有限元第7章等参数单元
- 格式:ppt
- 大小:2.20 MB
- 文档页数:69
有限元是一种新兴的应用数值计算技术,用于解决复杂的工程计算问题。
它是基于有限元空间函数的力学系统的数值解决方案。
本文详细介绍了有限元的定义及其作用。
首先,有限元的定义。
有限元是一种分析工程问题的数值计算方法,它可以将复杂的工程问题分解成离散的模型,用计算机对其进行解算。
有限元的基本思想是将复杂的连续的物理场的力学系统分解成有限个单元,并建立有限元空间函数以描述其力学行为,然后求解这些模型,得到最终的结果。
其次,有限元的作用。
有限元技术可以解决复杂的工程问题,尤其是对于复杂的力学系统,有限元技术可以更有效的模拟它的行为。
有限元技术可以更精确的计算出结构的变形、应力、变位等参数,为工程设计提供有效的参考。
此外,有限元技术可以用于结构的动力学分析、热学分析、流体流动等复杂的问题,具有很强的模拟能力。
在飞机、汽车、建筑结构等领域,有限元技术可以有效的模拟复杂的现象,有助于工程设计更加精确。
最后,有限元技术在现代工程中越来越受到重视,它可以帮助工程师们更好的理解复杂的工程系统,从而更好的设计出更优秀的工程项目。
因此,有限元技术对于现代工程设计具有重要的意义。
北方工业大学高等有限元课程总结姓名:韩双鹏学号: ************* 专业班级:结构研-11 系(部、院):建筑工程学院2012 年5 月25 日高等有限元学习总结——六节点三角形等参数单元1 概述从弹性力学基本方程到有限元原理再到最新进展,经过本课程的学习,比较系统的掌握了有限元相关内容,更学习到了一种方法、一些生活中的哲理。
首先从大方向掌握所学内容,避免迷失在局部造成一叶遮目不见泰山之悲剧,比如弹性力学原理从大方向说就是三类方程,以及其在各类问题中的应用;其次了解了科研的相关过程及创新之处,从已知的东西到无知的领域,正如老师所说,能成功地把某一领域的东西搬到相关领域,这就是一大创造,比如有限元中将梁弯曲的理论研究厚板弯曲问题,由有限元标准单元到等参元的研究等;再有,我们生活中的常识、学习中的某些东西值得我们细细品味,也许这就是平时所说的小事反应大道理,老师的理论:“很多想法都是错误的”“很好想到的方法也许很难走通”“有缺陷的东西才更体现出美”“平衡的理论,吃点亏也许是福”等等,受益匪浅。
不再一一赘述,本文将取其中的一个知识点,总结六节点三角形等参单元的相关内容。
我们知道,无论三节点或者六节点三角形单元还是四节点或者八节点矩形单元,它们形状简单、规则但计算精度低,且对于复杂边界的适应性差,难以很好的拟合曲边边界,解决这一问题的通用方法是细分边界,以直代曲,利用更多的简单单元去拟合边界复杂的区域。
但这样处理仍存在折线代替曲线所带来的误差,且这种误差不能通过提高单元位移函数的精度来补偿。
那么能否构造出单元形状任意、边界适应性好、计算精度高的曲边单元,以便在给定的精度下用较少数目的单元去解决实际问题?这就是有限元中一类重要的单元——等参数单元。
本文将总结等参数单元的基本概念,并以六节点三角形单元为例讲述等参元实现过程中的三种变换,以及该等参元的收敛性等问题。
2 等参数单元及实现过程2.1 等参数单元概念由于实际问题的复杂性,通常需要使用一些形状不规整和形状复杂的单元来离散边界形状复杂的原问题。
有限元等参数单元有限元分析是一种工程数值分析方法,广泛用于结构力学、固体力学等领域。
在有限元分析中,将结构或物体离散为许多小单元,每个小单元称为参数单元。
本文将介绍有限元等参数单元的概念和应用。
在有限元分析中,参数单元是对结构或物体进行离散化的基本单元。
它是通过数学建模技术将连续域问题转化为离散模型的重要工具。
参数单元可以是一维、二维或三维的。
在一维情况下,常见的参数单元有杆单元和梁单元等。
在二维情况下,常见的参数单元有三角形单元和四边形单元等。
在三维情况下,常见的参数单元有四面体单元和六面体单元等。
在有限元分析中,参数单元的选择要根据具体问题的性质来确定。
一般来说,参数单元的几何形状应能较好地适应结构或物体的形状。
对于复杂结构或物体,可以使用不同形状的参数单元进行组合,以更好地描述结构的几何特征。
在参数单元中,需要定义材料性质、几何性质和加载条件等参数。
材料性质包括弹性模量、泊松比、密度等。
几何性质包括长度、面积、体积等。
加载条件包括外力、边界条件等。
这些参数可以通过实验测量或根据经验来确定。
在有限元分析中,参数单元的刚度、质量和荷载等可以通过这些参数来计算。
有限元分析的基本思想是,将结构或物体分解为多个参数单元,并将其转化为一个或多个代数方程组。
通过求解这个方程组,可以得到结构或物体的应力、应变、位移等信息。
有限元方法可以有效地分析复杂结构的性能和行为,并为工程设计和优化提供依据。
总之,有限元等参数单元是在有限元分析中对结构或物体进行离散化的基本单元。
它是将连续域问题转化为离散模型的重要工具。
参数单元的选择要根据具体问题的性质来确定,并通过定义材料性质、几何性质和加载条件等参数来描述结构的特征。
有限元分析是一种用于求解结构或物体应力、应变、位移等信息的数值分析方法,可以为工程设计和优化提供依据。