有限元第五章.等参数单元
- 格式:ppt
- 大小:4.63 MB
- 文档页数:74
有限单元法有限单元法,是一种有效解决数学问题的解题方法。
其基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。
内容简述在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。
在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。
根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。
从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。
不同的组合同样构成不同的有限元计算格式。
对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。
令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。
插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。
有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。
在第一章中已阐明位移模式就是:单元内任意一点的位移,被表述为其坐标的函数。
在平面问题的单元中,任一点的位移分量可用下列多项式表示;显然位移模式的项数取得越多,计算也越精确,但是项数取得越多,待定系数61,。
z,…A1,P z,…也就越多,根据第一章64所述,待定系数是通过代入节点坐标及其位移而确定的。
所以一般要根据有几个节点才可确定取几项。
表4—1列出几种平面单元的位移模式。
为了使有限元的解能够收敛于精确解,任何单元的位移模式都必须满足以下三个条件:1、位移模式中必须包括反应刚体位移的常数项。
刚体位移是单元的基本位移,当单元作刚体位移时,单元内各点的位移值均相等,而和各点的坐标值无关。
显然式(4.1)中的常数项就是提供刚体移的。
2、位移模式中必须包括反应常应变的线性位移项。
当单元分割得十分细小时,单元中的应变就接近于常量。
所以选取的位移模式就必须反应这一点,由第一章可知线性位移项就是提供常应变的。
单元的位移模式满足了上述两个条件者,称为完备单元。
3、位移模式必须能保证单元之间位移的连续性。
在连续弹性体中位移是连续的,所以分割成许多单元后,相邻单元的位移必须保持连续,这就要使相邻单元的公共边界具有相同的位移,以避免发生两相邻单元互相脱离或互相位侵入的现象。
这种连续性在有的文献中称为协调性或相容性。
现在具体分析几种单元的位移模式。
图4—1表示两个相邻的三节点三角形单元,其公共节点『及m的位移对两个单元是一样,由于三节点三角形单元的位移模式是坐标的线性函数,公共边用M 在变形后仍是一条直线,所以上述两个相邻单元在iM边上的任意一点都具有相同位移,从而保证了连续性。
图4—2表示两个相邻矩形单元,其公共边界是M M,相当于y=常数的一条直线,由表4—l可知矩形单元的位移模式是,当y=常数,位移分量M是按线性变化的,所以和前例同样的推理,可以证明两个相邻矩形单元的位移在公共边界上是连续的。
对于六节点的三角形单元及八节点的矩形单元,在单元边界上位移分量是按抛物线变化的,而每条公共边界上有三个公共节点,正好可以保证相邻两单元位移的连续性。
§5-5数值积分1、问题的提出在上一节中对等参元进行单元分析时要进行下列积分: (i) 单元刚度矩阵(ii)体积力的等效结点力(iii)边界力的等效结点力(iv)温升载荷的等效结点力式(5-4-5)~(5-4-8)分别归结为计算以下两种形式的积分对于上述积分仅在单元的形状十分规则的情况下才能得到解析的结果(精确值),一般情况只能用数值积分方法(主要是高斯求积法)求近似值。
虽然数值积分是“被迫“采用的,但后来发现:有选择地控制积分点的个数和位置,可以方便地实现我们的某些特殊意图。
这样一来,数值积分就成为有限元分析的一个重要组成部分,以至本来可以精确积分的三角形单元也常常采用数值积分。
2、数值积分的基本概念任何积分工作取决于三个要素:给定的积分区间,给定的被积函数,具体的积分方法。
下面以一维情况为例介绍数值积分的基本概念 (i) 梯形法函数()x f 在区间(a,b)的积分可以表达为 ()()ini ibax f W dx x f I ∑⎰=≈=1⎰⎰⎰---111111),()(dxdxy x f dx x f 、 [][][][][][][]ηξd d J t B E B tdxdyB E B k T Te det 1111⎰⎰⎰⎰--=={}[][]ηξσd d J t f f N td f f N r y xT y x T eV det 1111⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧=⎰⎰⎰⎰--{}[]{}ηξσγd Jd t B T det 01111T ⎰⎰--={}[]()()⎪⎪⎭⎫ ⎝⎛=⎭⎬⎫⎩⎨⎧=⎰⎰⎰--dy y f dx x f tds q p N r T 1111,ΓΓ(5-4-5)(5-4-8) (5-4-7) (5-4-6)i W :权系数;i x :积分样点;()i x f :积分样点的函数值。
梯形法的求积公式为其中,1--=n ab h ,而a b W ni i -=∑=1(ii) 当被积函数为n-1次多项式P n-1(x )时,则由n 个样点及其样点值(x i , P n-1(x i ),i=1,n )可以精确重构这个多项式,从而可以得到精确解。
1.什么是等参数单元?(教材)坐标变换和单元内的场函数采用相同数目的节点参数及相同的插值函数,这种变换方法是等参数变换,这种变换方式能满足坐标变换的相容性,采用等参数变换的单元称之为等参数单元。
2.等参数单元的特点、基本条件、划分单元应注意的问题(教材习题)3.应用等参数单元时为什么要采用高斯积分,高斯积分点的数目如何确定?(教材习题)4.薄板弯曲问题的基本假设是什么?(其他参考书)(1)板弯曲钱垂直于中面的法线,在板弯曲后保持为直线,并垂直于弯曲后的中面。
(2)板面各水平层之间相互挤压(3)薄板受垂直于中面的载荷时可以为中间层各点设有平行于板面的位移.5.位移插值必须满足的三个条件:(教材)(1)位移插值函数应能满足单元的刚体位移(2)位移插值函数应能反映常量应变——常应变准则(3)位移插值函数应能保证单元内及相邻单元间位移的连续性——变形协调准则6.什么是轴对称问题?(其他参考书):轴对称物体的形变及应力分布不一定是轴对称的,只有当约束和载荷都对称于旋转轴时,轴对称物体的变形及应力分布才是轴对称的。
我们把满足上述条件的系统应力分析问题称为轴对称问题。
(教材):如果弹性体的几何形状、约束情况以及所受的外力,都是绕某一轴对称的,则弹性体的应力、应变和位移也就对称于这一轴,这种问题称为轴对称问题。
7.刚度矩阵性质(总刚):(1)对称性,关于正对角线对称(2)稀疏性,矩阵中有大量的零元素(3)带状分布,矩阵中非零元素在主对角线两侧呈带状分布10.形函数的性质。
(教材)(1)单元内任一点的三个形函数之和恒等于1,即Ni+Nj+Nm=1.(2)在节点i:Ni=1,Nj=0,Nm=0在节点j:Ni=0,Nj=1,Nm=0在节点m:Ni=0,Nj=0,Nm=111. 有限元法的特点(其他参考书)(1)概念清楚,容易理解(2)适应性强,应用范围广。
(3)有限元法采用矩阵形式表达,便于编制计算机程序,可以充分利用数字计算机的优势。