(2,1)--B .[1,1)-6⎣7.(23-24高一下·浙江丽水·期末)已知函数1()2sin(32f x x x π=ω-ω>∈,R),若()f x 的图象的任意一条对称轴与x 轴交点的横坐标均不属于区间(3π,4π),则ω的取值范围是()A .1287(,[]2396B .1171729(,][,]2241824C .52811[,][,]93912D .11171723[,][]182418248.(23-24高一下·浙江杭州·期末)已知函数()()sin ,0f x x ωω=>,将()f x 图象上所有点向左平移π6个单位长度得到函数()y g x =的图象,若函数()g x 在区间π0,6⎡⎤⎢⎥⎣⎦上单调递增,则ω的取值范围为()A .(]0,4B .(]0,2C .30,2⎛⎤⎥⎝⎦D .(]0,1【答案】C【详解】因为函数()()sin ,0f x x ωω=>,二、多选题9.(23-24高一上·浙江台州·期末)已知函数()ππsin cos sin cos 44f x x x x x ⎛⎫⎛⎫=+++ ⎪ ⎝⎭⎝⎭,则()A .函数()f x 的最小正周期为2πB .点π,08⎛⎫- ⎪⎝⎭是函数()f x 图象的一个对称中心C .函数()f x 在区间π5π,88⎡⎤⎢⎥上单调递减D .函数()f x 的最大值为110.(23-24高一上·浙江湖州·期末)筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用,现有一个筒车按逆时针方向匀速转动.每分钟转动5圈,如图,将该筒车抽象为圆O ,筒车上的盛水桶抽象为圆O 上的点P ,已知圆O 的半径为4m ,圆心O 距离水面2m ,且当圆O 上点P 从水中浮现时(图中点0P )开始计算时间,点P 的高度()h t 随时间t (单位秒)变化时满足函数模型()()sin h t A t b ωϕ=++,则下列说法正确的是()A .函数()h t 的初相为π6B .1秒时,函数()h t 的相位为0故选:BC .11.(23-24高一上·浙江丽水·期末)已知函数π()tan(2)6f x x =-,则()A .()f x 的最小正周期是π2B .()f x 的定义域是π{|π,Z}3x x k k ≠+∈C .()f x 的图象关于点π(,0)12对称D .()f x 在ππ(,)32上单调递增三、填空题12.(23-24高一上·浙江金华·期末)函数()π2π200cos 30063f n n ⎛⎫=++ ⎪⎝⎭({}1,2,3,,12n ∈⋅⋅⋅为月份),近似表示某地每年各个月份从事旅游服务工作的人数,游客流量越大所需服务工作的人数越多,则可以推断,当n =时,游客流量最大.13.(23-24高一上·浙江湖州·期末)已知()3sin 4f x x ϕ⎛⎫=+ ⎪⎝⎭,其中0,2ϕ⎛⎫∈ ⎪⎝⎭,且ππ62f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,若函数()f x 在区间2π,3θ⎛⎫⎪上有且只有三个零点,则θ的范围为.14.(23-24高一上·浙江温州·期末)已知函数()π2sin (0)6f x x ωω⎛⎫=+> ⎪⎝⎭,对x ∀∈R 都有()π3f x f ⎛⎫⎪⎝⎭≤,且在,163⎛⎫ ⎪⎝⎭上单调,则ω的取值集合为四、解答题15.(23-24高一下·浙江丽水·期末)已知函数22()sin2f x x x x =.(1)求函数()f x 的最小正周期及单调递减区间;(2)将函数()f x 的图象上每个点的纵坐标缩短到原来的12,横坐标也缩短到原来的12,得到函数()g x 的图象,若函数()y g x m =-在区间π0,4⎡⎤⎢⎥内有两个零点,求实数m 的取值范围.16.(23-24高一下·浙江衢州·期末)已知函数()cos2f x x x =+.(1)求函数()f x 的最小正周期和对称中心;(2)求函数()f x 在π0,2⎡⎤⎢⎥上的值域.17.(23-24高一上·浙江杭州·期末)已知函数22()sin 2sin cos 3cos ,R f x x x x x x =++∈.求:(1)函数()f x 的最小值及取得最小值的自变量x 的集合;(2)函数()f x 的单调增区间.18.(23-24高一下·浙江杭州·期末)已知实数0a <,设函数22()cos sin2f x x a x a =+-,且()64f =-.(1)求实数a ,并写出()f x 的单调递减区间;(2)若0x 为函数()f x 的一个零点,求0cos2x .19.(23-24高一上·浙江嘉兴·期末)已知函数()24cos 2f x x x a x =--.(1)若1a =-,求函数()f x 在[]0,2上的值域;(2)若关于x 的方程()4f x a =-恰有三个不等实根123,,x x x ,且123x x x <<,求()()131278f x f x x --的最大值,并求出此时实数a 的值.,。
