6 利用三角函数测高
栏目索引
发挥直观想象,构造直角三角形 素养解读 直观想象是指借助几何直观和空间想象感知事物的形态与变 化,利用空间形式特别是图形,理解和解决数学问题的素养.主要包括:借助 空间形式认识事物的位置关系、形态变化与运动规律;利用图形描述、分 析数学问题;建立形与数的联系,构建数学问题的直观模型,探索解决问题 的思路. 直观想象是发现和提出问题、分析和解决问题的重要手段,是探索和形成 论证思路、进行数学推理、构建抽象结构的思维基础. 直观想象主要表现为:建立形与数的联系,利用几何图形描述问题,借助几 何直观理解问题,运用空间想象认识事物.
知识点二 测量底部不可以到达的物体的高度
工具
步骤
图例
测量底部不可以到达 的物体的高度
测倾器、皮尺(卷尺)
如图,测量物体MN的高 度:(1)在测点A处安置 测倾器,测得此时M的 仰角∠MCE=α.(2)在测 点A与物体之间的B处 安置测倾器(A、B与N 在同一条直线上),测得 此时M的仰角∠MDE= β.(3)量出测倾器的高度 AC=BD=a,以及测 点A、B之间的距离AB =b.(4)根据三角函数求 出物体MN的高度,MN=
在Rt△CDE中, CD =tan∠CED,即
x
= 3,
DE
30 3- 3x-10 3
图1-6-5
解得x=15-
5
3 3
.答:立柱CD的高为15-
5
3 3
米.
6 利用三角函数测高
栏目索引
素养呈现 (1)了解角之间的关系,找到与已知和未知相关联的直角三角 形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,作CH ⊥AB于H,得到Rt△AHC和矩形BDCH. (2)由矩形BDCH得到BD=CH,设CD=x米,根据正切的定义用x表示出HC,根 据题意用x表示出ED. (3)在△CDE中,根据正切的定义列出方程,解方程即可.