---------------------------------------------------------------装--------------------订--------------------线-------------------------------------------------------------函数的图象与性质试题成绩课程名称高考数学二轮复习模拟考试开卷闭卷√教研室高三数学组A卷√B卷复习时间年月日时分至时分适用专业班级班级姓名学号考生注意:舞弊万莫做,那样要退学,自爱当守诺,最怕错上错,若真不及格,努力下次过。
答案写在答题纸上,写在试题纸上无效。
A组一、选择题一、选择题1.(2017·高考山东卷)设函数y=4-x2的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=()A.(1,2)B.(1,2]C.(-2,1) D.[-2,1)2.(2017·沈阳模拟)已知函数f(x)=则f(f(4))的值为() A.-19B.-9C.19D.93.(2017·湖南东部六校联考)函数y=lg|x|()A.是偶函数,在区间(-∞,0)上单调递增B.是偶函数,在区间(-∞,0)上单调递减试题共页第页C.是奇函数,在区间(0,+∞)上单调递增D.是奇函数,在区间(0,+∞)上单调递减4.函数f(x)=2|log2x|-⎪⎪⎪⎪⎪⎪x-1x的图象为()5.(2017·西安模拟)对于函数y=f(x),部分x与y的对应关系如下表:x 123456789y 37596182 4数列{x n}满足:x1=1,且对于任意n∈N*,点(x n,x n+1)都在函数y=f(x)的图象上,则x1+x2+…+x2 017=()A.7 554 B.7 540C.7 561 D.7 5646.已知f(x)是定义在R上的奇函数,且在[0,+∞)上单调递增,若f(lg x)<0,则x的取值范围是()A.(0,1) B.(1,10)C.(1,+∞) D.(10,+∞)7.(2016·福州质检)已知偶函数f(x)满足:当x1,x2∈(0,+∞)时,(x1-x2)[f(x1)-f(x2)]>0恒成立.设a=f(-4),b=f(1),c=f(3),则a,b,c的大小关系为() A.a<b<c B.b<a<cC.b<c<a D.c<b<a8.函数f(x)的定义域为R.若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=() A.-2 B.-1C.0 D.1---------------------------------------------------------------装--------------------订--------------------线------------------------------------------------------------- 9.(2017·高考山东卷)设f(x)=⎩⎨⎧x,0<x<1,2(x-1),x≥1.若f(a)=f(a+1),f(1a)=() A.2 B.4C.6 D.810.(2017·山西四校联考)已知函数f(x)满足:①定义域为R;②∀x∈R,都有f(x+2)=f(x);③当x∈[-1,1]时,f(x)=-|x|+1.则方程f(x)=12log2|x|在区间[-3,5]内解的个数是()A.5 B.6C.7 D.811.(2017·天津模拟)已知函数f(x)的图象如图所示,则f(x)的解析式可能是()A.x2cos x B.sin x2C.x sin x D.x2-16x412.已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则()A.f(-25)<f(11)<f(80)B.f(80)<f(11)<f(-25)C.f(11)<f(80)<f(-25)D.f(-25)<f(80)<f(11)二、填空题13.(2017·高考全国卷Ⅱ)已知函数f(x)是定义在R上的奇函数,当x∈(-∞,0)时,f(x)=2x3+x2,则f(2)=________.试题共页第页---------------------------------------------------------------装--------------------订--------------------线-------------------------------------------------------------B组1.已知函数f(x)=⎩⎨⎧2x-2,x≤0,-log3x,x>0,且f(a)=-2,则f(7-a)=() A.-log37 B.-34C.-54D.-742.(2017·高考北京卷)已知函数f(x)=3x-(13)x,则f(x)()A.是奇函数,且在R上是增函数B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数D.是偶函数,且在R上是减函数3.函数y=(x3-x)2|x|的图象大致是()4.函数y=|x|(1-x)在区间A上是增函数,那么区间A是() A.(-∞,0) B.⎣⎢⎡⎦⎥⎤0,12C.[0,+∞) D.⎝⎛⎭⎪⎫12,+∞试题共页第页5.若函数f(x)=⎩⎨⎧x2-5x,x≥0,-x2+ax,x<0是奇函数,则实数a的值是()A.-10 B.10C.-5 D.56.(2017·贵阳模拟)已知函数f(x)的图象如图所示,则f(x)的解析式可能是()A.f(x)=e1-x2 B.f(x)=e x2-1C.f(x)=e x2-1 D.f(x)=ln(x2-1)7.定义在R上的函数f(x)满足f(-x)=-f(x),f(x-2)=f(x+2),且x∈(-1,0)时,f(x)=2x+15,则f(log220)=()A.1 B.45C.-1 D.-458.(2017·陕西宝鸡中学第一次月考)已知函数f(x)=⎩⎨⎧(3a-1)x+4a,x<1,log a x,x≥1满足对任意x1≠x2,都有f(x1)-f(x2)x1-x2<0成立,则实数a的取值范围是()A.⎝⎛⎭⎪⎫0,13 B.⎝⎛⎭⎪⎫13,1C.⎣⎢⎡⎭⎪⎫17,13 D.⎣⎢⎡⎭⎪⎫17,19.对于函数f(x),使f(x)≤n成立的所有常数n中,我们把n的最小值G叫做函数f(x)的上确界.则函数f(x)=的上确界是()试题共页第页A组答案解析1.解析:∵4-x2≥0,∴-2≤x≤2,∴A=[-2,2].∵1-x>0,∴x<1,∴B=(-∞,1),∴A∩B=[-2,1).故选D.答案:D2.解析:因为f(x)=所以f(f(4))=f(-2)=19.答案:C3.解析:因为lg|-x|=lg|x|,所以函数y=lg|x|为偶函数,又函数y=lg|x|在区间(0,+∞)上单调递增,由其图象关于y轴对称,可得y=lg|x|在区间(-∞,0)上单调递减,故选B.答案:B4.解析:由题设条件,当x≥1时,f(x)=2log2x-⎝⎛⎭⎪⎫x-1x=1x;当0<x<1时,f(x)=2-log2x-⎝⎛⎭⎪⎫1x-x=1x-⎝⎛⎭⎪⎫1x-x=x.故f(x)=⎩⎪⎨⎪⎧1x,x≥1,x,0<x<1.故选D.答案:D5.解析:∵数列{x n}满足x1=1,且对任意n∈N*,点(x n,x n+1)都在函数y=f(x)的图象上,∴x n+1=f(x n),∴由图表可得x2=f(x1)=3,x3=f(x2)=5,x4=f(x3)=6,x5=f(x4)=1,…,∴数列{x n}是周期为4的周期数列,∴x1+x2+…+x2 017=504(x1+x2+x3+x4)+x1=504×15+1=7 561.故选C.答案:C6.答案:A7.解析:因为f(x)为偶函数,故f(-4)=f(4).因为(x1-x2)·[f(x1)-f(x2)]>0,故函数f(x)在(0,+∞)上单调递增,故f(-4)=f(4)>f(3)>f(1),即a>c>b,故选C.---------------------------------------------------------------装--------------------订--------------------线------------------------------------------------------------- 答案:C8.答案:D9.解析:若0<a<1,由f(a)=f(a+1)得a=2(a+1-1),∴a=14,∴f(1a)=f(4)=2×(4-1)=6.若a≥1,由f(a)=f(a+1)得2(a-1)=2(a+1-1),无解.综上,f(1a)=6.故选C.答案:C10.解析:画出y1=f(x),y2=12log2|x|的图象如图所示,由图象可得所求解的个数为5.答案:A11.解析:由图象可得f ⎝⎛⎭⎪⎫π2>0,故可排除A选项.由于函数f(x)在区间⎝⎛⎭⎪⎫0,π2上先增后减,而函数y=x sin x在⎝⎛⎭⎪⎫0,π2上单调递增(因为y=x及y=sin x均在⎝⎛⎭⎪⎫0,π2上单调递增,且函数取值恒为正),故排除C选项.对函数y=x2-16x4而言,y′=2x-23x3=23x(3-x2),当x∈⎝⎛⎭⎪⎫0,π2时,y′=23x(3-x2)>0,故y=x2-16 x4在区间⎝⎛⎦⎥⎤0,π2上单调递增,与图象不符,故排除D选项.故选B. 答案:B12.解析:由f(x-4)=-f(x)得f(x+2-4)=f(x-2)=-f(x+2),由f(-x)=-f(x)试题共页第页---------------------------------------------------------------装--------------------订--------------------线------------------------------------------------------------- 1.解析:当a≤0时,2a-2=-2无解;当a>0时,由-log3a=-2,解得a =9,所以f(7-a)=f(-2)=2-2-2=-74,故选D.答案:D2.解析:∵函数f(x)的定义域为R,f(-x)=3-x-(13)-x=(13)x-3x=-f(x),∴函数f(x)是奇函数.∵函数y=(13)x在R上是减函数,∴函数y=-(13)x在R上是增函数.又∵y=3x在R上是增函数,∴函数f(x)=3x-(13)x在R上是增函数.故选A.答案:A3.解析:易判断函数为奇函数,由y=0得x=±1或x=0.且当0<x<1时,y<0;当x>1时,y>0,故选B.答案:B4.解析:y=|x|(1-x)=⎩⎨⎧x(1-x),x≥0,-x(1-x),x<0=⎩⎨⎧-x2+x,x≥0,x2-x,x<0=⎩⎪⎨⎪⎧-⎝ ⎛⎭⎪⎫x-122+14,x≥0,⎝⎛⎭⎪⎫x-122-14,x<0.试题共页第页试题共页第页。
一次函数的图像和性质考生1、下列函数(1)y=πx (2)y=2x -1 (3)y= (4)y=2-1-3x (5)y=x2-1中,是一次函数的有()(A)4个(B)3个(C)2个(D)1个2、如果函数y=(m+2)x|m|-1是正比例函数,求m的值。
3、y+1与x-2成正比例,且当x=1时,y=1,求y与x的函数关系式。
4、m的值为多少时,函数y=(m+2)x|m|-2 +m-3.(1)函数是正比例函数?(2)函数是一次函数5、如图,火车匀速通过隧道(隧道长大于火车长)时,火车进入隧道的时间x与火车在隧道内的长度y之间的关系用图象描述大致是()A. B. C. D.6、若把一次函数y=2x-3,向上平移3个单位长度,得到图象解析式是( )(A)y=2x (B) y=2x-6 (C)y=5x-3 (D)y=-x-37、函数xy=1,34312+=xy.当21yy>时,x的范围是( )A..x<-1 B.-1<x<2 C.x<-1或x>2 D.x>28、如图,一次函数122y x=-+的图像上有两点A、B,A点的横坐标为2,B点的横坐标为(042)a a a<<≠且,过点A、B分别作x的垂线,垂足为C、D,AOC BOD∆∆、的面积分别为12S S、,则12S S、的大小关系是A. 12S S> B.12S S= C.12S S< D. 无法确定9、已知点(-4,y1),(2,y2)都在直线y=(-k2-1)x+2上,则y1 y2大小关系是( )(A)y1 >y2(B)y1 =y2(C)y1 <y2(D)不能比较10、一次函数y=-5x+3的图象经过的象限是()A.一、二、三B.二、三、四C.一、二、四D.一、三、四11、一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限12.若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()A.k>3 B.0<k≤3C.0≤k<3D.0<k<313.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为()A.y=-x-2 B.y=-x-6 C.y=-x+10 D.y=-x-114、如图,直线1:33y x=-+x轴、y轴分别相交于点A、B,△AOB与△ACB关于直线l对称,则点C的坐标为15、若直线)(32222为常数与直线mmyxmyx+=+=+的交点在第四象限,则整数m的值为()A.—3,—2,—1,0 B.—2,—1,0,1C.—1,0,1,2 D.0,1,2,316、一次函数bkxy+=(k为常数且0≠k)的图象如图所示,则使0>y成立的x的取值范围为.火车隧道oyxoyxoyx oyx图17 图1817、如图,直线y 1=kx +b 过点A (0《2),且与直线y 2=mx 交于点P (1,m ),则不等式组mx >kx +b >mx -2的解集是.18、一次函数y=(m+3)x+2-m 当x=-2时,y=1,那么这个以次函数的解析式为_______________ 变式(1):一次函数y=(m+3)x+2-m 与y轴的交点在x 轴的上方,则m=____________ 变式(2):一次函数y=(m+3)x+2-m 经过二、三、四象限,则m=_________ 变式(3):一次函数y=(m+3)x+2-m 不经过第三象限,则m=___________变式(4):一次函数y=(m+3)x+2-m 的函数值y 随着x 值的增大而减小,那么m=_____________ 变式(5):一次函数y=(m+3)x+2-m 与y=2x+1的图像平行,则直线方程为________________ 变式(6):一次函数y=(m+3)x+2-m 向上平移一个单位与y=x+1重合,则m=_______________19、已知一次函数y=kx+b 的图象经过点(-1, -5),且与正比例函数y= x 的图象相交于点(2,a), 求 (1)a 的值 (2)k,b 的值 (3)这两个函数图象与x 轴所围成的三角形面积.20、如图,直线PA 是一次函数y = x + n (n >0)的图象,直线PB 是一次函数y = – 2x + m (m >0)的图象。
22.1二次函数图像性质 综合练习题(附答案)1、函数()2h x a y -=的图象与性质1、抛物线()2321--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有最 值 。
2、试写出抛物线23x y =经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标。
(1)右移2个单位;(2)左移32个单位;(3)先左移1个单位,再右移4个单位。
3、请你写出函数()21+=x y 和12+=x y 具有的共同性质(至少2个)。
4、二次函数()2h x a y -=的图象如图:已知21=a ,OA=OC ,试求该抛物线的解析式。
5、抛物线2)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积。
6、二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6。
求:(1)求出此函数关系式。
(2)说明函数值y 随x 值的变化情况。
7、已知抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值。
2、()k h x a y +-=2的图象与性质 1、请写出一个以(2, 3)为顶点,且开口向上的二次函数: 。
2、二次函数 y =(x -1)2+2,当 x = 时,y 有最小值。
3、函数 y =12 (x -1)2+3,当 x 时,函数值 y 随 x 的增大而增大。
4、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向 平移3个单位,再向 平移2个单位得到。
5、已知抛物线的顶点坐标为()2,1,且抛物线过点()3,0,则抛物线的关系式是6、如图所示,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是( )A 、x>3B 、x<3C 、x>1D 、x<17、已知函数()9232+--=x y 。
(1)确定下列抛物线的开口方向、对称轴和顶点坐标;(2)当x= 时,抛物线有最 值,是 。
一次函数的图像和性质练习题一、填空题1.正比例函数y kx(k 0) 一定经过点,经过(1,), 一次函数y kx b(k 0)经过(0,)点,(,0)点.2.直线y 2x 6与x轴的交点坐标是 ,与y轴的交点坐标是。
与坐标轴围成的三角形的面积是。
3.若一次函数y mx (4m 4)的图象过原点,则m的值为.4.如果函数y x b的图象经过点P(0,1),则它经过x轴上的点的坐标为 .5. 一次函数y x 3的图象经过点(, 5)和(2, )6.某函数具有下面两条性质:(1)它的图象是经过原点的一条直线;(2) y随x的增大而减小.请你写出一个满足上述条件的函数7.在同一坐标系内函数y=2x与y=2x+6的图象的位置关系是 .8.若直线y=2x+6与直线y=mx+5平行,则m=.9.在同一坐标系内函数y=ax+b与y=3x+2平行,则a, b的取值范围是.10.将直线y= — 2x向上平移3个单位得到的直线解析式是 ,将直线y= — 2x向下移3个单得到的直线解析式是 .将直线y= - 2x+3向下移2个单得到的直线解析式是.11.直线y kx b经过一、二、三象限,则k 0, b 0,经过二、三、四象限,则有k 0, b 0,经过一、二、四象限,则有k 0, b 0.12. 一次函数y (k 2)x 4 k的图象经过一、三、四象限,则k的取值范围是.13.如果直线y 3x b与y轴交点的纵坐标为 2 ,那么这条直线一定不经过第象限.14.已知点A(-4, a),B(-2,b) 都在一次函数y=-x+k(k为常数)的图像上,则a与b的大小 2关系是a—b(填" <““=”或“ >")15. 一次函数y=kx+b的图象如图所示,看图填空:(1)当x=0 时,y=; 当x=p寸,y=0.(2)k=, b=.(3)当x=5 时,y=;当y=30 时,x=.二、选择题1.已知函数y (m 3)x 2,要使函数值y随自变量x的增大而减小,则m的取值范围是2 .已知直线y kx b ,经过点A(x i, y 1)和点B(x 2, y 2),若k 0,且x 1 X 2,则y 1与y 2的大5.如果点P(a,b)关于x 轴的对称点p ,在第三象限,那么直线y=ax+b 的图像不经过()两个一次函数y ax b 与y 2 bx a ,它们在同一直角坐标系中的图象可能是三、解答题1,已知一次函数 y=(3-k)x-2k+18,(1) k 为何值时,它的图像经过原点;(2) k 为何值时,它的图像经过点(0,-2);(3) k 为何值时,它的图像与y 轴的交点在x 轴的上方;(4) k 为何值时,它的图像平行于直线y=-x;(5) k 为何值时,y 随x 的增大而减小.2 . 设一次函数y kx b(k 0),当x 2时,y 3,当x 1时,y 4。